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ABSTRACT PM2.5 is one of the most important pollutants related to air quality, and the increase of its
concentration will aggravate the threat to people’s health. Therefore, the prediction of surface PM2.5 con-
centration is of great significance to human health protection. In this study, A hybrid CNN-LSTM model is
developed by combining the convolutional neural network (CNN) with the long short-term memory (LSTM)
neural network for forecasting the next 24h PM2.5 concentration in Beijing, which makes full use of
their advantages that CNN can effectively extract the features related to air quality and the LSTM can
reflect the long term historical process of input time series data. The air quality data of the last 7days
and the PM2.5 concentration of the next day are first set as the input and output of the model due
to the periodicity, respectively. Subsequently four models namely univariate LSTM model, multivariate
LSTM model, univariate CNN-LSTM model and multivariate CNN-LSTM model, are established for
PM2.5 concentration prediction. Finally, mean absolute error (MAE) and root mean square error (RMSE)
are employed to evaluate the performance of these models and results show that the proposed multivariate

CNN-LSTM model performs the best results due to low error and short training time.

INDEX TERMS Deep learning, CNN, LSTM, PM2.5 concentration prediction.

I. INTRODUCTION

In recent years, with the rapid development of China’s econ-
omy and industrialization, the problem of environmental
pollution is becoming increasingly serious [1]. Air pollu-
tion is particularly significant. In 2004, the first American
Heart Association concluded that exposure to particulate mat-
ter (PM) air pollution contributes to cardiovascular morbidity
and mortality [2]. Since then, air pollution has been widely
concerned by governments and society. Nowadays, the air
pollution is taken as the topmost important issue in our daily
life because large scale haze attacks not only seriously affect
people’s normal transportation, but also seriously harm peo-
ple’s health. PM2.5 is one of the main components of haze [3]
and increased daily mortality is specifically associated with
particle mass constituents found in the aerodynamic diameter
size range under 2.5 um [4], [5]. Therefore, monitoring and
forecasting PM2.5 concentration are of great significance for
human health and environmental management.
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The formation mechanism and process of PM2.5 is very
complex [6] due to many complex properties, such as non-
linear characteristics in time and space, which will have a
great impact on the prediction accuracy [7]. Therefore, it is
essential to analyze it in detail. This air quality data is closely
related to time, which means it belongs to time series data [8],
and has obvious periodicity. Because of the timeliness of
data, time series prediction has become a hot topic [9]. Time
series analysis plays an important role in a large variety
of application fields, such as economics, medicine, astron-
omy, geology, etc. [19]. There are many mature time series
prediction methods, including ARMA [10], ARIMA [10],
SARIMA [11], SVR [12], BP neural network [13], Bayesian
network [14] and so on. However, with the increase of amount
and complexity of obtained data, these methods can no longer
meet the actual demand due to too much training time. With
the development of deep learning, the time series model
makes the predication of PM2.5 possible.

Recently, with the popularity of Artificial Intelligence,
many deep learning algorithms have been developed,
such as Deep Belief Network [15], Convolutional Neural
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Network (CNN) [16] and Recurrent Neural Network
(RNN) [17], etc., which are widely used in pattern recog-
nition, object detection, natural language processing, image
classification and other fields [18]. With the growth of data
and the improvement of demand, the network built for data
analysis is increasingly complex and it is no longer a single
network model, but a more complex hybrid network. For
example: Ding et al. [20] developed a new hybrid deep learn-
ing model that integrated CNN and LSTM that automatically
recognized workers’ unsafe actions. The model’s accuracy
exceeded the current state-of-the-art descriptor-based meth-
ods for detecting points of interest on images. By incorpo-
rating ConvLSTM into the encoding-forecasting structure,
Shi et al. [21] built an end-to-end trainable model for
precipitation nowcasting. Kanjo er al. [22] using a hybrid
deep learning approach (CNN-LSTM) on large number
of raw sensor data increased the accuracy levels of emo-
tion models by more than 20% compared to a traditional
MLP model. Duan et al. [23] proposed a deep hybrid neu-
ral network improved by greedy algorithm for urban traf-
fic flow prediction with taxi GPS trace. These studies
mentioned above show that deep learning is a promising
approach and some researchers have already applied it to
study the air quality. Zhao et al. [24] proposed a long
short-term memory-fully connected (LSTM-FC) neural net-
work, to predict PM2.5 contamination. Huang ez al. [25] ver-
ified feasibility and practicability of the CNN-LSTM model
to predict the PM2.5 concentration. Pak et al. [26] con-
structed a CNN-LSTM hybrid model that combines CNN
to predict the next day’s 8-h average ozone concentration in
Beijing City.

