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ABSTRACT A detection algorithm based on hypothesis testing strategy is presented for the detection of the
fracture of FPC track. First, the sandwiched region between any two break points of the track skeleton is
hypothesized as the alternative fracture to wait for ‘‘testing’’. Then, the language semantic judgment (LSJ)
algorithm is proposed to verify (‘‘testing’’) the hypothetical connecting track which is the union of the two
incomplete tracks located by the ends of the alternative fracture. And the structure reasonable degree of the
hypothetical connecting track compared with the FPC layout is tested by the longest-relative sequence (LRS)
algorithm we proposed. Then the error control technology is used to conduct the posterior verification, to
solve the problem that circuits with the same topology structure interfere with the evaluation process of
LSJ algorithm. In addition, we have established an automatic optical detection system for FPC of the laptop
keyboard. We also conduct experiments with the images captured by this system. The results demonstrate
that, compared with the state-of-the-art methods, our proposed algorithm can provide a better detection
effect for the track fracture—the Recall, Precision and FNR are 0.9185, 1, and 0.0815 respectively under the
condition of without missing detection. And the time consumption is 1.6915 s, which is a relatively short
time-consuming compared with the other methods.

INDEX TERMS FPC, fracture detection, hypothesis testing, language semantic judgment, longest-relative
sequence.

I. INTRODUCTION
The circuit break is a common defect of printed circuit board
(PCB) [1], which damages the electrical function of the cir-
cuit directly and affects the quality of electronic products
seriously. The traditional quality assurance method of elec-
tronic products is detecting the finished PCB and removing
the ones with break. But the method of weeding out defective
products also causes economic losses. A more ideal method
is to locate the broken region and repair the fracture (In this
paper, ‘‘fracture’’ indicates the gap of the tracks, and the
specific definition is shown in Fig. 1 (c). In addition, to make
the description easier and clearer, many concepts which will
be used frequently are clarified or defined in Fig. 1 also), so as
to avoid resource waste.

At present, the repairing of PCB track fracture is completed
by means of ‘‘manual+ automatic’’. First, the position of the
fracture is detected manually and the coordinate information
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of the fracture is input into the manipulator control system.
Then, the manipulator drives a device called silver-paste-
pen to complete the reprinting. However, this approach is
extremely inefficient, and with the increase of the wiring
density, the speed, accuracy and stability of human visual
observation can hardly meet the requirements of the auto-
matic production. Therefore, an effective automatic fracture
location method is urgently needed. In recent years, based
on the rapid development of image processing technology,
it becomes amainstream to detect PCB defects usingmachine
vision. The idea of replacing human vision with machine
vision has been widely applied in the detection of various
defects on PCB, including the break defect [2].

At present, the detection methods for PCB break defect
based on machine vision are mainly divided into three cat-
egories: the reference comparison method, the rule-based
method and the hybrid method. (1) The basic idea of the
reference comparison method is to compare the tested image
with the reference image after matching, and the defects are
detected through the differences [3]–[7]. But the accuracy
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FIGURE 1. Clarification or definition of the concepts frequently
mentioned hereinafter: (a) Normal circuit track, (b) Circuit track with
break defect. p1 - p4 are the ‘‘broken ends’’ caused by the break defect,
and C1-C4 are the ‘‘incomplete track sections’’. (c) Fracture: the region
sandwiched between two broken ends generated from one break, i.e. the
region enclosed by the dotted green line. (d)-(f) Pseudo fracture: the
region sandwiched between the broken ends generated by different
breaks, i.e. the region enclosed by the dotted red line. (g)-(h) Hypothetical
connecting track: a complete new circuit track formed by any two
incomplete track sections.

of image registration restricts the detection effect [8]–[15],
especially for FPC imageswith flexible deformation. FPC has
a good flexible characteristic, and it usually exists in a warped
state, especially which is based on polyester film. And this
results in the flexible deformation of the acquired images.
Thus the accuracy of the image registration is impaired,
which affects the performance of the current methods. (2) The
rule-based method designs a series of digital image process-
ing rules according to the basic criterion of circuit printing to
detect defects. However, a part of these researches can only
achieve qualitative inspection [16], [17]. The other parts can
realize the location of the fracture, but they only consider
the ‘‘simple’’ case that the fracture occurs on a single track.
And the ‘‘complicated’’ case that two or more adjacent tracks
break at the same time and the fractures interference with
each other (as shown in Fig. 2) are not considered [18]–[20].
(3) The definition of the hybrid method is not strict+. It com-
bines the theory of the reference comparison method and the
rule-based method [21]–[23]. However, it can only realize the
qualitative detection [24]–[26].

FIGURE 2. Track fracture with differe nt complexity: (a) ‘‘Simple’’ fracture,
and (b) ‘‘Complex’’ fracture.

In summary, the current methods still cannot solve the
problem of the detection (or location) of the ‘‘complex’’
fracture in FPC effectively. Therefore, to address the problem,
a method based on hypothesis testing strategy and language
semantic judgment (LSJ) is proposed in this research. The
proposed method is as follows: First, OTSU, geometric
parameter constraints, iterative thinning, break point detec-
tion and other image processing operations are used to detect
the broken end of the track. Then, all the broken ends of the
track are matched in pairs to locate the alternative fracture,
that is, fracture hypothesis. Then, based on the LSJ algorithm
we proposed, the alternative fracture is tested to recognize
the true fracture. Finally, posterior verification is carried out
to improve the accuracy of the fracture recognition. The main
contributions of this research are as follow:

(1) A novel idea of detecting FPC track break based on
hypothesis testing strategy is proposed.

(2) This research proposes an innovative feature descrip-
tion method which realizes the function of transforming FPC
track into a language.

(3) A FPC track fracture detection algorithm based on lan-
guage semantic judgment (LSJ) and error control technique
is proposed.

This paper is organized as follows: Section II introduces
the relevant work and the basic theory. Section III presents
the detailed methods of the fracture detection. Section IV
presents the experimental equipment and the image data set.
The experiments and results are detailed in section V.We con-
clude this paper in section VI.

