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ABSTRACT Medical image classification plays an important role in disease diagnosis since it can provide
important reference information for doctors. The supervised convolutional neural networks (CNNs) such
as DenseNet provide the versatile and effective method for medical image classification tasks, but they
require large amounts of data with labels and involve complex and time-consuming training process. The
unsupervised CNNs such as principal component analysis network (PCANet) need no labels for training
but cannot provide desirable classification accuracy. To realize the accurate medical image classification
in the case of a small training dataset, we have proposed a light-weighted hybrid neural network which
consists of a modified PCANet cascaded with a simplified DenseNet. The modified PCANet has two stages,
in which the network produces the effective feature maps at each stage by convoluting inputs with various
learned kernels. The following simplifiedDenseNet with a small number of weights will take all featuremaps
produced by the PCANet as inputs and employ the dense shortcut connections to realize accurate medical
image classification. To appreciate the performance of the proposed method, some experiments have been
done on mammography and osteosarcoma histology images. Experimental results show that the proposed
hybrid neural network is easy to train and it outperforms such popular CNN models as PCANet, ResNet and
DenseNet in terms of classification accuracy, sensitivity and specificity.

INDEX TERMS Medical image classification, hybrid neural network, PCANet, DenseNet.

I. INTRODUCTION
During the process of disease diagnosis, doctors need to
exam such numerous medical images as X-ray images, mag-
netic resonance (MR) images and ultrasound images.Medical
image classification is a highly non-trivial task. Computer
aided image classification can avoid subjectivity and save
labor, and thus it plays an important role in clinical diag-
nosis [1], [2]. Image feature extraction is a crucial step
for image classification. In the traditional image classifica-
tion technologies, such hand-designed feature descriptors as
the local binary pattern (LBP) [3], the scale-invariant fea-
ture transform (SIFT) [4], the histogram of oriented gradi-
ents (HOG) [5] and Zernike moment magnitudes [6] were
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generally used to extract the image features. Some variants
of the LBP were applied to retinal disease screening [7]
and mammographic image classification [8]. The LBP com-
binedwithminimum redundancymaximum relevance feature
selection was employed to recognize Parkinson’s disease [9]
and classify tumors from mammograms [10]. The SIFT
features were used to realize the classification of neurob-
lastoma histological images [11]. The HOG features were
utilized for risk estimation of breast cancer development [12].
Furthermore, the HOG features were combined with the
SIFT features to realize the classification of brain disease
in MR images [13]. Zernike moments were also applied
to detecting Alzheimer’s disease [14] and computer-aided
diagnosis (CAD) of mammograms [15]. However, the above
hand-designed feature descriptors can only describe the
low-level image features, which are difficult to represent the
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complicated features of medical images. Meanwhile, these
descriptors lack in generality in that they are designed for
certain kinds of images and they may not produce the good
feature extraction results for other images.

Compared with the hand-designed feature descriptors,
the deep learning (DL) models can automatically learn
image features from the massive data. The DL models can
fit the high dimensional non-linear functions by means of
the massive connected neurons, and serve the classification
purpose by adjusting the weights. A variety of supervised
DL models have been proposed to realize medical image
classification with better performance than the traditional
methods [1], [16]. Artificial neural networks (ANNs) were
utilized for brain tumor diagnosis [17], confocal corneal
image classification [18], breast cancer diagnosis [19], and
auxiliary diagnosis for lung cancer [20]. The ANNs with
many layers have better representation ability than those with
fewer layers, but they are easily affected by the over-fitting
problems. Besides, the training process of the ANNs is time-
consuming. To address these problems, Hinton et al. [21]
proposed the deep belief nets (DBNs) that can be pre-trained
layer by layer in an unsupervised way and then fine-tuned
with the error back propagation (BP) algorithm [22]. The
DBN was employed to recognize breast cancer [23] and
assess the pain levels of the patients during surgery [24].
The feature vectors obtained by the DBN were also used as
the input of such classifiers as K-nearest neighbors (KNN)
and support vector machine (SVM) to recognize retina-based
diseases [25]. Although the unsupervised training strategy of
theDBN can alleviate the difficulty in training the deep neural
networks and help to reduce the reliance on the labeled data
to some extent, the time-consuming problem still remains
and the fine-tuning process of the DBN still needs too much
image data with the corresponding labels.

The convolutional neural network (CNN) model proposed
by Lecun et al. [26] was specially designed for image pro-
cessing by introducing such distinctive characteristics as the
local receptive fields and the shared weights, which can
help to significantly reduce the number of parameters and
computational complexity. The well-known CNN models
include AlexNet [27], VGG [28], ResNet [29], DenseNet [30]
and so on. These CNN networks and their variations were
widely applied to polyp detection in colonoscopy videos [31],
interstitial lung nodule detection [32], HEp-2 cell image
classification [33], breast masses classification [34], disease
biomarkers detection in cerebral small vessels [35] and skin
cancer classification [36]. Although the CNN generally per-
forms better than the traditional feature extraction methods,
it requires numerous image data for its long supervised train-
ing process, and it involves the difficulty in determining
the number of convolution kernels and the vulnerability to
training parameters and manners. However, in the field of
medical diagnosis, the number of available image samples
is generally insufficient. There are two common solutions
to address this issue, i.e., data augmentation and transfer
learning. The former can enlarge the number of data by

rotation or translation and so forth, but many of generated
images are still quite alike, thereby affecting the effectiveness
of data augmentation method. Transfer learning works well
for the networks with massive adjustable weights such as
AlexNet [31] and ResNet-50 [33], but the parameter setting
and fine-tuning still require many trials.