But the lower accuracy and long predictable time of
existing methods couldn’t meet the demand for forecasting
PM2.5 in daily life. Meanwhile, due to the complexity of
PM2.5 formation, the high accuracy and efficiency demand
for prediction, and the difficulty of deep learning network
model in stability, it is essential to develop more effec-
tive model for forecasting PM2.5 concentration. Therefore,
a hybrid CNN-LSTM model is proposed for forecasting the
PM2.5 concentration of the next day (next 24 hours). In order
to test alternative models which is best, four models incl. uni-
variate LSTM model, multivariate LSTM model, univariate
CNN-LSTM model, and multivariate CNN-LSTM model are
compared and analyzed. Finally, two indicators are adopted
to evaluate the models, which are mean absolute error (MAE)
and root mean square error (RMSE).

The reminder of the paper is arranged as follows.
In Section 2, the methodologies are described, in which
CNN and LSTM are presented in detail and the hybrid
CNN-LSTM model for forecasting PM2.5 concentration is
proposed. In Section 3, the data preprocessing is completed
for padding missing values with zeros and normalizing values
of features to fall within the range of 0-1. In section 4, the
results are shown and discussed. Finally, we conclude the
paper in Section 5.
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Il. MATHODOLOGIES

Deep learning has become one of the most important methods
in the field of machine learning, and has been used widely
in image analysis, speech recognition and text understand-
ing [27]. The most commonly used deep learning algorithms
contain convolutional neural network (CNN), recurrent neu-
ral network(RNN), and self-encoders network, etc., among
which, the advantage of CNN is the feature extraction [28],
and RNN is good at mining the time series data [17]. There-
fore, in order to make full use of their advantages, we combine
these two models for obtaining a new effective model, which
will be presented in three aspects as follows.

A. CNN MODEL
CNN is one of the most successful deep learning methods,
and its network structures include 1D CNN, 2D CNN and
3D CNN [29]. 1D CNN is mainly used for sequence data
processing [30], 2D CNN is often used for image and text
recognition [28], and 3D CNN is mainly used for medi-
cal image and video data recognition [31]. So, 1D CNN is
adopted in this paper.

1D CNN can be well applied on sensor data (gyroscope
or accelerometer data) [32] for time series analysis, and can
also be employed for analyzing periodical signal data (audio
signal) [33]. The detailed process of the 1D CNN is described
as following.

Multivariate Time series Convolutional Layer

2 /M
Time = n
L

A J

FIGURE 1. The process of 1D CNN.

The left of Figure 1 is the input time series data which
is a multi-dimensional matrix, which is convoluted from
top to bottom as shown by the arrow in Figure 1, and the
red represents a filter. The number of the extracted feature
dimensions is N*1 after convolution with a filter, where N is
related to the number of input data dimensions, the size of
filter and convolution step length. The blue indicates another
filter, which can be followed by other filters. Suppose the
number of filters is M, and the extracted feature dimension
will be N * M.

Figure 2 shows the process of a one-dimensional convolu-
tion. For the PM2.5 dataset, the input is a 168*8 matrix, and
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FIGURE 2. The results of air quality data after 1D convolution.

the output is a 167*64 matrix after convolution with 64 filters
of size 2.

