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ABSTRACT In communications, innovative paradigm shifts have emerged in integrating various devices
into the network to provide advanced and intelligent services. However, various security threats may occur
that may not always be detected using traditional cryptographic techniques. Secure authentication is of
paramount importance in modern wireless systems. This paper focusses on robust authentication in a time-
varying communication environment where conventional authentication mechanisms are severely limited.
We propose an Adaptive Neural Network (ANN) as an intelligent authentication process to improve detection
accuracy. Specifically, a Data-Adaptive Matrix (DAM) is designed to track time-varying channel features.
By utilizing a convolutional neural network as an intelligent authenticator, the proposed approach integrates
deep feature extraction and attack detection, hence, leading to effective physical layer security. To evaluate
the system, the ANN is prototyped on a universal software radio peripheral (USRP) and its authentication
performance is evaluated in a conference room environment. Experimental results show that the ANN is
effective in tackling the challenges of physical layer authentication under interference conditions, and is
effective in time-varying environments.

INDEX TERMS Convolutional neural network, physical layer security, intrusion detection, machine

learning.

I. INTRODUCTION
Innovative technologies enable physical objects to see, hear,
think, accomplish tasks and make intelligent decisions [1].
The Internet of things (IoT) is an emerging wave of tech-
nological evolution that involves the communication among
a wide network and range of wireless devices in such areas
as industrial and home automation, financial enterprises, and
medical applications. Densely deployed smart devices are
expected to communicate securely and intelligently with min-
imal human intervention [2]. Given the privacy of the data,
secure authentication is especially important before establish-
ing any IoT device connection.

The traditional approach to wireless security is to use
digital key-based cryptographic techniques, which is com-
putationally demanding [3]. Since the core function of IoT
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devices is to ensure the secure exchange of data between
billions and even trillions of smart things, computational
complexity and latency are important considerations for IoT
nodes, which have limited computing power and battery life.
Recently, a lightweight security paradigm has been proposed
that addressed these issues at the physical layer [4], [5].

A considerable amount of research into the development
of algorithms for physical layer authentication has been done
over the past several years, along with the development of
the technologies necessary to implement these algorithms as
well as the supporting mathematical theory and analysis of
their performance [6]. For example, Xiao et. al. considered
the use of a generalized likelihood ratio test to authentica-
tion and to detect a spoofing attacker [7]. However, since
their approach requires that the communication channel of
the legitimate transmitter and the spoofer be known, their
approach is not feasible in a practical setting. Subsequently,
the authors proposed a logistic regression technique and were
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able to remove the assumption of a known channel distribu-
tion [8]-[10]. One of the difficult and important challenges
in physical layer authentication is how to deal with time
varying channels. In [11] a hypothesis test based approach
was proposed that considered the spatial variability of
propagation.

In order to characterize the properties of a channel, and
to allow one to distinguish between a legitimate chan-
nel and the channel of a spoofer, a number of different
channel features have been considered that include channel
phase information [5], [12], [13], received signal strength
(RSS) [14]-[16], channel state information [17]-[19], and
channel impulse response [20], [21]. Although there has
been considerable progress in the development of physical
layer authentication methods in time-varying environments,
not much work has been done in looking at approaches
that are based on deep learning. We have found, along with
others, that channel-based authentication methods suffer a
tremendous performance degradation in time-varying com-
munication scenarios. Therefore, learning-based authentica-
tion methods are essential for improving detection accuracy,
and are capable of quickly adapting in time-varying commu-
nication environments.

Since channel-based authentication methods use estimates
of specific channel characteristics, such as wireless sig-
nal variance, strength or even multidimensional features,
the effectiveness of these methods rely heavily on the training
dataset. In this paper, we propose to use an Adaptive Neural
Network (ANN) to detect changes in the channel character-
istics and to make a decision on whether or not an attack has
occurred. This ANN addresses the challenges of time-varying
environments for physical layer authentication. To study the
effectiveness of this approach, the system is prototyped on a
universal software radio peripheral (USRP) platform and its
performance is evaluated in multipath fading wireless envi-
ronments. Considering the various dynamic interferences,
we estimate the signal strength received at different times in
a conference room. To achieve this, we first collect the raw
measurements of the channel estimates through the USRP.
Then, the wavelet filter is used to eliminate high frequency
electromagnetic noise. The experiment results show that the
ANN approach has higher reliability and robustness in phys-
ical layer authentication, especially in time-varying commu-
nication environments.