To reduce the difficulty in training the CNNs for image
classification tasks, a novel principal component analysis net-
work (PCANet) was proposed by Tsung-Han Chan et al. [37].
The PCANet maintains the network framework of the CNN,
but it involves an unsupervised learning process in which
the convolution kernels are simply learned from the image
patches by the cascaded principal component analysis (PCA)
algorithm instead of the iterative process of adjusting the
weights. The PCANet was combined with the random
binary hashing and the low-rank bilinear classifier to realize
histopathological image classification [38]. Lee et al. [39]
applied the PCANet combined with SVM to classify elec-
trocardiogram signal for personal identification. Although
the PCANet can easily learn the convolution kernels with
the low computational complexity, its performance is greatly
affected by the kernels. For the PCANet, the number of
kernels should be no greater than the number of weights in
one kernel. Therefore, the use of small sized kernels will
lead to the inadequate number of kernels while the use of
large sized kernels tends to produce the blurry image features.
Moreover, the PCANet generally needs to be combined with
the traditional machine learning classifiers such as SVM
and KNN to realize the image classification task. However,
these traditional classifiers are inferior to CNNs in terms of
classification performance.

The hybrid neural network which combines an unsuper-
vised CNN with a supervised one has become a research
hotspot in the field of image classification. Oyallon [40]
designed a hybrid network by combining the scattering net-
work with the wide residual network. When compared with
the regular CNNs, this network can produce the competitive
image classification results using by far fewer parameters.
In this paper, we have designed a light-weighted hybrid neural
network for medical image classification by combining a
modified PCANet and a simplified DenseNet model. The
hybrid neural network utilizes a modified two-stage PCANet
to extract the low-level features and applies a simplified
DenseNet model to extracting the high-level features for
accurate medical image classification. Here, the modified
PCANet is utilized because its good feature extraction ability
paves the way for the following network, and its unsuper-
vised and interpretable learning strategy can alleviate the
requirement for labeled data and render the hybrid neural
network more reliable than the regular CNNs in medical
image classification in the case of a small number of training
samples. At each stage of the modified PCANet, the input
images are split into image blocks which will be clustered
using the K-means method, and the convolution kernels are
learned from each clustering of the input data. In this way,
the modified PCANet can produce the adequate number of
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FIGURE 1. Diagram of the hybrid neural network for testing. the symbols ‘‘⊗’’ with different colors mean the convolution with different groups of
kernels.

small sized kernels for the extraction of diverse and elaborate
features. These feature maps generated at the two stages are
combined by a non-linear mapping and then input into the
following layer and the following simplified DenseNet. The
simplified DenseNet frequently uses shortcut connections
among convolutional layers in order to make full use of
middle feature maps to discover the meaningful features with
few adjustable weights that will be learned by the BP algo-
rithm. Some experiments have been done on mammography
and osteosarcoma histology images to determine the impact
of the key parameters in the proposed method and test its
effectiveness. Experimental results show that the proposed
method is easy to train and it can provide better medical
image classification results in terms of accuracy, specificity
and sensitivity than the compared CNN based methods.

The main contributions of this work are summarized as
follows:

• A light-weighted hybrid neural network has been pre-
sented for medical image classification by combining an
unsupervised PCANet with a supervised DenseNet.

• An effective learning strategy has been presented for the
modified PCANet in which several groups of kernels are

learned in parallel based on the different image contents
instead of the whole images to ensure that the learned
kernels are adequate and discriminative.

• A simplified structure of the DenseNet model has been
designed, and the sequence of layers in the basic convo-
lution units has been adjusted to ensure the effectiveness
of this shallow network.

The remainder of this paper is organized as follows.
In Section II, the structure of the hybrid neural network is
introduced and its training is explained in detail. The clas-
sification experiments on three kinds of medical images are
performed and the results of all evaluated methods are com-
pared and analyzed in Section III. Finally, the conclusions are
given in Section IV.

II. METHOD
A. STRUCTURE OF THE HYBRID NEURAL NETWORK
The diagram of the proposed network is shown in Fig. 1.
The architecture of the entire network can be seen as two
components. One component in Fig. 1 is amodified two-stage
PCANet. At each stage of the modified PCANet, several
groups of kernels will be learned, and each input image is
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FIGURE 2. Diagram of the kernel learning process at the first stage of the modified PCAnet.

convoluted with the kernels, respectively. The ‘‘inter-channel
pooling’’ in Fig. 1 is specifically designed for the modified
PCANet to combine the obtained feature maps using a non-
linear function in order to control the number of produced
feature maps and integrate the obtained image information.
Taking the output combined feature maps of the modified
PCANet as the inputs, the following simplified DenseNet
extracts the higher-level features for image classification. The
structure of the simplified DenseNet, as another component
in Fig. 1, consists of cascaded alternating dense blocks and
transition blocks. Compared with the original DenseNet, the
simplified DenseNet adopts a different implementation of
dense blocks and uses much fewer layers and weights. In the
hybrid neural network, the PCANet and the DenseNet will be
trained in order using two different strategies.