B. LSTM MODEL

Long short term memory (LSTM) [34] is a deformation struc-
ture of RNN by adding memory cell into hidden layer, so as
to control the memory information of the time series data.
Information is transmitted among different cells of hidden
layer through several controllable gates (forget gate, input
gate, output gate) [35], thus the memory and forgetting extent
of the previous and current information can be controlled.
Compared with traditional RNN, the LSTM has the long term
memory function and its gradient disappearance problem can
be avoided. Two gates of LSTM are designed for controlling
the state of memory cell, one is forget gate which indicates
how much “memory” of the last moment’s cell can be saved,
the other is input gate, which determines how much input
of the current moment can be saved to the cell state, and
controls the proportion of fusion of “historical” information
and “current” stimulus. Finally, the output gate of LSTM
is designed for controlling how much information is output
for cell status. The structure of LSTM network is shown
in Figure 3.

qt-1)
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FIGURE 3. Network structure of the LSTM.

In Figure 3, o is the sigmoid function shown in
equation (7), whose output is a value between 0 and 1. Here,
0 means ‘“let nothing pass” while 1 means “let everything
pass”. Then the hyperbolic tangent function illustrated in
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Equation (8), is used to overcome the problem of gradient
disappearance. The input and output of the network structure
of the LSTM in Figure 6 can be described as Egs. (1) - (8).

F (t) = o(Wy - [Hi—1, X1+ by) (1)

1(t) =0 (W;-[Hi—1,X]) + bp) 2)

C (t) = tanh(W, - [Hi—1, X;]1 + be) )

Ct)=fixCo1+1,%C )

O(t) = o(W, - [Hi—1, X:]1+ bo) Q)

H (t) = Oy * tanh(Cy) (6)

sigmoid (x) = g @)
et —e*

tanh (x) = m (8)

where Wy, W;, W, and W, are input weights, by, b;, b and b,
are bias weights, 7 represents the current time state, and t—1 is
the previous time state, X represents input; H represents
output and C is the cell status.

C. THE HYBRID CNN-LSTM MODEL

In this section, a hybrid CNN-LSTM model is constructed
by combining CNN with LSTM for improving the accuracy
of forecasting PM2.5 concentration. The proposed hybrid
CNN-LSTM model is a prediction model with multivariate
time series data as input and multi-step single time series data
as output, whose process is given in Figure 4.

Output

Training
Network

Input

FIGURE 4. A simple architecture of the hybrid CNN-LSTM model.

In Figure 4, the light green represents the input, the light
purple is the proposed hybrid CNN-LSTM model, and the
yellow denotes the output. The network structure of the
proposed hybrid CNN-LSTM model is developed as shown
in Figure 5.

CNN is adopted for feature extraction, specifically, two
one-dimensional convolutional layers and a MaxPooling
layer are constructed. In order to process the data into the
format required by the LSTM, a Flatten layer is connected.
Overfitting is a common phenomenon in deep neural net-
work (DNN) and there are many solutions, among all solu-
tions, dropout is one of the simple ones and works well.
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Input

MaxPooling

------

o

FIGURE 5. Network structure of the proposed hybrid CNN-LSTM model.

Output

Dropout [36] refers to that during the training process of
DNN, and the cell is temporarily dropped from the network
according to a certain probability. In order to avoid overfit-
ting, a Dropout layer is added, whose output is connected to
the LSTM layer for prediction and finally connect to a FC
layer. In Figure 5, in the dropout layer, the white cell is the
temporarily discarded part. Please note that for stochastic gra-
dient descent, each mini-batch will train a different network
due to random drop.