II. RELATED WORK AND BASIC THEORY
A. RELATED WORK
The related work is presented from three perspectives
depending on the three PCB break defect detection methods
mentioned above.

1) THE REFERENCE COMPARISON METHOD
The researches of this method have three emphases.
(1) Image registration before the comparison. Accurate reg-
istration of the images is the prerequisite of the effectiveness
of this method. Therefore, many scholars have made in-depth
researches on it. However, current methods are still sensitive
to external factors such as illumination intensity, mechanical
errors and image flexible deformation particularly [8]–[10].
When the substrate of printed circuit is flexible, it is called
FPC generally, which is a category of PCB of the most
widely used. The image flexible deformation generated by
the warping deformation of the FPC affects the registration
accuracy strongly, which is not considered. (2) The indi-
rect comparison method of the images. Although current
research on image registration has achieved good results,
there are still some limitations. Therefore, some researchers
try to use an indirect comparison approach instead of the
direct comparison to abandon the adverse effects of poor
registration. Reference [11] proposes to divide the defects of
FPC into global defects and local defects. The global defects
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are calculated by histogram matching, and the local defects
are calculated by projection matching. However, it can only
realize the qualitative detection instead of exact location.
Amethod ofmatching and comparing an established template
with the reference template is proposed by [12], which uses
the feature of minimum line width. Reference [13] uses the
Hausdorff distance value of the image edges for comparison.
But the effect also depends on the accuracy of image match-
ing. (3) Comparison of the image features. This category of
method recognizes defects by feature comparison, and the
fundamental purpose is still to overcome or avoid the adverse
effects of poor image registration. In [14], the author first
acquires the gray distribution curve of a parallel line in the
image to be tested, and the curve is reconstructed by Fourier
transform to remove noise. And then it is compared with the
gray distribution curve of the corresponding reference image
to detect defects. In [15], the adjoint matrix of the two images
to be compared is used to calculate the symmetric matrix,
and the rank of the symmetric matrix is used as the similarity
measurement index of defect detection. Finally, the defect
position is determined by mapping back to the corresponding
position through the rank. However, the registration accuracy
of the target image and the reference image are still highly
required.

2) THE RULE-BASED METHOD
According to whether it is only used for qualitative detection,
these methods can be divided into two categories. (1) The
first category is for the purpose of qualitative detection.
Reference [16] calculates the number of connected domains
in the image to analyze the number of circuits statistically,
so as to determine whether there is any break defect. In [17],
the number of the track borders in each small local area is
counted, and then the defect is detected qualitatively accord-
ing to the number of borders perpendicular to the track
extension direction. (2) Another category is for the precise
location of the defect. In [18], the author uses the distribution
state of information entropy in the neighborhood gradient
direction of the track area as a rule to detect the fracture, but
the ‘‘complex’’ fractures (as shown in Fig. 2) would affect
the value of the information entropy. In [19], according to the
characteristic that the break will result in broken ends of the
track, the fracture is recognized by detecting the break point
of the track skeleton line. However, it can only recognize one
of the two broken ends of the fracture. And when there are
more than one fracture in a local area (as shown in Fig. 2 i(b)),
it is difficult to affirm which two broken ends belong to a
certain fracture. In [20], the track border is fitted to get the
fitting line firstly, and then the break is recognized through
the difference between the actual track border and the fitting
line, which uses the track characteristic of continuity. But the
situation in Fig. 2 (b) is still not resolved.

3) THE HYBRID METHOD
Reference [21] extracts the features of LBP and the gradient
direction information entropy. And they are combined to train

SVM classifier for the identification of the defects. In [27],
features such as gray scale, track width and track area are
extracted from the local region of the FPC image and they are
input into the neural network for training to realize qualitative
detection of the defects. In [22] and [23], the features of LBP
and HOG are extracted within the local area of the image to
train a classifier for recognizing defects. However, it can only
realize the qualitative detection also [24]–[26]. In addition,
due to the random state of ‘‘complex’’ fracture, it is difficult
to collect a large number of training samples with the same
category labels. And this limits the effect of deep learning
methods [28]–[30].

In summary, there are some problems in the current
research, which is as follows (1) The reference comparison
method is sensitive to the flexible deformation of the image.
(2) The researches on the rule-based method do not involve
the ‘‘complex’’ fracture of two or more adjacent track break
at the same time. As is shown in Fig. 2 (b), there are more
than two broken ends and fractures, and the requirement of
recognizing the pseudo fracture (the red dotted line) and true
fracture (the green dotted line) can still not be realized by
the current methods. (3) The researches based on the hybrid
method take a small local region of the image as the subject,
which can only realize the qualitative detection of the defects
instead of locating the fracture accurately, especially when
multiple fractures are gathered in the local area (as shown
in Fig. 2 (b)).

B. BASIC THEORY
In this section, several key techniques or theories used in this
research are briefly introduced. The kernel of the method
in this paper, LSJ algorithm, is designed based on the idea
of statistical language model (SLM). Therefore, we first
introduce the basic theory of SLM in section II-B-1). In the
module of probability calculation of the semantic ratio-
nality in LSJ algorithm, we refer to the evaluation theory
of DNA sequence similarity, so it is introduced briefly in
section II-B-2).