B. THE MODIFIED PCANET
1) THE FIRST STAGE
At the first stage, the kernels are key to the feature extraction
by the modified PCANet. The process of kernel learning is
shown in Fig. 2. Let the image size bem1×m2, theN training
images including all classes be I = {Ii, i = 1, 2, . . . ,N }, and
the size of each convolution kernel be arbitrarily determined
as k1 × k2. Each input image Ii is split into α2 neighboring
blocks {Ii,a, i = 1, 2, . . . ,N , a = 1, 2, . . . , α2} of size
s1 × s2 without overlapping, where Ii,a ∈ Rs1×s2 , s1 =
bm1/αc, and s2 = bm2/αc with b·c denoting the floor
function. Using K-means clustering, all the blocks Ii,a are
partitioned into several clusters denoted as Î = {Îc, c =
1, 2, . . . ,C} where C means the number of clusters which
need to be set manually.
For each cluster Îc, the steps of learning kernels are the

same. Here, we will take the c-th cluster Îc as an exam-
ple. Assuming that there are nb image blocks belonging to
the c-th cluster, image patches P = Pp ∈ Rk1×k2 (p =
1, 2, . . . np) of size k1 × k2 can be collected from all these
blocks pixel by pixel, where np is the number of patches
and computed as np = (s1 − k1 + 1)× (s2 − k2 + 1)× nb.
Each Pp is vectorized into

−→
P p. Then all patch vectors

{
−→
P p} minus their mean vector P are assembled column

by column into a matrix of size k1k2 × np denoted as

Q =
[
−→
P 1 − P,

−→
P 2 − P, . . . ,

−→
P np − P

]
. Then the PCA

algorithm is implemented on Q, which is to solve the min-
imization problem:

min
V∈Rk1k2×L1

‖ Q− VV TQ ‖2F , s.t. V TV = IL1 , (1)

where L1 denotes the number of kernels for each cluster at
the first stage, IL1 means an identity matrix of size L1 ×
L1, and ‖ · ‖F means the Frobenius norm. The solution
V =

[
V1,V2, . . . ,Vv, . . . ,VL1

]
of (1) consists of L1 principal

eigenvectors corresponding to the first L1 largest eigenvalues
of the matrix QQT .

All the eigenvectors in V are mapped into the matrixes of
size k1 × k2 to produce the convolution kernel set {K 1

v,c ∈

Rk1×k2 | v = 1, 2, . . . ,L1} of the c-th cluster. The mapping
function is expressed as:

K 1
v,c(x, y) = Vv((y− 1)× k1 + x),

s.t. 1 ≤ x ≤ k1, 1 ≤ y ≤ k2, x, y ∈ Z, (2)

where (x, y) are the coordinates of the value K 1
v,c(x, y) in the

kernel.
It should be noted that to construct the matrixQ, our modi-

fied PCANet removes the mean of {
−→
P p} instead of the mean

of each
−→
P p in the original PCANet. The reason is explained

in this way. According to the properties of eigenvalues and
eigenvectors, there is:

QQTVv= λvVv, (3)

∑
p

qp1q
p
1 · · ·

∑
p

qp1q
p
k1k2

...
. . .

...∑
p

qpk1k2q
p
1 · · ·

∑
p

qpk1k2q
p
k1k2


 v1

...

vk1k2

= λv
 v1

...

vk1k2

,
(4)

where qpi is the i-th element in the p-th column of Q, and
vi ∈ Vv (i = 1, 2, . . . , k1k2 and v = 1, 2, . . . ,L1). According
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FIGURE 3. Details of the dense block (a) and the transition block (b). h,
w , t are the height, width and number of the input feature maps,
respectively.

to (4), we have

∑
j

∑
i

vi
∑
p

qpj q
p
i

 = λv ‖ Vv ‖1 (5)

∑
i

vi
∑
p

qpi ∑
j

qpj

 = λv ‖ Vv ‖1 (6)

In the original PCANet, the mean value Pp of each
−→
P p is

removed from
−→
P p itself to construct the matrix Q. There-

fore,
∑

i q
p
i =‖

−→
P p ‖1 −k1k2Pp = 0. It follows that

‖ Vv ‖1= 0 or λv = 0. Because λv (v ≤ L1 − 1)
values are generally not zeros, ‖ Vv ‖1= 0. The convolution
with these corresponding kernelsK 1

v,c represents theweighted
subtraction among the pixels in image patches. Therefore,
most of the kernels in the original PCANet can only be
used to extract the gradient features. Our proposed network
can avoid this problem by removing the mean of the whole
set {
−→
P p} to ensure that

∑
i q
p
i 6= 0 for most of image

patches.
After obtaining the convolution kernels for all the clusters,

there are C groups of L1 feature maps F1
i,v,c for each input

image Ii. The feature maps can be obtained by convoluting Ii
with the kernels K 1

v,c of all the clusters:

F1
i,v,c = Ii ⊗ K 1

v,c,

s.t. c = 1, 2, . . . ,C, v = 1, 2, . . . ,L1, (7)

where ⊗ denotes the 2D convolution. The combined feature
maps F1

i,v of the first convolutional stage in the modified
PCANet can be obtained by performing the ‘‘inter-channel
pooling’’ on the absolute values of F1

i,v,c:

F1
i,v = max

c∈[1,2,...,C]

(
abs

(
F1
i,v,c

))
,

s.t. i = 1, 2, . . . ,N , v = 1, 2, . . . ,L1 (8)

The function of calculating the absolute values and the
max-pooling operation among groups is to reduce compu-
tational complexity and enhance the ability of non-linear
mapping for the modified PCANet.