The contributions of this paper are as follows.

o We use physical layer security to deal with spoofing
attacks in wireless networks. Since many existing solu-
tions to the problem do not address the requirement of
deep channel feature learning in a time-varying envi-
ronment, this paper addressed the design of a robust
adaptive authentication.

o A Data-Adaptive Matrix (DAM) is used to track time-
varying physical attributes that is analyzed with a
deep Convolutional Neural Network (CNN) for effec-
tive detection of rogue attackers. The proposed learn-
ing architecture can further search for deep nonlinear
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features and authenticate intruders in a holistic fusion
manner.

o The ANN is prototyped on a USRP platform and its
effectiveness is verified in an indoor environment. The
experimental results show that the ANN scheme can
cope better with current authentication challenges and is
superior to existing security authentication algorithms.
After training the deep learning-aided model, long-term
robustness and convergence tests are performed. Such an
analysis has not been available in previous work.

The rest of the paper is organized as follows. We begin
with an overview of related work in Section II. Section III
presents the system model. This is followed by the overall
architecture of the proposed ANN and a detailed design of
each component in Section IV. In Section V, we present the
experimental setup and performance evaluation. We discuss
possible avenues for future research in Section VI and con-
clude our work in Section VII.

Il. BACKGROUND

In the following, we briefly review related work begin-
ning with feature-based authentication strategies, followed by
learning-based physical layer authentication.

A. FEATURE-BASED AUTHENTICATION STRATEGIES

The success of physical layer authentication generally
depends on the feature representation that is used for the
channel characteristics. Feature selection and feature repre-
sentation is a critical component in physical layer security.
In [22], the channel impulse response is used for spoofer
detection, whereas the physical layer authentication proposed
in [23] uses the time-varying carrier frequency offsets as
a radiometric signature. Another well-known channel-based
authentication method uses power spectral density estimates
to compare subsequent messages [24]. Energy-based authen-
tication in a cellular IoT network is investigated in [25], which
utilizes the complex channel gain between the transmitter
and the anchor node as a random feature to achieve higher
detection accuracy. Extending this result, a multi-antenna
identity authentication scheme based on energy ratios was
proposed to detect pilot spoofing attacks in [26]. Sparse
signal processing and compressed sensing have also been
considered in the context of feature extraction as well as
physical layer authentication. For example, [27] and [28]
considered sparse signal processing from the perspective of
feature extraction and in [27] compressed sensing was used
for physical layer authentication, achieving a low cost and
low complexity with a high security policy. [28] proposed
an authentication strategy based on sparse representation
to enhance the characteristics of the channel information.
In [29]-[31], multi-dimensional characteristics of the radio
channel were considered. For example, physical layer authen-
tication in [29] exploits channel signal amplitude and path
delay to achieve fast authentication in a high mobility envi-
ronment. The results show that the inherent two-dimensional
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characteristics of channel variations have greater gains in
decision rules. Particularly, in [30], a two-dimensional mea-
sure space is utilized to preprocess the channel state informa-
tion. The Euclidean distance and Pearson correlation are used
to reduce the impact of channel estimation errors. However,
it is worth noting that the device mobility results in low detec-
tion accuracy. A similar idea of exploiting multi-dimensional
feature space was investigated in [31]. Compared to the one-
dimensional feature, the multi-dimensional space enhances
the reliability of the inherent link attributes. As a result,
the robustness of the physical layer authentication algorithm
is greatly improved. Channel characteristic engineering is
very important, highlighting the weakness of current authen-
tication schemes. For this reason, a lot of work has been done
on channel feature extraction to obtain a data representation
that supports physical layer authentication.

B. LEARNING-BASED PHYSICAL LAYER AUTHENTICATION
Learning-based approaches provide many advantages over
existing physical layer security and authentication [32], and
artificial intelligence algorithms have made their way into
intrusion detection and confrontation systems [33]. In many
cases, the powerful learning capabilities of intelligent models
can compensate for the imperfections in channel parameters
estimates. As a result, intelligent physical layer authentica-
tion for wireless communications has become a paradigm
shift, and machine learning becomes a natural choice with
minimal overall cost.