1) THEORY OF STATISTICAL LANGUAGE MODEL
Statistical language model (SLM) [31] is a mathematical
model established to deal with the problem of natural lan-
guage with contextual characteristics. SLM is originally
designed to solve the problem of speech recognition. Differ-
ent from the traditional mainstream method of determining
whether a word sequence conforms to the rules of a certain
grammar, it judges the semantic meaning of a sentence from
the perspective of statistics. The basic idea of SLM is to
determine the rationality of a sentence S by calculating the
probability of its occurrence. Suppose that S stands for a
meaningful sentence consisting of a sequence of words w1,
w2, . . . ,wn, where n is the length of the sentence. Then the
probability P(S) of S can be described as

P(S) = P(w1,w2, . . . ,wn) (1)
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According to conditional probability formula [32] and the
Markov hypothesis [33], (1) can be rewritten as

P(S) = P(w1) · P(w2|w1) · P(w3|w2) · · ·P(wi|wi−1)

· · ·P(wn|wn−1) (2)

where i represents the sequence number of the words in the
sentence. According to (2), P(S) can be easily calculated
when the conditional probability P(wi|wi−1) is obtained. And
according to conditional probability formula, P(wi|wi−1) is as
follows:

P(wi|wi−1) =
P(wi−1,wi)
P(wi−1)

(3)

According to law of large numbers, the relative frequency
of (wi−1, wi) and (wi−1) appearing in the corpus (which
are called f (wi−1, wi) and f (wi−1) respectively) are approxi-
mately equal to the joint probability P(wi−1, wi) and P(wi−1)
respectively. And the corpus above is a sentence database
constituted by all ‘‘reasonable’’ sentences generated by the
corresponding language. And the basic unit of the sentence is
called morpheme. Therefore, when the corpus is determined,
the relative frequency f (wi−1,wi) and f (wi−1) can be obtained
through the statistics, as follows.

f (wi−1,wi) =
#(wi−1,wi)

#
(4)

f (wi−1) =
#(wi−1)

#
(5)

where #(wi−1, wi) is the frequency of the two morphemes
(wi−1, wi) appearing adjacently in the corpus, #(wi−1) rep-
resents the frequency of morphemes (wi−1) appearing in the
corpus, and # represents the size of the corpus.

Equation (2) describes the simplest binary model of SLM,
the more general expressions is as (6), which is called the
N -element model. N is a natural number and satisfies
2 6 N 6 n. But in actual application, N is usually set
to 2 or 3.

P(S) = P(w1) · P(w2|w1) · · · P(wi|wi−N+1,wi−N+2, . . . ,

×wi−1) · · ·P(wn|wn−N+1,wn−N+2, . . . ,wn−1)

(6)

where when i− N + α ≤ 0 (α = 1, 2, 3, . . .), the parameter
item wi−N+α does not participate in the operation.

2) THEORY OF THE SIMILARITY EVALUATION OF THE DNA
SEQUENCE
For a sequence S, if it is a subsequence of two or more
known sequences respectively and it satisfies the condition
that it is the longest one in all the subsequences, we call
it the longest common subsequence (LCS) of the known
sequences [34], [35]. Based on LCS, an effective method to
evaluate the similarity of two DNA sequences is defined as
follows [36], [37]:

H (x, y) =
B (x, y)
D (x, y)

(7)

where x and y represent two DNA sequences respectively,
B(x, y) is the length of the LCS of x and y, and the definition
of D(x, y) is

D(x, y) = max{d(x), d(y)} (8)

where d(x) and d(y) represent the length of x and y respec-
tively. According (7), the closer H (x,y) is to 1, the more
similar these two DNA sequences are, and the more possible
that x and y belong to the same species. On the contrary,
the closer H (x,y) is to 0, the less similar the sequence x and y
are.

Finally, we will expound the role of the above two theories
in this research here. Since the track fracture is inevitable to
produce the broken end, the fracture is the region sandwiched
between two broken ends of the track. Therefore, the key for
locating the fracture accurately is to recognize the correct
broken end pair from one track, that is, to match the two
incomplete track sections which belong to the same original
track. Inspired by SLM, we creatively transform the problem
of matching two incomplete track sections to the problem
of calculating the semantic rationality of the sentence. And
the sentence is represented by the new track constituted by
the two incomplete track sections. And the newly constituted
track is represented by a one-dimensional symbol sequence
creatively, that is, generating a language. Then, on the basis of
DNA sequence similarity evaluation theory, a longest-relative
sequence (LRS)model is defined to evaluate the rationality of
the language semantics of the new track, and the conclusion
of whether the fracture on the new track is true or not is
determined.

III. FPC TRACK FRACTURE DETECTION BASED ON THE
STRATEGY OF HYPOTHESIS TESTING AND LSJ
ALGORITHM
In this section, we present the detection method based on the
strategy of hypothesis testing and LSJ for the track fracture
of FPC. The proposed detection method mainly consists of
four parts: detection of track broken end, hypothesis of the
alternative fracture, hypothesis testing based on LSJ, and
posterior verification. The first two parts are used to complete
the content of ‘‘hypothesis’’ of the hypothesis testing strategy,
and the last two parts are used to complete the content of
‘‘testing’’. The overall flow of this method is shown in Fig. 3,
and the details are presented in the following sections.

A. DETECTION OF FPC TRACK BROKEN END
Since the occurrence of the fracture will inevitably result in
the broken ends of the track, we first detect the broken ends
to realize the basic location of the fractures.

The detection of the broken end is implemented by extract-
ing the ‘‘break point’’ of the track skeleton. First, some image
preprocessing methods are applied to extract the skeleton of
the track. Since the track shows as an obvious bright intensity
region in the image, it can be easily extracted by OTSU [38].
Thus, the binary image Ib is obtained. Then the area thresh-
old Ta is used to remove the small non-electrical function
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FIGURE 3. Overview of the proposed FPC track fracture detection method.

identifiers and other noise regions for obtaining Ic. A circular
structure element with radius r is then used to perform the
morphological operation on Ic, so as to detect the circular
welding pad Rp. Subsequently, the circular connection end
Rh is detected through the template matching [39]. And the
region of Ic excepting Rp and Rh is the track, which is marked
as Rline. Next, the Rline is thinned according to the structural
element ‘‘L’’ in the Golay character set [40] to obtain the
skeleton Sc. Finally, burr noise of Sc is removed by the burr
removal algorithm in [19], and the obtained result is marked
as Sl . If Sl is stored as an image ISl with a foreground of 1
and background of 0, the endpoint pij of Sl can be extracted
according to

1∑
u=−1

1∑
v=−1

G(pi+u,j+v)− G(pi,j) = 1 (9)

where i and j represent the horizontal and vertical coordinates
of point pij respectively, and G(pij) is the gray value of pij in
the image Isl .