2) THE SECOND STAGE
For the second stage, all the combined feature maps F1

i,v are
used as the inputs. The steps of kernel learning and forward
propagation are similar to those at the first stage except that
such parameters as the size k3 × k4 of image patches and the
number L2 of kernels at the second stage can be different
from k1 × k2 and L1. Besides, since the clustering is based
on the content of input images, there is no need to perform
the clustering algorithm on the generated block sets {F1

i,a,v}

by splitting {F1
i,v}. Accordingly, we can use a simple method

as the clustering scheme for the second stage, which can be
expressed as:

Î ′c =
{
F1
i,a,v|v = 1, 2, . . . ,L1, Ii,a ∈ Îc

}
, (9)

where Î ′c means the c-th cluster of blocks at the second
stage. For the c-th cluster, a group of kernels K 2

v′,c can be
obtained by collecting the image patches, solving (1), and
mapping the obtained eigenvectors according to (2), where
v′ = 1, 2, . . . ,L2 represents the index of convolution kernels
at the second stage. The feature maps F2

i,v,v′,c at the second
stage result from the convolution of F1

i,v with K 2
v′,c. After

applying the ‘‘inter-channel pooling’’ to F2
i,v,v′,c, there are

L1×L2 output combined feature maps F2
i,v,v′ for the image Ii

at the second stage. Since the feature maps at different stages
provide different information, the input image Ii and all the
combined feature maps produced at the two stages will be
concatenated as the final output Oi of the modified PCANet.
The output Oi can be expressed as:

Oi = Concat(Ii,F1
i,v,F

2
i,v,v′ ),

s.t. v = 1, 2, . . . ,L1, v′ = 1, 2, . . . ,L2 (10)

C. THE SIMPLIFIED DENSENET
The simplified DenseNet is constructed with the alternating
dense blocks and the transition blocks followed by a fully
connected layer and a softmax classifier. The dense block is
made up of two cascaded convolutional units which consist of
a batch normalization (BN) layer, a convolutional layer and a
leaky rectified linear unit (LReLU) layer in order (denoted as
‘‘BN-Conv-LReLU’’). As shown in Fig. 3, the first
‘‘BN-Conv-LReLU’’ in the dense block uses the kernels of
size 1×1 to produce 4r output feature maps while the second
‘‘BN-Conv-LReLU’’ generate r feature maps using 3 × 3
kernels, where r is a pre-defined constant and it is fixed to
be 32 in this paper. The dense block concatenates r output
feature maps with the input maps, thereby leading to the
increasing number of maps. As for the transition block, it con-
sists of a convolutional unit followed by an average pooling
layer with a pool size of 2× 2. The function of the transition
block is to find an effective composition among feature maps
produced from different convolutional layers and reduce the
computational complexity. In this paper, the number of output
feature maps in the transition block is set to be the same as
that of its inputs.
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TABLE 1. Architecture of the simplified DenseNet.

Supposing the size of input images is 128×128, the details
of structure and output for the simplified DenseNet are
listed in Table 1. In Table 1, ‘‘conv’’ means a convolu-
tional unit; ‘‘1 × 1 × 64 conv’’ means that the convolu-
tional layer in the unit uses the kernels of size 1 × 1 to
produce 64 output feature maps; ‘‘2 × 2 pool’’ denotes an
average pooling layer with a pool size of 2 × 2; θ denotes
the number of the final output classes; ‘‘[·] × 2’’ means the
structure ‘‘[·]’’ is repeatedly cascaded for 2 times. As shown
in Table 1, there are 23 convolutional layer and one fully
connected layer in the simplified DenseNet, which is much
shallower than the original DenseNet with 121 convolutional
layers.

The above design scheme can reduce the number of
adjustable weights and produce the effective featuremaps due
to the following strategies.

• The small sized kernels such as 1 × 1 or 3 × 3 are
adopted in the convolutional layers to adjust the number
of feature maps and learn to produce the meaningful
feature maps.

• The shortcut connections are repeatedly used since it
can make use of middle feature maps and facilitate the
training of the DenseNet by means of effective error
feedback.

• The global average pooling (GAP) technique is utilized
between the last transition block and the fully-connected
layer to avoid flattening the output of the last convolu-
tional layer so that a large amount of weights will not be
introduced. Moreover, the GAP technique can be used
to analyze the final feature maps of the network [41],
which makes the proposed hybrid network more
interpretable.

• The fully-connected layer is only applied once as the
last layer before the softmax classifier to produce the
specified number of outputs.

Note that the adopted convolutional unit in the simplified
DenseNet is different from that in the original DenseNet in
that the latter uses the structure of ‘‘BN-ReLU-Conv’’. Fig. 4
shows the structure of two kinds of convolutional units and
some sampled feature maps. According to the structure of
‘‘BN-ReLU-Conv’’, the ReLU activation function is applied
right after the BN layer which produces the normalized fea-
ture maps. Therefore, the ReLU maps the values of about
half of elements in the normalized feature maps to be zeros,
thereby leading to the loss of much information in the feature
maps as shown in Fig. 4(a).