An authentication scheme based on a Gaussian mixture
model was proposed in [30] to solve the problem of chan-
nel data clustering. Mathematical models based on known
physical properties were established. In [34], a support vec-
tor machine-based approach was presented to reduce the
false alarm probability and in [35] a reinforcement learning-
based authentication algorithm was proposed that enabled
the receiver to choose the optimal test threshold. While the
analysis performed provided valuable insight, the proposed
algorithm required a lot of memory to store records. There
has been a lot of research works on deep learning, for
example, a Bi-layered Parallel Training Convolutional Neural
Networks (BPT-CNN) has been proposed in a distributed
computing environment [36], [37]. The work in [38] pro-
posed a deep learning scheme for intelligent video surveil-
lance systems with edge computing. Authors in [39], [40]
designed a new artificial intelligence enabled security authen-
tication by using channel reciprocity. To achieve security
enhancement, game theory has been used to analyze the
interactions between autonomous devices with their own
goals. For example, cognitive radio networks studied in [41]
formulate a zero-sum jamming game. The game theoretic
research of physical layer authentication introduced in [35],
[42] investigated the double-threat attacker, and a learning-
based algorithm was developed to approach to the Nash
equilibrium strategy. Inspired by the successful application
of learning algorithms in the field of physical layer security,
deep neural networks have also been applied to anti-spoofing
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countermeasures. In [43], a deep learning classifier was used
to authenticate the features produced by filter banks.

Although the above methods achieve improved perfor-
mance by exploring machine learning algorithms, they are
still shortcomings in overcoming communication overhead.
Most existing neural networks are data driven and hin-
dered by strong assumptions on the rogue spoofers and are
still limited when dealing with time-varying environments.
Hence, we focus on designing a new artificial intelligence-
assisted physical layer security scheme to achieve adaptive
authentication.

Ill. SYSTEM MODEL

The threat model studied in this paper is illustrated in Fig. 1,
where Alice transmits signals to Bob in the presence of an
active attacker, Eve, who intends to eavesdrop and imperson-
ate Alice, and then disrupt the communication to gain illegal
advantage. It is assumed that this wireless network has no
privacy. Therefore, Eve can eavesdrop on the message Alice
sent to Bob. Assume that the legitimate transceiver agrees to
a shared secret key authentication method that allows Bob
to identify Alice. Bob’s goal is then to verify the received
message.

The physical layer signatures of wireless networks have
three characteristics that make physical layer authentication
a difficult problem. The first is that the wireless network
environment changes dynamically over time. This means that
any authentication scheme must be able to adapt to time-
varying channel characteristics. Second, because the envi-
ronment is full of reflections and diffractions, the physical
attributes become uncorrelated in space, time and frequency.
Therefore, each location is unique in terms of channel
properties. Third, since communication transmission exists
in a random fading environment, imperfect estimation and
incomplete measurement of wireless signals are inevitable.
These lead to unpredictable variations in authentication
systems.

Physical layer authentication in our threat model consists
of two time slots, as described below.

A. THE FIRST TIME SLOT

Alice broadcasts legitimate signals to Bob, while Eve is
an eavesdropper. As the signal is received from Alice, Bob
estimates the physical attributes of the legitimate channel,

H(t) = [Ha (1), Han(t), -+, Han(D]" (1

where A indicates that the signal is from Alice and n repre-
sents the number of estimated vectors.

B. THE SECOND TIME SLOT

Given that Eve has eavesdropped on the signal sent by Alice
at time ¢, she may transmit spoofing messages to Bob by
masquerading Alice’s media access control (MAC) address.
Bob must authenticate the transmission that he receives at
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FIGURE 1. A threat model in the wireless network. In the first period, Alice sends useful signals to Bob, while Eve is an
eavesdropper. Then Eve is a malicious transmitter who masquerades as Alice to intercept communication between legitimate

nodes. Bob needs to authenticate the received message.

time ¢ + 1
Hi+1)=[H G+ 1), H@t+ 1, - H,t+ D", 2

and determine whether or not it is coming from Alice. The
receiver may then compare H (t 4 1) to H 4(¢), and if they are
close, then the message is likely to have come from Alice.
We may define Hy as the null hypothesis that the signal is
from Alice (i.e., the estimate is H4), and H; the hypothesis
that the transmitter is Eve and perform the hypothesis test:

Ho: [Ha(t) —H(t + D] <y 3
Hy: [Hp(t) -H@ + D] >y “

where y is the test threshold that controls the detection
accuracy.