There are two reasons for the generation of the endpoints
of the track skeleton line: the normal end of the track such
as the welding pad and the connecting end, and the end of
the line caused by the break in the track. Therefore, the break
point of the track skeleton line can be extracted as follows:

pbreak = pend �
(
pend ∩

(
Rp ∪ Rh

))
(10)

where a� b represents the remainder of set a and set b, and
Pend is the set of points formed by skeleton line endpoints.

B. HYPOTHESIS OF THE ALTERNATIVE FRACTURE
After the processing of section III-A, all the break points
of the track skeleton line are obtained, and the sandwiched
regions between these break points all could be the true
fracture theoretically, as shown in the red dotted line in
the module ‘‘Hypothesis of alternative fracture’’ in Fig. 3.
However, only the fractures marked with ‘‘

√
’’ are true, while

the ones marked with ‘‘×’’ are pseudo. Therefore, the method
we proposed recognizing the true fracture from the alternative
fractures is presented in section III-C.

C. ALTERNATIVE FRACTURE TESTING BASED ON LSJ
The purpose of testing the hypothetical fracture is to rec-
ognize the true ones. And for a true fracture Fab, it is the
region sandwiched between the two incomplete track sections
(Ca and Cb) of a certain track after being segmented by Fab,
as shown in the module ‘‘Hypothesis of alternative fracture’’
in Fig. 3. Therefore, the true fractureFab can be recognized by
judging whether the two incomplete track sections Ca and Cb
are originally derived from a complete circuit.

In order to verify whether Ca and Cb belong to a complete
circuit originally, we first generate the hypothetical connect-
ing track Cab by connecting Ca and Cb at the corresponding
fracture. And then Cab is compared with track C’ which
comes from the normal FPC image. If Cab and C’ are iden-
tically, or Cab is part of C’, then Ca and Cb are derived
from a complete circuit originally. And the corresponding
fracture Fab is a true fracture. Otherwise, Fab is a pseudo
fracture.

A method called language semantic judgment (LSJ) algo-
rithm is proposed to implement the idea above. The following
part is organized as follows: Section III-C-1) presents our
innovative feature description method of transforming the
FPC track into a language. Section III-C-2) presents the
calculation method of linguistic semantic rationality we pro-
posed. Section III-C-3) describes the specific process of the
fracture detection based on the theories in sections III-C-1)
and III-C-2).

1) VERBALIZATION OF THE FPC TRACK
Language is a symbolic system composed of words according
to a certain grammar. Therefore, we illustrate the established
verbalization method from the aspects of vocabulary and
grammar.

Printed circuit can be regarded as a diagram composed of
some basic line structure units connected in accordance with
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certain rules. Therefore, we transform the basic line structure
unit into vocabulary, that is, morpheme. And the connection
rules are transformed into grammar. Then the printed cir-
cuits can be expressed in language. The transformation we
defined from basic line structure unit to morpheme is shown
in Table 1. Through observation and analysis of FPC circuit
diagram structure, we split the FPC diagram into six basic
structure units. In other words, any common FPC diagram
can be represented by these six basic track structure units
defined in Table 1. We realize the transformation from basic
track structure unit to vocabulary by assigning symbols 1-6 in
Arabic numerals to different structure units uniquely, which
is the first step of expressing FPC with a language.

TABLE 1. FPC morpheme definition.

The second step of FPC verbalization is formulating the
grammar rules which are the rules of sentence structure.
The grammar rules we proposed are described according to
a formalized system which is called the rewriting system
and used in the structural analysis of natural language com-
monly [41], [42]. And the language of track C (marked with
LANG(C)) is represented by a one-dimensional array. The
specific rules are as follows:

1. LANG(C)→ [L(B1), L(B2), . . . ,L(Bi), . . .L(Bζ )]
2. L(Bi)→ [L’(Bi,left ), L’(Bi, up), L’ (Bi,right ), L’(Bi,down)]
3. L’(Bi,j)→ [M1, M2, . . . ,Mk , . . . ,M ∂]
4. Mk →1|2|3|4|5|6
In rule 1, L(Bi) is the morpheme symbol sequence formed

by the track branch segment which is directly connected
by the i’th bifurcation point Bi in the circuit. Taking B1
in Fig. 4 as an example, the directly connected track branch
segments include a, b and c. In addition, in the rule 1, Bi and
Bi+1 satisfies ρ(Bi) < ρ(Bi+1), or [ρ(Bi) = ρ(Bi+1) AND
xi > Xi+1]. And ρ(Bi) is defined in (11), and ζ represents the
number of branch points.

ρ (Bi) =
√
(xi − x0)2 + (yi − y0)2 (11)

where (xi, yi) represents the coordinate of bifurcation pointBi.
And (x0, y0) represents the coordinate of the upper left corner
of the smallest surrounding rectangle with any orientation

of the effective track area in FPC [43], which is called the
reference position.

In rule 2, Bi,j (j=left, up, right, down) represents the
track branch directly connected by the bifurcation point Bi
in the direction of j. L’(Bi,j) is the sequence of morpheme
symbols formed by the track branch Bij. In particular, when
Bij = Bi−1,v (µ = left, up, right, down), rule 3 no longer
needs to be performed.

In rule 3, Mk represents the morpheme value of the
k-th basic track structure unit of Bi,j (denoted as BLSU (Mk ))
according to Table 1. In addition, Mk and Mk+1 satisfy that
BLSU (Mk ) and BLSU (Mk+1) are adjacent. And M1=6, that
is, BLSU (M1) is the ‘‘T’’/crossing structure. ∂represents the
number of the basic structure unit.

There is a special case that the track to be verbalized has
no bifurcations. Then it can be verbalized from rule 3 directly,
that is, the above rules can be simplified as follows:

1. LANG(C)→ [M1, M2, . . . ,Mk , . . . ,M ∂]
2. Mk →1|2|3|4|5|6

where M1 is no longer equal to 6, and it only needs M1 and
Mβ satisfying the condition of theminimum distance between
BLSU (M1) and (x0, y0) being greater than that of BLSU (M ∂)
and (x0, y0).