To design an effective shallow network, the shallow layers
should transfer more useful information to the deeper layers.
Accordingly, we have changed the order of layers in the
convolutional unit to address the above problem resulting
from the structure ‘‘BN-ReLU-Conv’’. Moreover, the LReLU
is used as activation function to replace the ReLU to retain
some details even if some values in feature maps are less than
0. Moreover, it can help to speed up the network convergence.
The comparison of feature maps in Fig. 4 shows that there are
more details in the feature maps of the activation layer and
the convolutional layer in ‘‘BN-Conv-LReLU’’ than those
in ‘‘BN-ReLU-Conv’’, which indicates that the structure
‘‘BN-Conv-LReLU’’ is more suitable for the shallow
network.

D. THE TRAINING PHASE OF THE HYBRID NEURAL
NETWORK
In the hybrid neural network, the modified PCANet needs
to learn the kernels firstly and the training process of the
modified PCANet is irrelevant to the simplified DenseNet.
As described in Section II.B, the modified PCANet learns the
kernels stage by stage. At the first stage, the input images are
split into blocks, and then clustered into several groups. For
each group, the image patches are collected from the blocks,
and then the PCA algorithm (1) is used to produce the eigen-
vectors which represent some components of the image data.
Finally, all these obtained eigenvectors are mapped into the
convolution kernels according to the mapping function (2).
To learn the kernels at the second stage, the input maps at
this stage need to be produced firstly by convoluting the
input images with all the learned kernels at the first stage
according to (7), and combining the generated features maps
based on (8). Then, the input maps are split and clustered
according to (9). The subsequent procedure of the kernel
learning is similar to that at the first stage. Please note that
such operations as splitting of inputs and K-means based
clustering will not be implemented at the testing phase of the
modified PCAnet.

For the following simplified DenseNet, it takes the outputs
of the trained modified PCANet produced by (10) and the
corresponding labels as the inputs, and it is trained using the
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FIGURE 4. Comparison of two kinds of convolutional units. (a) ‘‘BN-ReLU-Conv’’ unit. (b) ‘‘BN-Conv-LReLU’’ unit.

FIGURE 5. Examples of some original images (the first row) and pre-processed mammography
images before sub-sampling (the second row) in the DDSM.

regular BP algorithm. Besides, the softmax layer is used as
the classifier and the cross-entropy function is used as the cost
function:

Loss = −
1

N

N∑
i

θ∑
j

yi,jlog(xi,j), (11)

where xi,j is produced by the softmax function and it is also
the predicted probability that the i-th sample belongs to the

j-th class; yi,j is the corresponding label indicating whether
the i-th sample belongs to the j-th class. The Adam opti-
mizer [42] is adopted to minimize the cost function.

III. RESULT AND DISCUSSION
In this section, we will firstly discuss the determination of the
key parameters in our method and then make the comparisons
between the classification performance of our method and
that of other evaluated methods.
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FIGURE 6. Sum of entropy of combined feature maps for different C at
the first stage (a) and the second stage (b).

A. DETERMINATION OF THE KEY PARAMETERS
The modified PCANet involves some key parameters includ-
ing the block number α2 for each image, the kernel sizes
k1 × k2 and k3 × k4, the numbers L1, L2 of kernels for
each cluster at the two stages and the number C of clusters.
α2 will be set according to the image size and the image
content, and it will fixed to be 9 empirically for the follow-
ing experiments. Small sized kernels are preferred in CNN
models for extracting the elaborate features using the fewer
weights than the large sized ones. Therefore, we set k1 =
k2 = 3, k3 = k4 = 3. Inspired by the Gabor filters [43]
which have eight orientations, we have fixed L1 = L2 = 8.
As regards the number C of clusters, it directly decides

the number and diversity of convolution kernels. If C is
too large, the differences among the clusters will be very
small, thereby leading to the redundant kernels. On the other
hand, a too small C cannot meet the need for the number of
kernels. To explore the influence of the number of clusters,
the images from the Digital Database for Screening Mam-
mography (DDSM) [44], [45] which can be downloaded from
http://marathon.csee.usf.edu/Mammography/Database.html

FIGURE 7. Some kernels in the modified PCANet with C = 1 and C = 16.

are used to construct the datasets. The training dataset con-
sists of 4641 images including 1980 normal images and
2661 abnormal images. Meanwhile, 1160 images are chosen
from the DDSM as the test dataset which contains 488 normal
images and 672 abnormal images. We have performed some
pre-processing on the DDSM, which includes filtering the
background noise, removing the tags of patients’ informa-
tion in the images by filling the tag area with the mean of
pixel intensities sampled from the background, cropping the
white borders, and reflecting some images to ensure that all
the breasts are on the same side. Each processed image is
sub-sampled into 128×128 in order to reduce the calculation
complexity and maintain the uniform size for all the images.
Some pre-processed images are shown in Fig. 5.
The parameter C varies in the set {1, 8, 16, 32, 40, 48}.