The activation function puts the nonlinear factors into the
neural network, which improves the expression ability of the
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FIGURE 6. Time series chart of seven features of PM2.5 data.

neural network and solves the nonlinear problems that the
linear model cannot solve [37]. There are many frequently
used activation functions, including sigmoid function, tanh
function (hyperbolic tangent function), relu function (Recti-
fied Linear Unit), etc. The relu function can solve the prob-
lem of gradient disappearance, and its calculation speed and
convergence speed are faster than sigmoid function and tanh
function, which is defined as equation (9).

relu (x) = max(0, x) &)

Ill. DATA SOURCE AND PREPROCESSING
The dataset (https://archive.ics.uci.edu/ml/datasets.php) cho-
sen in this paper contains the hourly values of PM2.5 concen-
tration of US Embassy in Beijing and the meteorological data
of Beijing Capital International Airport. This dataset totally
contains 43800 records with multi-features, including date,
PM2.5 concentration, dew point, temperature, atmospheric
pressure, combined wind direction, cumulated wind speed,
and cumulated hours of snow and rain. However, this dataset
contains many missing values due to some uncontrollable
reasons. Thus, in this paper, we first fill the missing values
with zero. Next, the wind direction is encoded and converted
into digital values. Then, we analyze the data and draw a line
chart of each feature to observe its time characteristics.

Figure 6 shows that each feature of the dataset has certain
periodicity, among all features PM2.5 concentration has the
most complex characteristics, thus we analyze it in detail (see
in Figure 7). In Figure 7, the two sub-graphs show the trends
of PM2.5 concentration in one month (30 days) and one week
(7 days), which indicates the periodic characteristic. The
prediction of PM2.5 concentration for the next day can help
people make decisions on travel and life. In order to forecast
the PM2.5 concentration of the next day, the data of the last
week (7 days) can be chosen as the input of the forecast
model. Since then, the model takes the PM2.5 concentration
of one week as input and that of next one day as output.

Due to the complexity of PM2.5 data, we draw the
Figure 8 for probing into the distribution of PM2.5 concentra-
tion, where horizontal axis indicates the PM2.5 concentration
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FIGURE 7. The trends of PM2.5 concentration.
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FIGURE 8. The histogram of PM2.5 concentration.

TABLE 1. The analysis of PM2.5 concentration.

Max Min Median Average Std

994 0 68 94.0135 92.2512

with the interval of 10 pg/m?, and vertical axis represents
frequency. Meanwhile, the values of the maximum, mini-
mum, median, average, standard deviation of PM2.5 concen-
tration are 994 ug/m3, 0 ug/m3, 68 ug/m3, 94.0135 ug/m3,
92.2512 ug/m? respectively (see in Table 1). The distribution
of the PM2.5 concentration is very fragmented according to
large value of the standard deviation of PM2.5 concentration,
which increases the difficulty of prediction.

In order to improve the prediction accuracy, we normalize
the value of PM2.5 concentration using Min-Max normaliza-
tion method given in equation (10).

U mm. (10)
max — min
Considering that the PM2.5 concentration is time series data,
we choose the first 80% of dataset as the training data and the
remaining 20% as the test data.

IV. RESULTS AND FINDINGS
For the dataset mentioned above, the trained network struc-
ture of the proposed hybrid CNN-LSTM model, generated by
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FIGURE 9. Internal network structure of the proposed hybrid CNN-LSTM
model generated by anaconda platform.

anaconda platform, is obtained as shown in Figure 9, which
contains 271,643,984 adjustable parameters and its input is a
168*8 matrix. After feature extraction of convolutional layer
and time series prediction of LSTM layer, the size of output
is a 24*1 matrix (vector). In other words, the data of the last
week is used to predict the concentration of PM2.5 of the next
day. The size of the input and output data of each layer can
be easily expressed in Figure 9.

The prediction models for time series data can be divided
into two categories: univariate prediction model and multi-
variate prediction model. Meanwhile, there are so many mod-
els for forecasting PM2.5 concentration, it is essential to test
alternative models for identifying the best, so the univariate
LSTM model, the univariate CNN-LSTM model, the multi-
variate LSTM model and the multivariate CNN-LSTM model
are compared in this section. The following is the fitting effect
chart of these four models.

Figure 10 shows the loss function chart of these four
models, and the network is prone to the phenomenon of
overfitting. We have adopted the Dropout method and set the
number of iterations during the experiments for preventing
overfitting and results show that all of these four models
perform good fitting effect.