The primary process of FPC verbalization according to the
grammar rules defined above is shown in Fig. 4.

FIGURE 4. Diagram of the process of FPC verbalization: (a) A FPC track,
marked C, (b) Intermediate results of rule 1, (c) Intermediate results of
rule 2, (d) Intermediate results of rule 3, and (e) Final result LANG (C).

In Fig. 4 (c), we replace symbols ‘‘left’’, ‘‘up’’, ‘‘right’’,
and ‘‘down’’ with serial numbers of the track branch segments
such as a, b, c. . ., so as to represent the whole process more
clearly.

2) PROBABILITY CALCULATION OF SEMANTIC RATIONALITY
BASED ON LRS
In the classical statistical language model, the judgment of
sentence semantic rationality is evaluated by the occurrence
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probability of the N adjacent words in the corpus, which
is described in (6). When the value of N in the N -element
model described in (6) is equal to the length of the sentence
to be tested, the probability value is the most accurate. But at
present, in the field where the application of SLM is relatively
mature, such as speech recognition, N is set to 2 or 3 merely.
One reason is that the space complexity and time complexity
of N -element model are almost exponential functions of N ,
and the resource consumption increases sharply with the
increase of N . Another reason is that when the number of
morpheme is order of magnitude of thousands and the corpus
is order of magnitude of millions, a small N can obtain a
very approximate effect compared with a large N . However,
in this paper, the number of morpheme is few (6 different
morphemes) and the corpus is small (the size is 1180). This
results an obvious difference between the semantic rationality
probability calculated by (6) at a small N and a large N
[44], [45]. And if a large N is adopted to improve the prob-
ability calculation effect of (6), statistical unreliability and
unsmooth situation will occur due to the small corpus [46].
Therefore, inspired by the method of DNA sequence similar-
ity evaluation (presented in section II-B) [47], we propose a
probabilistic calculation model of Longest-relative sequence
(LRS). And it is as follows:

P (u) = max
v∈�

B (u, v)
d (u)

(12)

where u represents the sentence to calculate the probability
of its semantic rationality, d(u) represents the length of the u,
v is the sentence in the corpus �, B(u, v) is the length of the
longest common subsequence of u and v, and 0 ≤ P(u) ≤ 1.
The closer P(u) is to 1, the more reasonable the semantics of
u is. Oppositely, the closer P(u) is to 0, the more unreasonable
the track structure expressed by sentence u is.
We explain the corpus � established in this research here.

The circuit in the FPC image is composed of several inde-
pendent subcircuits, and there is no crossover or connection
between subcircuits. Therefore, according to the grammar
rules defined in section III-C-1), each individual subcircuit
can be expressed in a sentence, and then the set composed of
these sentences is the corpus �.

3) FPC FRACTURE INSPECTION BASED ON LSJ
Inspired by the working mechanism of SLM, we transform
the problem of judging whether the structure of hypothetical
connecting track Cab is correct to the problem of judging
whether the language semantic of Cab(LANG(Cab)) is rea-
sonable relative to the sentences in �. Then, based on the
reasonable probability of LANG(Cab), whether Fab on Cab is a
true fracture is determined. The specific steps are as follows.

Step1: Generation of language.
According to section III-C-1), the obtained hypotheti-

cal connecting track Cab is expressed with the language
LANG(Cab).
Step2: Probability calculation of semantic rationality.

According to (12) in section III-C-2), the rationality prob-
ability P[LANG(Cab)] of LANG(Cab) is calculated.
Step3: Authenticity determination of alternative fracture.
The authenticity of the alternative fractureFab on the hypo-

thetical connecting track Cab is determined as follows:{
P [LANG (Cab)] ≥ t, True
P [LANG (Cab)] < t, False

(13)

where True means that Fab is a true fracture, False means that
Fab is a pseudo fracture, and t is a threshold whose specific
value is determined through the experiments.

The specific experimental data and results of this section
are detailed in Section V below.

4) POSTERIOR VALIDATION BASED ON ERROR CONTROL
TECHNIQUE
According to the experimental results of section V-B, the LSJ
algorithm we proposed has the Precision of 100%, but the
Recall is low. The reason for the low Recall is that the
high similarity of some track structures on FPC results in
false detection, which is detailed in section V-B. From the
perspective of digital signal processing, the process of the
false detection event can be described as follows: The track
to be detected can be regarded as the signal source, and the
morpheme sequence obtained by linguistic transformation
from the track is equivalent to the code by coding the sig-
nal source. The highly similar signal sources results in the
highly similar coding sequences, which leads to errors in the
processing results of the signal processing system (that is,
LSJ). The process mentioned above is a common problem
in digital signal processing, and the corresponding solution is
error control.

The core of error control technology is anti-interference
coding or re-identification of confusing codes by introduc-
ing additional information. According to our observation
and analysis of the track wrongly detected in section V-B),
although the morpheme sequence is similar to the track of
true fracture, the length of the basic track structure unit rep-
resented by each morpheme is different. Therefore, the length
information is introduced to control the error. And the specific
method is as follows:{

F (Cab) ≤ λ, True
F (Cab) > λ, False

(14)

whereF(Cab) represents the length characteristic of the hypo-
thetical connecting track Cab, and the specific definition is
shown in (15). λ represents the threshold whose value is
obtained through the experimental data. True means the frac-
ture onCab is true, and False means fracture onCab is pseudo.

F (Cab) =

√√√√ n∑
i

{
8 [BLUS (Mi)]− 8̄ [BLUS (Mi)]

}2 (15)

whereBLSU (Mi) is defined in section III-C-1). The definitions
of8[BLSU (Mi)] and 8̄ [BLUS (Mi)] are shown in (16) and (17)
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respectively. The smaller the F(Cab) value is, the more likely
Cab is the hypothetical connecting track of a true fracture.