The problem with this approach is that the underlying
physical channel is time-varying and imperfectly estimated.
Therefore, these static channel characteristics are limited in
their ability to correctly authenticate the transmission. It is
for this reason that the use of a data matrix that captures the
recent history of the channel is proposed. A sequence of data
matrices is then used to train a CNN to learn the physical
attributes of the channel, and then be used to authenticate the
transmission or to detect a spoofer. Since a USRP platform
is used in our experiments, we focus on the RSS as shown
in Fig. 2.

IV. INTELLIGENT AUTHENTICATION SYSTEM

The overall architecture of the ANN-based physical layer
authentication system is shown in Fig. 3. Since the physical
layer attribute measurements are imperfect estimates and are
noisy, the data to be authenticated is preprocessed with a
wavelet-based noise filter. After preprocessing the raw data,
a data-adaptive matrix is created that is used as the input
to the ANN. This matrix consists of a sequence of RSS
vectors that captures the time-varying properties of the chan-
nel. After training, the ANN is used to detect changes in
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FIGURE 2. RSS of the different transmitters for 50 milliseconds in the
conference room.

the channel that indicate the presence of an intruder. In the
following, we begin with a discussion of the data-adaptive
matrix.

A. DATA-ADAPTIVE FEATURE MATRIX

The traditional approach to authentication considers only
the stationary physical layer attributes, ignoring the time-
varying nature of the channel. Naturally, the performance of
a physical layer authentication system is largely affected by
the changing propagation and interference conditions. To deal
with this, attention is focussed on an innovative approach for
adaptively adjusting the authentication system as described
below.

Let the estimated channel vector at time ¢ be denoted
by Hy, = (h1,ho,..., h256)T, where h is a sample
of the pilot signal. Given r estimated channel vectors,
Hyp rHp -1, ..., Ha 1, these vectors are used to form a data-
adaptive matrix H. When a new estimated channel vector,
Hiest, 1s teceived it is appended to the end of the matrix
H . This augmented data-adaptive matrix is then input to the
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FIGURE 4. Construction and time-evolution of the data-adaptive
matrix H.

CNN where a decision is made as to whether or not Hieg
comes from Alice. If it does, then a new data-adaptive matrix
is formed by discarding Hy, 1. Otherwise, Hieg is discarded.
This process is shown in Fig. 4. Note that the adaptive matrix
is time-varying property and it can be used to model the
relationship between a series of continuous physical layer
estimates. The next section focuses on learning the deep char-
acteristics of physical layer attributes and detecting malicious
spoofers.

B. AUTO-EXTRACTOR/CLASSIFIER WITH A CNN
Inspired by the successes that CNNs have had in a wide vari-
ety of applications, here a CNN is used to learn the features
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TABLE 1. CNN structure.

Description Input Size Output Size

Convolution 1 16 x 16 x 8 8 x 8 x 32

Pooling 1 8 x 8 x 32 4 x4 x32

Convolution 2 4x4x32 2 x2x128
Pooling 1 2 x2x 128 1x1x128
Fully Connected 1x1x128 I1x1x1

of the legitimate channel and perform spoofer detection. The
CNN consists of two convolution layers and two pooling
layers that are used to learn the feature representation of
the channel, followed by a fully connected final layer that
performs the final classification. The data that is used as the
input to the CNN is the data-adaptive matrix H consisting
of eight rows of RSS data of length 256. Therefore, H is an
8 x 256 matrix that consists of eight consecutive RSS vectors.
However, the rows of the data matrix are first reshaped into
16 x 16 arrays, which results in a 16 x 16 x 8 tensor that is used
as the input to the CNN. The first convolution layer uses a
2 x 2 kernel with a stride of 2 and a ReLU activation function.
Four feature maps are produced, resulting in an output tensor
of size 8 x 8 x 32. This is followed by a max-pooling layer
with a kernel size of 2 x 2 and a stride of 2, which produces an
output tensor of size 4 x 4 x 32. The second convolution and
pooling layers have the same structure as the first, resulting in
output tensors of size 2 x 2 x 128 and 1 x 1 x 128, respectively.
The final layer is fully-connected with a single output using
a logistic activation function,

¢(a) = Trea )

The final output represents the probability that the new chan-
nel attribute belongs to Alice.