To determine the suitable C value, we will compare the sum
of entropy (SoE) of all the combined feature maps at each
stage respectively. Ideally, the proper C should provide a big
SoE so that the modified PCANet can transfer more informa-
tion of input images to the simplified DenseNet. The values
in the feature maps are normalized to be integers between
0 and 255 to produce the corresponding images, then the SoE
is calculated as:

SoE = −
Ṅ∑
i=1

255∑
j=0

x ij log(x
i
j ), (12)

where x ij means the probability of pixels whose values are
equal to j in the i-th produced image, and Ṅ is the num-
ber of produced images. The results are shown in Fig. 6.
The observation from Fig. 6 shows that the SoE firstly

24704 VOLUME 8, 2020



Z. Huang et al.: Medical Image Classification Using a Light-Weighted HybridNet Based on PCANet and DenseNet

FIGURE 8. Examples of feature maps at the first stages in the two kinds of PCANet. (a) the feature maps produced by the original PCANet. (b) to
(d) the combined feature maps produced by the modified PCANet with C = 1, 16, and 32, respectively.

increases with the increasing C , and is nearly stable when
C ≥ 16. Some examples of convolution kernels in the mod-
ified PCANet are shown in Fig. 7. The kernels above the
line are learned with C = 1. Note that the first four filters
for the two stages are quite similar, which indicates that the
main features of the inputs at the first stage are similar to
those at the second stage. As regards C = 16, much more
kinds of kernels can be obtained to facilitate producing richer
image features. The above comparison indeed indicates the
advantage of using C = 16 over using C = 1 in the proposed
method.

The combined feature maps at the first stage in the pro-
posed modified PCANet are shown in Fig. 8, where the abso-
lute value of each feature map is computed and normalized
into [0, 255] for visualization. Clearly, there is a significant
difference between the feature maps for the original PCANet
and those for our proposed network. Some edges and textures
in the feature maps for the original PCANet are unclear and
incomplete as marked by the red boxes. By comparison, for
the proposed modified PCANet using C = 16 and C = 32,
the feature maps can be seen as the combination of clear
and relatively complete edge and texture information and
gray-level information of images. The ability of preserv-
ing gray-level information results from the advantage of the
proposed method in maintaining the mean values of image
patches as mentioned in Section II.B. Besides, it can be seen
that the differences of feature maps between C = 16 and
C = 32 are not as remarkable as those between C = 16 and
C = 1. Based on the above analysis, we will fix C = 16 in
the following experiments.

B. COMPARISONS OF CLASSIFICATION PERFORMANCE
AMONG THE POPULAR NETWORKS
To demonstrate the performance of our proposed network,
comparisons are made among the popular convolution neural
networks such as VGG, ResNet-50, DenseNet-121, the orig-
inal PCANet, our simplified DenseNet (sDenseNet-24) with-
out the modified PCANet as the input and the proposed
hybrid neural network (HybridNet) operating on the DDSM
dataset, the osteosarcoma histology images [46], [47] and the
mammographic image analysis society (MIAS) dataset [48].
All the networks are realized with Python based on Tensor-
Flow 1.9.0 and Keras 2.2.4 on a Ubuntu 16.04, and they are
run on a computer with a Core I7-6950XCPU and 96GRAM.
The NVIDIA GTX 1080Ti GPU with CUDA 10.1 is used
for acceleration. To evaluate the performance of the proposed
method, the total classification accuracy ACC , sensitivity
SEN and specificity SPE are utilized as metrics which are
defined as:

ACC =
TP+ TN

N ′
∈ [0, 1], (13)

SEN =
TP

TP+ FN
∈ [0, 1], (14)

SPE =
TN

TN + FP
∈ [0, 1], (15)

where N ′ is the number of test images, TP, TN , FP and FN
mean the number of true positive, true negative, false positive
and false negative cases, respectively. The sensitivity repre-
sents the ability of correctly recognizing the lesion images
while specificity denotes the capacity of correctly classifying
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TABLE 2. The number of parameters and FLOPs for the six evaluated
networks.

the normal images. For these metrics, the higher values mean
the better classification effect.

The leaky rate of the leaky ReLU functions is set as 0.3 for
both the sDenseNet and the HybridNet. For the original
PCANet, we set k1 = k2 = 3, k3 = k4 = 3, L1 = L2 = 8 and
it has 144 trainable parameters.Meanwhile, the linear SVM is
used as the extra classifier for this network since the original
PCANet can only extract features and it has not classification
ability. The input images are sampled into 128×128 for all the
compared networks. The computational cost and the number
of parameters of the supervised networks are listed in Table 2.
From Table 2, it can be seen that our HybridNet has 0.05M
more parameters and 0.23M more FLOPs compared with
the sDenseNet-24 due to the introduction of the combined
feature maps produced by the modified PCANet. However,
the computational cost of the HybridNet is obviously less
than that of other popular networks. For example, the Hybrid-
Net involves about 1/24 of parameters and FLOPs in the
ResNet-50.

In the following experiments, the training images are aug-
mented with the slight translation and/or rotation, the batch
size is setting as 24, and the maximum number of epochs is
chosen to be 400 for all supervised networks. The learning
rate is initialized as 0.001 and decreased to be 30% of the
previous value at the chosen epochs, which are adjusted for
each supervised network to ensure that the loss function will
converge properly. During the training phase, some images
chosen from the test dataset are used as the validation dataset
to monitor the training process. For each supervised network,
the training process will be early-stopped if the change of the
loss for the validation dataset is less than 10−4 for successive
30 epochs.

1) TEST ON THE DDSM DATASET
The training process of the HybridNet is shown Fig. 9. Obvi-
ously, the training process is stable for the HybridNet and it
converges quickly. The accuracy curves for all the networks
operating on the validation dataset are shown in Fig. 10.
It should be noted that we have trained a VGG-13 instead
of the popular VGG-16 because the latter does not converge
when it is directly trained with the DDSM dataset or fine-
tuned based on the weights trained from ImageNet dataset
[49]. From Fig. 10, it can be seen that our proposed network
converges to a better solution faster and its training process is
more stable than other networks. Compared with the ResNet-
50 and the DenseNet-121, the shallower sDenseNet-24 has
similar classification performance due to the similar struc-
ture but with much smaller solution space, which indicates
that some specifically designed small-scale networks may

FIGURE 9. Loss and accuracy curves for the HybridNet on the training and
validation dataset.