8 [BLUS (Mi)] = 9 [BLUS (Mi)]−9 ′ [BLUS (Mi)] (16)

8̄ [BLUS (Mi)] =
1

n− k16

n∑
i=1

8 [BLUS (Mi)] (17)

where 9[BLSU (Mi)] represents the length of BLSU (Mi), and
the calculation method is (18).9 ′ [BLSU (Mi)] is the length of
the basic track structure unit of the morpheme corresponding
to Mi in the corpus �. In (17), k16 represents the sum of
the number of the morphemes whose values are 1 or 6 in
LANG(Cab).

9 [BLUS (Mi)]=

{√
(x2−x1)2+(y2−y1)2,Mi=2, 3, 4, 5

0,Mi=1, 6
(18)

where (x1, y1) and (x2, y2) are the coordinates of the two
endpoints of BLSU (Mi) respectively.
Specially, we explain the length of the basic track structure

unit represented by the morpheme in�, that is9 ′ [BLSU (Mi)]
in (16).When the corpus is generated according to themethod
in section III-C-1), the length information of each BLSU (Mi)
is obtained according to (18). We store it in the order corre-
sponding to the morphemes in the corpus, and it is used as the
length information base to be invocated at any time.

TABLE 2. Steps of FPC track fracture detection algorithm.

IV. IMAGING EQUIPMENT AND IMAGE DATA SET
A. IMAGING SYSTEM AND IMAGING METHODS
In this paper, the laptop keyboard FPC based on polyester film
is taken as the experimental object. The specific version is
GCNO52C1 and the size is 158mm×340mm, which is shown
in Fig. 5.

We construct an image acquisition system in the position
after the keyboard FPC printing station to acquire the FPC

FIGURE 5. Picture of the laptop keyboard FPC.

FIGURE 6. Picture of hardware device.

surface image. As shown in Fig. 6, the system is mainly com-
posed of two linear cameras (DALSA p4-cm-08k070), two
lenses (Schneider Apo-Componon 4.0/60), one high uniform
strip illuminant (OPT-lst562-w), and one homemade mobile
platform with guide rails. The camera and the illuminant are
fixed on the mobile platform, and they are driven by the
guide rail to move back and forth at a uniform speed along
the direction indicated by the yellow arrow in Fig. 6. The
FPC image is acquired as the camera moving forth, and the
restoration of the camera position is performed as the camera
moving back. The camera contains 8192 active pixels, and
its working distance is set to 270mm. In addition, since the
GCNO52C1 FPC is larger-size, we placed two cameras par-
allelized on the mobile platform to acquire the left and right
sides image of the FPC to ensure the sufficient resolution.
The acquired images are shown in Fig. 6 (a) and (b), and the
resolutions are both 8192×4972.

B. IMAGE DATA SET
There are 189 pieces of FPC with break defect collected in
a year in the production workshop are imaged by the system
in Fig. 6. Then we obtain an image data set with size of 189.
It is worth noting that the sample of the established data
set is the complete image (as shown in Fig. 7) obtained by
the image stitching [48] of the left and right image of one
FPC. The established data set contains 823 fractures, and the
example of the image containing the break in the track is
shown in Fig. 8.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the proposed FPC fracture detection algorithm
is evaluated. The image data set used for the experimen-
tal evaluation is established in section IV, which includes
189 FPC images and contains 823 fractures. In addition,
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FIGURE 7. Image in the data set: (a) Image acquired by the left camera,
(b) Image acquired by the right camera, and (c) Stitched image.

FIGURE 8. Track break: (a) Straight-line break, (b) Oblique track break,
(c) Turning track break, and (d) Composite track break.

in order to carry out the experimental evaluation, we estab-
lished the corpus for the GCNO52C1 keyboard FPC which is
our experimental subject.

The Recall, Precision, and False negative rate (FNR) are
three measurement indexes commonly used to evaluate the
performance of defect detection. And the specific definitions
are as follows.

Recall =
TP

TP+FN
(19)

Precision =
TP

TP+FP
(20)

and

FNR =
FN

TP+ FN
(21)

where TP represents the number of correctly recognized frac-
tures, FP is the number of fractures which are recognized
as pseudo fractures, and FN is the number of the pseudo
fractures recognized as true.

In addition, through our observation and statistics about
the samples in the image data set, the area value Ta and the
radius r of the circular structure elements in section III-A are
set to 10000 and 20 respectively. The following experiments
are all executed on the basis of the above threshold value.

A. HYPOTHESIS OF THE ALTERNATIVE FRACTURE
According to the theory in section III, the sandwiched region
between all the track broken ends of FPC can be a true fracture

theoretically. Supposing that the number of track broken ends
is δ, then C2

δ alternative fractures and hypothetical connect-
ing tracks can be obtained. Then, the true fracture will be
recognized by judging the correctness of these hypothetical
connecting tracks. But in fact, through the observation of the
fracture in the image data set, the size of all the fractures is
small. Therefore, for any detected broken end pa, it only needs
to make a hypothetical connecting with the broken ends in a
certain range nearby for further verification. In other words,
the broken end pb which may form a true fracture with pa
satisfies the following conditions:√(

xpa − xpb
)2
+
(
ypa − ypb

)2
< R (22)

where (xpa, ypa) and (xpb, ypb) represent the coordinates of
the points pa and pb respectively, R is the distance threshold,
and the specific values are obtained according to experimen-
tal observation and statistics. Under the above limitation,
the number of alternative fractures will be much less than C2

δ ,
which greatly reduces the calculation amount and consuming
time of the algorithm. And it is very necessary in the practical
application.

In order to determine the specific value of R in (22),
the distribution of the length l of 823 fractures on 189 images
in the data set is statistically analyzed, and the relevant data
is shown in Fig. 9 with the blue line. To facilitate the display,
the abscissa of Fig. 9 is set as τ = l/W (the physical mean-
ing is the multiple of track width), where W represents the
average track width, and the value of W is 14 (pixels) in the
dataset we established corresponding to the actual physical
distance of 0.5mm. As shown in Fig. 9 (a), the length of
most fractures is 2-3 times of the track width, accounting
for 63.54% of the total number of fractures. The distribution
trend is approximately a Gaussian distribution with a mean
value of 2.5. The length value of the longest fracture is 13W .