C. ANN TRAINING

To train the ANN we use the back propagation algorithm
using cross-entropy for the cost function. Since each convo-
lution layer has a 2 x 2 kernel and produces eight feature
maps, the total number of weights in the CNN is thirty-two
plus eight biases, for a total of 40. Therefore, the structure
is simple and does not require the storage of a large number
of parameters. However, since the raw data input vector is
only of length 256, then the number of parameters is rela-
tively large by comparison. Therefore, since there is sampling
noise and uncertainties in the estimated channel attributes,
it is possible that there will be overfitting. To reduce the
possibility of overfitting and to prevent stagnation in the back
propagation algorithm, dropout is used during training [44].
Dropout is a technique that randomly removes a unit from the
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Algorithm 1 ANN-Based Authentication Algorithm

Require: step size N, and all connection weights;
Repeat (for each episode)
obtain the estimated channel vector;
construct the data-adaptive matrix H;
train ANN model using adaptive matrix;
for new physical attributes do
obtain new test dataset based on H ;o5 ;
get the predictive value with trained ANN;
if Hy = 1 then
accept this message;
update H (k) <— Ha(k + 1);
else
keep H 4(k);
terminate the connection;
14: end if
15: end for
16: End Repeat

— = =
NP2 YR RN ELN

—_
(98]

network during one pass of the back propagation algorithm by
setting its weights equal to zero. The probability that a neuron
is removed is defined by a hyperparameter p. Dropout has
the effect of producing an ensemble of ‘“‘thinned”” networks
that, in turn, reduces overfitting. The effect of predicting the
average of all these thinned networks can be approximated
by simply using a single unthinned network with the weights
multiplied by (1 — p), the probability that the neuron is not
dropped. The optimal dropout rate for the weights at the input
layer is typically close to zero and, in our experiments, it was
found that the best dropout rate was p = 0 for all layers, indi-
cating that overfitting is not a significant problem. Once the
CNN has been trained, it is used to make a decision between
a legitimate transmitter and a rogue attacker. Pseudo-code
for the ANN-based authentication approach is illustrated in
Algorithm 1.

In the following section, we describe the experimental set-
up and performance of our system.

V. EXPERIMENTS AND DISCUSSION

In this section, the prototype implementation of the ANN is
presented. Then, the experimental setup and the performance
of the proposed approach to authentication is given. For
testing, raw data is input to the ANN and the probability that
the received channel data belongs to the legitimate transmitter
Alice is determined.

A. IMPLEMENTATION

To evaluate the performance of the adaptive authentication
system, USRP devices were used in a 6mx4m conference
room. A single antenna USRP device was used as the trans-
mitter (TX) to send wireless signals to a USRP receiver (RX).
Fig. 5 and Fig. 6 show the conference room and the layout
for data collection. To collect data packets, single antenna
USRP transceivers were used to operate using the IEEE
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(b) Conference room: Eve-to-Bob

FIGURE 5. Experimental areas.
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FIGURE 6. Floor plan of the conference room.

802.11a/g standard, working at 2.4 GHz with a bandwidth
of 20 MHz. Since there is interference within the conference
room, the transmitter Bob and receiver Alice were placed a
distance of one meter away from each other and the distance
between Eve and Bob was set to 2m. A computer was used to
collect and store the physical layer estimates. For training and
testing, 2000 sets of data for each TX-RX combination was
collected. More specifically, two different channel classes
were in the ANN dataset, one consisting of 2000 records
for the channel from Alice to Bob and the other consist-
ing of 2000 records for the channel from Eve to Bob.
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FIGURE 7. (a) The average of the RSS data vectors H, ; for Alice and Eve and (b) The average of the adaptive data matrices

H when H., comes from Alice and when it comes from Eve.

Each channel record contained 256 samples, so in total there
were 4000 x 256 RSS data samples. For training, 1000 chan-
nel records are selected randomly for each channel, and the
remaining were used for testing as shown in the table below.

B. PERFORMANCE EVALUATION

In this section, simulation results are presented that show
the performance of the ANN authentication approach. First,
the ANN is implemented using the adaptive data matrix
and CNN for feature representation and classification. Then,
the convergence of the back propagation algorithm for ANN
training is presented, and the authentication detection rate
is given. We set the threshold y = 50%. The performance
metrics used to evaluate the spoofing detection are:

o Loss Value: The error between the predicted value and
the true value.

o Detection Rate: The probability that a spoofer is
detected.