FIGURE 10. Accuracy curves for all evaluated networks on the validation
dataset.

be more suitable for medical image classification than the
heavy-weighted networks in the case of a small dataset.
To verify the effectiveness of the HybridNet further, Fig. 11
shows some class activation maps of the HybridNet pro-
duced using the technology in [41]. These maps in Fig. 11
highlight the calcification and mass in the mammography
images. Obviously, the hybrid network has indeed learned
some meaningful information for the identification of sus-
picious lesions based on the differences between the normal
images and the abnormal ones.

The receiver operating characteristic (ROC) curves of the
evaluated networks implemented on the DDSM test dataset
are shown in Fig. 12. Clearly, the proposed HybridNet
has the best ability to distinguish the normal images and
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FIGURE 11. Some processed images from the DDSM dataset (the first row) and the corresponding class activation maps of the HybridNet (the second
row).

TABLE 3. Metrics for all the networks on the DDSM dataset.

FIGURE 12. ROC curves of all the compared networks on the DDSM
dataset.

the abnormal ones compared with other networks. To fur-
ther demonstrate the advantage of combining the modified
PCANetwith the CNNmodel, we have included the other two
hybrid networks which combine the modified PCANet with
the ResNet-50 (mPCANet+ResNet-50) and DenseNet-121
(mPCANet+DenseNet-121), respectively. The metrics of
seven evaluated networks and two extra hybrid networks are
list in Table 3. Among these compared networks, the ResNet-
like networks can provide relatively better results compared
with AlexNet-12 and VGG-13 because the shortcut connec-
tions of the former indeed help to extract the useful deep
features. Moreover, these hybrid networks obtain better clas-
sification accuracy compared with the corresponding CNN

TABLE 4. Composition of the osteosarcoma histology image dataset.

models without embedding the modified PCANet. The rea-
son is that the modified PCANet can extract the meaningful
features for image classification by using the various kernels
to decompose the input images into different components and
using ‘‘inter-channel pooling’’ to highlight the main com-
ponents of the images and remove redundant information.
Although the mPCANet+DenseNet-121 provides the best
sensitivity (0.893) and the mPCANet+ResNet-50 provides
the highest specificity (0.789), the former has a low speci-
ficity (0.723) and the latter has a relatively low sensitivity
(0.844). By comparison, our HybridNet not only provides
the second best specificity (0.787) which is very close to the
best one (0.789), but also obtains the best accuracy (0.830)
and the best result for the area under the curve (AUC) (0.897).
The reason why our shallowHybridNet outperforms the other
hybrid networks in most cases is that it is much easier to train
due to its fewer parameters and it has better ability to avoid
the over-fitting problem.

2) TEST ON THE OSTEOSARCOMA HISTOLOGY IMAGE
DATASET
To further verify the superiority of our method, some
experiments have been conducted on the osteosarcoma
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FIGURE 13. Sample images in the osteosarcoma histology image dataset.

histology images downloaded from the cancer imaging
archive (TCIA) [50]. The osteosarcoma histology images
provide valuable information for the assessment of viable and
necrotic tumor. The osteosarcoma data are classified as three
classes including non-tumor (NO) images, necrotic tumor
(NE) images and viable tumor (VT) images. The number
of osteosarcoma histology images is much less than that of
DDSM and all these images are RGB images. The compo-
sition of the constructed dataset is listed in Table 4. Some
sample images are shown in Fig. 13. The training dataset is
augmented with translation and/or rotation just in a similar
way to the DDSM training dataset. The test dataset is con-
structed to include 200 images for each class by rotation for
90◦, −90◦ and 180◦ of the original 50 test images in each
class.

To evaluate all the methods for multi-class classification
problem, we have calculated the average sensitivity SEN , the
average specificity SPE and the average AUC . Fig. 14 shows
the ROC curves for all evaluatedmethods and an extra 9-layer
CNN model (CNN-9) presented in [46]. The metrics for all
the methods are shown in Table 5. Please note that the average
sensitivity SEN is equal to accuracy ACC in this experiment
according to:

SEN =
1
3
×

(
TP1

TP1 + FN1
+

TP2
TP2 + FN2

+
TP3

TP3 + FN3

)
=

1

3
×

1

200
× (TP1 + TP2 + TP3)

= ACC, (16)

where TPi and FNi (i ∈ {1, 2, 3}) mean the number of true
positive and false negative cases respectively when the i-th
class is considered as the positive class and the rests as the
negative classes.

From Fig. 14 and Table 5, it can be seen that the perfor-
mance of all the compared networks on the osteosarcoma his-
tology image dataset is better than that on the DDSM dataset
because the histology images provide richer information in
RGB images and the key features to distinguish the different
classes are distributed across the whole images, which makes
it easier for classification. The original PCANet provides
an unsatisfactory result in that the SVM is not good at
multi-class classification as the CNNs. As for the sDenseNet-
24, it gains the second best AUC (0.949) and ACC (0.840),
which proves the advantage of its structure. The HybridNet
outperforms other networks for all the metrics. Especially,
its ACC surpasses that of the DenseNet-121 by 4.2%, which

FIGURE 14. ROC curves of all the networks on the osteosarcoma
histology image dataset.

verifies the superiority of combining the modified PCANet
and a well-designed light-weighted CNN.