FIGURE 9. Relationship between the number of fractures and τ :
(a) Distribution of the fracture number with various length values, and
(b) Cumulative distribution of the fracture number with various length
values.
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Fig. 9 (b) is the cumulative distribution curve of Fig. 9 (a).
We also count the pseudo fracture number under different τ ,
which is what the orange curve shows. As shown in Fig. 9 (a),
the number of pseudo fracture reaches the most in τ =3,
then decreases with the increase of τ . As shown in Fig. 9 (b),
the number of pseudo fractures is linear with the increase of
the τ approximately.

In conclusion, a greater τ will result more pseudo fractures,
and there is no true fracture when τ > 13. Therefore, when
R is set to 13W (that is, 182 pix), the algorithm we proposed
will deal with the least amount of data under the condition of
meeting the testing requirements, and the number of pseudo
fractures is 4087.

B. LSJ ALGORITHM EFFECT VERIFICATION
In this section, we evaluate the performance of the algorithms
in section III-C, and the parameters R of (15) is set to 13W
(182pix).

Fig. 10 (a) and (b) show the distribution of the seman-
tic rationality probability P of the hypothetical connecting
track of the 823 true fractures and 4087 pseudo fractures
when R=182. As shown in Fig. 10 (a), for the hypothetical
connecting tracks of 823 true fractures, the probability P=1.
However, there are 817 hypothetical connecting tracks of
pseudo fractures whose probability P is 1 also, which means
that they cannot be distinguished with the true fractures.

Fig. 10 (b) shows the effect of LSJ algorithm under var-
ious t . The Precision is 100% at any value of t , which
reflects the advantages and characteristics of the LSJ algo-
rithm. When t=1, Recall reaches the maximum and FNR
reaches the minimum, which are 0.5018 and 0.4982 respec-
tively. Obviously, from these two indexes of Recall and FNR,
the effect of LSJ is not ideal enough, but it has a perfect
advantage in Precision, which means that there will be no
missing detection for any true fracture. And this is also the
main and core requirement in actual enterprise applications.
According to the characteristic of indexes Precision, the cause
of poor Recall and FNR is the false detection of 817 pseudo
fractures. Therefore, on the basis of LSJ, an algorithm with
considerable effect is expected to be obtained if some addi-
tional information can be provided for further verification
of the detected 817 pseudo fractures. This is the purpose of
section III-D exactly.

Deservedly, a further verification is a good approach for the
actual requirements of fracture detection. However, in terms
of the theory itself, it is necessary to analyze the algorithm
characteristics of LSJ and the reasons for the above effects.

1) ANALYSIS OF LSJ ALGORITHM CHARACTERISTICS
Table 3 shows the proportion of the ones that satisfy various
l and P among 4087 pseudo fractures, where l represents the
length of the morpheme sequence of the hypothetical con-
necting track sentence. As shown in Table 3, 1) 4087 pseudo
fractures all satisfy P≥0.6. 2) The P of the pseudo fracture
with larger l is lower, whereas the P of the pseudo fracture
with smaller l is higher. 3) For the hypothetical connecting

FIGURE 10. Detection performance of the proposed LSJ algorithm:
(a) Distribution of P of the hypothetical connecting track, (b) Relationship
of the fracture detection effect and t, and (c) Distribution curve of the
pseudo fracture number in Table 3, P=1.

tracks of 817 pseudo fractures whose P value is 1, they are
satisfying l≤0.5R, which indicates that the LSJ algorithm we
proposed is more likely to recognize falsely when the length
of the branches are short. As is shown in the distribution of
the fractures number when P=1 in Table 3 that it is basically
in the trend of decreasing with the increase of l (we show it
as a curve in Fig. 10 (c)).This is actually the systematic error
of LSJ.

2) ANALYSIS OF THE POOR RECALL OF LSJ ALGORITHM
Since the Precision of LSJ algorithm is always 1, that is, all
the true fractures are recognized successfully, so the unsatis-
factory Recall and FNR are both caused by the false recog-
nition of 817 pseudo fractures. Through our observation,
the 817 pseudo fractures are all similar to certain true FPC
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TABLE 3. Number of pseudo fracture under various l and P.

FIGURE 11. False detection caused by tracks with same topology:
(a) Normal FPC track, (b) FPC track with fracture, (c) Local area of normal
FPC track, (d) Local area of the fracture, (e) True fracture, and (f) Pseudo
fracture.

track in topological structure, as shown in Fig. 11 (a). In the
figure, the white numbers of morpheme sequences marked on
the red track and the green track are both [1]–[4].

Therefore, when the two tracks are broken simultane-
ously in the white dotted line rectangular box (as shown in
Fig. 11 (b) and (d)), the morpheme sequence of the hypothet-
ical connecting modes of the fracture in Fig. (e) and (f) are
the same. Comparedwith the corpus, the rationality of the two
morpheme sequence are both 100%. However, the connecting
mode in Fig. 11 (f) is incorrect obviously.

Although the pseudo fracture satisfies the LSJ algorithm
condition due to the same morpheme sequence, it is obvious
that the length of the basic track structural units represented
by each morpheme is different. Taking Fig. 11 as an exam-
ple still, the morpheme in the hypothetical connecting track

of true fracture A is [1]–[4], and the corresponding length
is [0,180,32,110]. And the corresponding length of pseudo
fracture B is [0,192,40,675]. It shows that these two length
sequences are different, and the next verification can be
performed based on this information to recognize the pseudo
fracture, so as to realize the error control of LSJ algorithm.