Then, the performance of the ANN approach is compared to
other authentication methods. Finally, the ANN approach is
compared to key-based cryptographic methods for authenti-
cation in terms of complexity, latency and other properties of
importance.

1) PERFORMANCE OF ANN

Given 1000 RSS data records from two different channels,
one for Alice and one for Eve, the effectiveness of using the
average of the RSS vectors compared to the data adaptive
matrix approach for distinguishing between the two channels
is shown in Fig. 7. Specifically, shown in Fig. 7(a) are the
normalized average RSS amplitudes for each of the 1000 data
records. It is clear that there are no obvious predictable
differences between the average RSS amplitudes for Alice’s
channel and Eve’s channel. Fig. 7(b), on the other hand,
shows the average of the normalized RSS amplitude of the
data-adaptive matrices H when Hy.;; comes from Alice and
when it comes from Eve. Unlike the case for the normalized
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FIGURE 8. The loss function during training of the CNN that is used for
channel classification.

average RSS data matrix H, there is now an obvious
detectable difference between the two channels. Therefore,
it is clear that the data-adaptive matrix is more effective in
capturing the differences between the two channels. Although
the data adaptive channel matrix has improved the difference
between the legitimate and illegitimate channels, in a real
communication environment the RSS vectors are not neces-
sarily the most effective features to use to detect a channel
transmission from a spoofer. Therefore, we consider using a
deep CNN to learn the features in the physical layer attributes
that are best for authentication.

Fig. 8 shows the cross-entropy loss function versus the
iteration index during training of the ANN using the back
propagation algorithm for SNRs of 1 dB, 5 dB, and 8 dB.
Note that the loss is close to zero after fewer than ten itera-
tions for all SNRs, but the convergence is faster for higher
SNRs. The reason for this, obviously, is that the channel
data estimated using the USRP platform is more accurate
when the SNR is high, which implies that the quality of
wireless communication environment determines the train-
ing accuracy of the intelligent authentication model. In the
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TABLE 2. Splitting of the dataset.

Subsets | Training Testing
Alice 1000 x 256 1000 x 256
Eve 1000 x 256 1000 x 256

TABLE 3. The performance comparison between the proposed intelligent
authentication scheme and the existing algorithms.

Detection Rate (%)
SNR
SVM GMM CNN ANN
4dB 91.95 95.01 89.16 95.89
6dB 97.50 95.99 97.99 100.00
8dB 98.01 96.56 98.96 100.00
10dB 98.88 98.01 99.75 100.00

wireless communication environment, when using the USRP
transceiver to verify the effectiveness of the authentication
algorithm, there are many uncontrollable interference factors,
such as channel estimation error, time-varying environments
and surrounding wireless signal interference. Given the per-
formance on the training data to discriminate between two
channels as illustrated in Fig. 8, with the loss function almost
zero, it is apparent that a CNN is able to effectively extract the
relevant features and perform physical layer authentication.
However, in order to verify this, it is necessary to look at the
detection rate on real data, and then compare the performance
of ANN with other approaches.

Given a data set of 2000 RSS vectors, this data set is
split into a training set and a test set as shown in Table 2.
After training, the features that are learned are used to detect
channel changes in the test set, which indicate the presence of
a spoofer. Shown in Table 4 is the detection rate (in percent)
of spoofer attacks for channel SNRs that vary from 4 dB
to 10 dB. Note that the detection rate is 100% for SNRs
that are 6 dB and above, and for 4 dB it is 95.89%. For
SNRs that are 4 dB and below, the performance deteriorates
significantly. However, it is important to put these numbers
in the context of how state-of-the-art spoofing detection
approaches perform. The authentication accuracy of three
different machine learning methods are shown in Table 4.
Note that ANN outperforms the GMM approach [30] when
the SNR is 4 dB or higher. Finally, to see the effectiveness
of the data adaptive matrix, also shown in Table 4 are the
detection rates using a CNN without the data adaptive matrix,
i.e., using the average RSS vectors. What we observe is that
there is an improvement of between 4% and 6% using the
data adaptive matrix. Thus, we see that the ANN method
obtains better spoofing detection performance compared with
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FIGURE 9. Detection performance comparison results, SNR= 8dB.