Figure 11 shows that the accuracy of these four models for
forecasting PM2.5 concentration and PM2.5 concentration
fluctuates widely due to the influence of temperature, wind
direction, wind force, etc. After comparing these four models
horizontally and vertically, we find that the prediction accu-
racies of CNN-LSTM models are higher than that of single
LSTM models and the prediction accuracies of multivariate
models are also higher than that of univariate models.
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FIGURE 11. Comparison of true values and predicted values of these four
models.

In order to evaluate the performance of these models, ten
samples (ten 7-day time series data) were randomly selected
from the test data for predicting the PM2.5 concentration of
the next day respectively, and two indicators were employed,
namely mean absolute error (MAE) and root mean square
error (RMSE) defined by equations (11) and (12), and their
values for these four models are given in Table 2 and Table 3.

)
MAE = - Zi:l |9 — il (11)
I ~—n . )
RMSE = \/ =D Gy (12)
where ¥; and y; indicate the predicted value and true value,

respectively.

Table 2 shows the MAE of these four models on ten
samples. 1-10 in the column of samples represent the num-
ber of these 10 different samples, and other values in are
the MAE values between the predicted and true values of
PM2.5 concentration. The values in the row of average are
the average of MAE of 10 samples, which show that the
MAE of multivariate CNN-LSTM model, 13.9697, is the
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TABLE 2. The MAE of experimental results.

Samples Multivariate Multivariate Univariate Univariate
CNN-LSTM LSTM CNN-LSTM LSTM
1 7.73 12.896 6.779 19.22
2 11.985 27.701 16.093 34.272
3 8.655 8.145 20.449 13.936
4 12.062 19.073 15.583 33.415
5 9.457 12.892 18.226 19.885
6 25.548 13.822 13.13 20.225
7 13.518 16.488 18.913 19.183
8 18.939 14.239 19.394 9.586
9 16.885 12.663 13.878 17.756
10 14.918 9.749 18.764 11.976
Average 13.9697 15.3243 16.1209 19.9454
TABLE 3. The RMSE of experimental results.
Samples Multivariate Multivariate Univariate Univariate
CNN-LSTM LSTM CNN-LSTM LSTM
1 8.872 14.407 8.119 20.853
2 16.926 31.458 23.716 45.033
3 11.558 9.384 24.462 14.814
4 14.349 23.283 17.773 36.841
5 11.544 14.06 23.371 23.013
6 33.689 16.222 16.477 21.562
7 17.813 19.403 23.638 20.009
8 26.917 19.477 22.044 14.476
9 19.708 15.073 16.803 20.645
10 16.251 10.76 21.289 15.4
Average 17.9306 18.0852 19.7692 23.2646

155355

17.9306 15 0352

MCNNLSTM  MLSTM  UCNNASTM  ULSTM
model

(a)The bar chart of MAE

MCNNLSTM  MLSTM  UCNNASTM  ULSTM
model

(b)The bar chart of RMSE

FIGURE 12. The bar chart of MAE and RMSE.

minimum. Moreover, the MAE values of multivariate models
are obviously lower than that of univariate models, and the
MAE values of CNN-LSTM models are greatly lower than
that of LSTM models.

Similarly, Table 3 shows that the RMSE of multivariate
CNN-LSTM model is the lowest with a value of 17.9306.
The RMSE values of multivariate models are obviously lower
than that of univariate models, and the RMSE values of
both the univariate and multivariate CNN-LSTM models are
slightly lower than that of LSTM models, which can be
clearly shown in Figure 12.

Figure 12 (a) and (b) respectively represent the values of
MAE and RMSE of these four models and show that the
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TABLE 4. Results of different length of training data.

Samples The length of the training data

Results 1 day 7 days 14 days
MAE 16.810 11.985 22.053
RMSE 18.991 16.926 23.387

Training 10 55 165

time(S/EPOCH)

accuracy of multivariate CNN-LSTM is higher than that of
other models. Meanwhile, the experiments are based on a
computer with Intel (R) core (TM) i7-3770 CPU @ 3.40GHz
3.40 GHz and the RAM 4.00 GB. In terms of training time,
the multivariate CNN-LSTM took about 50-60 seconds for
one epoch while other models consumed about 90-100 sec-
onds for one epoch.