Fig. 15 shows the confusion matrixes of all the compared
networks on the osteosarcoma histology image dataset. From
Fig. 15, we can see that the necrotic tumor images are most
difficult to distinguish among the non-tumor, viable tumor
and necrotic tumor images. The reason is that the number of
the necrotic tumor images in training dataset is insufficient.
Both the DenseNet and the PCANet can provide the second
best recognition rate 74.5% for the necrotic tumor images.
However, the PCANet misclassifies 22.0% of viable tumor
images as non-tumor images and the DenseNet-121 provides
relatively lower recognition rate for non-tumor compared
with the other methods. The sDenseNet achieves the best
recognition rate 90.0% for the non-tumor images and pro-
vides the third best recognition rate 95.0% for the viable
tumor images. Nevertheless, it can only correctly recognize
67.0% of necrotic tumor images. By comparison, our Hybrid-
Net can provide the third best recognition rate of 88.0% for
the non-tumor images and the highest recognition rates 75.5%
and 98.0% for the necrotic tumor images and the viable tumor
images, respectively.

3) TEST ON THE MIAS IMAGE DATASET
To validate the universality of our network, an experi-
ment has been conducted on MIAS database which consists
of 322 mammography images of 161 patients. This database
has been used for classifying breast tissues into the fatty
(FA), fatty-glandular (FG) and dense-glandular (DG) classes.
Breast tissue density classification can help doctor to design
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TABLE 5. Metrics of all the networks on the osteosarcoma histology image dataset.

FIGURE 15. Confusion matrixes of all the compared networks on the osteosarcoma histology image dataset. ‘‘NO’’, ‘‘NE’’ and ‘‘VT’’ denote the
non-tumor, necrotic tumor and viable tumor images, respectively.

TABLE 6. Composition of the MIAS dataset.

special diagnosis and treatment plans. In MIAS database,
there are two breast images for each patient, which are highly
consistent with the other. Therefore, when constructing the
MIAS dataset, one should ensure that the images of one
patient only belong to either the test dataset or the training
dataset. The number of images in the constructed dataset is
listed in Table 6.

All the images are still processed in the same way as
DDSM images, and they have been augmented during the
training process asmentioned in the above experiments. Since
it is a multi-classification problem, the SEN , SPE , AUC , and
ACC are calculated as the metrics. The results are shown in
the following Table 7, Fig.16 and Fig. 17. From Table 7 and
Fig. 16, we can see that the HybridNet still obtains the best
results in terms of all the metrics. Especially, the ACC of
the HybridNet is 5.0% higher than the second best accuracy

FIGURE 16. ROC curves of all the networks on the MIAS dataset.

gained by the sDenseNet-24 and the DenseNet-121, which
validates that the feature maps of the modified PCANet help
to improve the classification ability. Besides, the remark-
able difference between the accuracy and ROC curves of
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FIGURE 17. Confusion matrixes of all the compared networks on the MIAS dataset. ‘‘FA’’, ‘‘FG’’ and ‘‘DG’’ denote the fatty, fatty-glandular, and
dense-glandular tissues, respectively.

TABLE 7. Metrics of all the networks on the MIAS dataset.

the HybridNet and those of the PCANet demonstrates that
a well-trained network is more advantageous than the SVM
classifier. The results of the VGG-13 on the MIAS dataset
are slightly worse than those of the AlexNet. The reason is
that theVGG-13 can not achieve the global optimal parameter
values after training process because there are not sufficient
diverse training images.

The confusion matrixes in Fig. 17 show that all the
networks are provided with 90.0% recognition rates on
the images with the fatty tissues. The PCANet has the
best recognition rate 90.0% for the images containing the
fatty-glandular tissues while it can only distinguish 40.0%
of dense-glandular tissues, which means that it will rec-
ognize some dense-glandular tissues mistakenly as the
fatty-glandular tissues. In addition, both the DenseNet-
121 and the HybridNet achieve the second best recognition
rate 75.0% for the fatty-glandular tissues. The HybridNet
obtains the highest recognition rate for the dense-glandular
tissues. Overall, the HybridNet provides the best classifica-
tion results for breast tissue density recognition.

IV. CONCLUSION
In this paper, we have proposed a novel light-weighted hybrid
neural network for medical image classification in the case of

a small amount of training image data. The proposed hybrid
neural network consists of a modified PCANet and a sim-
plified well-designed densely connected neural network. The
modified PCANet overcomes the drawbacks of the original
PCANet by providing more small-sized convolution kernels
for the effective feature extraction. By using the feature maps
of the modified PCANet as the inputs, the following simpli-
fied DenseNet can realize accurate medical image classifi-
cation using a light-weighted structure with fewer adjustable
weights than the traditional DenseNet. Experiments on the
DDSMdataset, the osteosarcoma histology image dataset and
the MIAS dataset show that the proposed hybrid neural net-
work outperforms such popular networks as AlexNet, VGG,
ResNet and DenseNet in terms of sensitivity, specificity and
accuracy. The future work will be focused on designing the
deeper PCANet or other unsupervised networks, and explor-
ing the combination of feature maps in the training process.
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