C. EFFECT EVALUATION OF ERROR CONTROL ALGORITHM
In this section, we evaluate the performance of the algorithms
in section III-D, whose results also represent the final effect
of this research. According to the experimental results in
section V-B, the algorithm in section III-C achieves the best
effect when t=1. However, excepting the 823 true fractures
recognized, there are still 817 pseudo fractures detected by
mistake. In this section, the1640 (817+823=1640) fractures
selected in section V-B are used to evaluate the proposed error
control algorithm.

Fig. 12 shows the distribution of eigenvalue F with
823 fractures and 817 pseudo fractures. As is shown that the
distribution range of F values of true fractures and pseudo

FIGURE 12. Normalized ratio of fracture number at various F.
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fractures is 0-29 and 7-2618 respectively. Since the distribu-
tion state of the normalized ratio of pseudo fractures number
in the range of F=[50-2618] is similar to that in the range
of F=[0-50], we only give the values at F being 100, 500,
1000 and 2618 schematically for the range of F > 50
in Fig. 12 to ensure the readability of the graph.

Fig. 13 provides the Recall, Precision and FNR of the algo-
rithm at various λ value. When λ = 24, Recall and Precision
are equal nearly, and they are 0.9458 and 0.9550 respectively,
achieving the best average performance.Meanwhile, the FNR
is 0.0542.When λ is 29, the Recall=0.9185 and Precision=1,
and the algorithm recognizes all the true fracture completely.
And the FNR=0.0815.

FIGURE 13. Relationship of Recall, Precision, and FNR with λ.

As shown in Fig. 13, when λ = 29, there are some pseudo
fractures detected falsely. And when λ = 24, the algorithm
has both missing detection and false detection. Therefore,
we observe the wrongly detected samples and analyze the
reasons below.

(1) Analysis of missing detection. According to the theory
in section III-D, the immediate cause of missing detection is
that the F of the hypothetical connecting track of the fracture
is larger than the set threshold value λ. However,F is obtained
according to the difference between the length of the hypo-
thetical connecting track lr and the corresponding reference
length lp in the length information base. In theory, for a true
fracture, there is lr ≡ lp. Therefore, we further observe the
image where the hypothetical connecting track is. It indicates
that the reason for lr 6= lp is that the flexible deformation
of the image results in the stretching and compression of the
track. And this leads to the missing detection finally.

(2) Analysis of false detection. According to the theory in
section III-D, the immediate cause of the false detection is
that the F value of the hypothetical connecting track of the
fracture is smaller than the set threshold value λ. This means
that the length of the hypothetical connecting track of the false
detected pseudo fracture is very close to the length of a certain
sentence in the length information base. The illustration of
this situation is shown in Fig. 14. In the figure, there are
two groups of fracture areas, as marked by the yellow dotted
line 1 and 2. For the fracture area 1, the true fracture is the

FIGURE 14. Legend of false detection.

one between the yellow and green tracks. But the existence
of fracture area 2 results in the occurance of both the same
morpheme sequences and the similar length sequences of the
red track and green track. The length sequence of the red
track and green track are ψred=[95,85,251,55,261,83] and
ψgreen=[93,101,267,55,265,95] respectively. Compared with
ψgreen, the F of ψred is 22.80, which is less than λ, and it is
incorrectly detected.

It should be noted that the 189 images used in our exper-
iment are collected under the natural production state of
the production line, which indicates the robustness of the
proposed method for environmental variables such as FPC
position on the production line, illumination, and deforma-
tion of FPC substrate. In addition, Precision could achieve 1
according to the experimental results, which indicates that
all the true fractures are recognized. This proves the strong
robustness of the proposed algorithm for the identification of
the fractures.

D. COMPARISON OF THE DETECTION PERFORMANCE
To illustrate the classification performance of the algorithm
we proposed, it is compared with the methods described
in [9], [13], [15], [17], and [20]. The reason for choosing the
methods in the above six references is that: 1) The result of
the method or its certain step can obtain the exact location of
the fracture. 2) The selected methods for comparison repre-
sent each category of current fracture detection methods as
comprehensively as possible. 3) Publication date is as new
as possible. In the compared methods, [9] is the represen-
tative of the direct comparison method (DCM), [13] is the
representative of indirect comparisonmethod (ICM), and [15]
is the representative of feature comparison method (FCM).
Reference [17] and [20] are two different rule-basedmethods,
where [20] takes the difference between the track edge and
the fitted line as the detection rule, called straight line fitting
method (SLFM). And in [17], the edge shape of the local
region of the track is used as the detection rule, called local
edge configuration method (LECM).

Table 4 shows the comparison performance between our
method proposed in this research and the other state-of-the-
art methods mentioned above. As is shown that our method
achieves better results in Recall, Precision and FNR com-
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TABLE 4. Effect comparison between the method we proposed and other
methods.

pared with the others. In terms of the time consumption,
our method is second only to that of [17]. The specific time
consumption of each step in the algorithm we proposed is
given in Table 5.

TABLE 5. Time consumption of each step of the algorithm in this
research.

VI. CONCLUSION
This paper has presented a detection method of FPC track
fracture. First, an imaging system has been constructed to
capture the images of the surface of FPC, and then the image
data set is established. A hypothesis testing strategy is used to
detect the fracture in this research. In this strategy, the region
sandwiched between any two track broken ends is hypothe-
sized to be the candidate. Then we propose the LSJ algorithm
to recognize the true fracture from the alternative fractures.
In LSJ algorithm, we innovatively put forward the vocabulary
definition method and grammar rules for FPC verbalization,
and define the semantic rationality probability calculating
model LRS. In addition, we propose an error control method
with the length information of track to improve the detection
accuracy. We conduct experiments to evaluate our proposed
algorithm. The results have demonstrated that the proposed
algorithm can provide a better detection effect. The Recall,
Precision and FNR are 0.9185, 1 and 0.0815 respectively
in the condition of without missing detection. In addition,
the average time consumption of the algorithm in the testing
data set is 1.6915s, which is relatively less compared with the
state-of-the-art methods. In future work, we plan to apply this
algorithm to other PCB data sets and the keyboard production
workshop.
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