Therefore, based on the above results, we can summarize
some findings at the technical aspects:

(1). All features of the air quality data of Beijing have
certain periodicity, and after a detailed analysis of PM2.5
concentration, it has obviously daily and weekly time series
periodicity. So it is necessary to choose the last week’s
(7 days’) air quality data as the input for forecasting the
PM2.5 concentration of the next day.

(2). There are many features related to air quality
data which may influence the accuracy and efficiency of
PM2.5 concentration prediction, so it is essential to adopt data
driven methods for quickly identifying the key features and
constructed univariate and multivariate models for compari-
son. In the univariate models, only one feature, PM2.5 con-
centration, is contained. In the multivariate models, some
possible relevant features, including weather, wind speed,
wind direction and atmospheric pressure, etc., are contained.
The results show that the accuracies of multivariate mod-
els are higher than that of univariate models for predicting
PM2.5 concentration. Therefore, if the data has multiple fea-
tures, we should choose the multivariate model.

(3). Almost all models have their own advantages and
disadvantages, so it is vital to propose a hybrid CNN-LSTM
model for predicting the PM2.5 concentration, in which CNN
is employed to extract related features from existing air qual-
ity features, and then LSTM is adopted to make predictions.
The final results show that the proposed model improves
the accuracy of prediction and reduces the training time.
Moreover, the model has flexibility, its input and output can
be adjusted according to demand. If we want to predict the
PM2.5 concentration of the next 48 hours, we only need to
adjust the length Y of the training data to 48.

Besides, we did some other studies and results indicate that
no matter whether the training data is less or more, the results
will get worse. As shown in Table 4, the data of one day, seven
days, and 14 days were respectively employed as training data
for predicting the PM2.5 concentration of the next day. Their
results show that the prediction error with 7 days as training
data is smallest and the training time will increase with the
amount of the training data. Meanwhile, we also predicted
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the PM2.5 concentration of the next two days, but it showed
the longer training time and lower accuracy.

V. CONCLUSION

It is obvious that the characteristics of air quality have
periodicity by analyzing the data of air quality in Beijing.
A hybrid CNN-LSTM deep learning network is proposed
based on convolutional neural network and recurrent neural
network for predicting the PM2.5 concentration of Beijing.
The advantages of convolutional neural network for feature
extraction and recurrent neural network for time series data
processing are utilized for improving the accuracy of fore-
casting the air quality. Due to the periodicity of air quality
data, the values of features related to air quality of one week
are chosen as the input, and the PM2.5 concentration of
the next day is chosen as the output. The process of the
prediction contains following steps: First, the dataset was
normalized and then divided into training data (the first 80%
of data) and test data (remaining data). Then the proposed
hybrid CNN-LSTM model was applied on the training data.
Subsequently, the corresponding predicted values were com-
pared with the true values. Finally, the performance of these
models was evaluated by two indicators, namely MAE and
RMSE. Ten samples were randomly selected from the test
set for obtaining the mean of MAE and RMSE respectively.
The univariate and multivariate models were compared and
analyzed, followed by the traditional LSTM and the proposed
hybrid CNN-LSTM model, and results show that multivariate
models perform better results than that of univariate models,
due to considering more air quality related features, and the
MAE and RMSE of hybrid CNN-LSTM models are lower
than that of LSTM model. The multivariate model should
be selected if the amount of data is large and has multiple
features while the univariate model can be considered if it
has single feature. Meanwhile, the machine learning methods
can be adopted if the amount of data is small. Moreover,
the multivariate CNN-LSTM took about 50-60 seconds for
one epoch, which was 40 seconds less than other models.
So, the prediction effect of multivariate CNN-LSTM model
is best in both low error and short training time. In the future,
we will consider more relevant features for improving the
accuracy of forecasting PM2.5 concentration.
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