GMM and SVM and better than using CNN alone without the
data adaptive matrix. This is because by utilizing an adap-
tive feature matrix, the proposed ANN scheme can further
explore time-varying physical attributes, i.e., the adaptive
feature matrix introduced in Section IV-A. More importantly,
compared with other machine learning approaches, ANN is
an end-to-end system that can learn deeper channel character-
istics between different channels and detect spoofer simulta-
neously. However, existing authentication methods typically
use two separate processes, namely, first extracting channel
features and then classifying different transmitters using a
learning model to detect spoofing attackers. Since the task
is to prototype ANN on a USRP platform and verify the
effectiveness of the algorithm in an indoor conference room,
the surrounding interference noise has a greater impact than
the ideal data simulation. In this case, if some valid channel
characteristic information is lost during the channel estima-
tion process, it is irreversible if we still intend to use these
missing parts to train the authentication model. To solve this
problem, the ANN scheme integrates these two processes to
ensure the fusion of feature extraction and classification.

Fig. 9 compares what happens when the intelligent authen-
tication process uses both DAM and CNN to the case when
the CNN is used with the RSS vectors. What is shown is that
the detection performance of the ANN that uses DAM and
CNN is better than the CNN method, indicating that the ANN
can recalibrate the time-varying physical attributes. Another
interesting observation is that ANN-based method performs
well in detecting spoofing attackers, even if the performance
is sensitive to our real experimental environment. It is also
shown in Fig. 8 that the DAM-based intelligent ANN algo-
rithm has the best authentication performance. In other words,
deep learning has a better application prospect in extracting
physical layer attributes.

Fig. 10 shows the loss function versus the iteration index
in two different cases, namely the line-of-sight (LOS) and
non-line-of-sight (NLOS) cases. It can be seen that the ANN
authenticator has better training performance in the LOS
case. This, however, is as expected since ANN relies only
on correlations between different reconstruction matrices.
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FIGURE 10. Training performance of ANN in LOS and NLOS scenarios.

TABLE 4. Comparison results.

Authentication Method
Parameter ANN Key-based
Key management and transmission | No Yes
Manual feature selection No Yes
Privacy amplification No Yes
Dynamic Yes No
Latency Low High
Complexity for n times of authentica- | O(1) O(n)
tion

In addition, interference from other WiFi signals could lead
to performance degradation. In fact, although the proposed
ANN authentication scheme is verified in a complex time-
varying conference room, the detection rate is still accurate.

2) COMPLEXITY ANALYSIS

Shown in Table 4 is a comparison of ANN-based authenti-
cation with traditional key-based cryptography approaches.
As seen in the table, ANN does not require key transmission,
which avoids problems with possible key leakage in wireless
networks. In addition, the ANN method enables adaptive
training and authentication in the time domain. More impor-
tantly, physical layer security authentication does not depend
on computational complexity and can accurately quantify
security. By contrast, the key-based cryptography approach
requires more time and complexity, which is problematic
for sensor devices. Therefore, the ANN-based authenticator
achieves fast access authentication and security performance
improvement in wireless networks.

VI. FUTURE RESEARCH DIRECTIONS
A number of physical layer authentication mechanisms for
wireless communication systems were presented in Section II
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and in Section V the advantages of learning-based authentica-
tion scheme were presented. A promising idea is to leverage
artificial intelligence algorithms to intelligently model the
authentication process to improve detection accuracy. Com-
mon to all methods that rely on simple static characteris-
tics is the challenge of time-varying communication links.
Especially in the scenario of using USRP, channel variation
propagation and imperfect estimation are important factors in
the design of physical layer authentication schemes.
Although ANN uses the USRP platform already deployed
in a conference room for spoofing authentication, there are
still some challenges that need to be addressed. For example,
our system has not yet been able to authenticate devices
in moving scenarios. Authenticating moving devices has
always been a more challenging issue than authenticating
static devices. Besides, the USRP devices deployed in the
experiment are single-antenna, we envision a multi-antenna
intelligent authentication model for future research.

VIi. CONCLUSION

This paper presents ANN, an Adaptive-Convolutional Neural
Network for physical layer authentication. Since static phys-
ical characteristics are not sufficient in a time-varying com-
munication environment, a data-adaptive matrix is used for
signal preprocessing. To ensure reliable performance under
imperfect channel estimation, an intelligent authentication
algorithm named “ANN” is proposed that can establish an
automatic interaction between deep learning representation
and spoofing authentication. The ANN scheme was evaluated
in a conference room environment and the convergence and
detection accuracy were demonstrated over time. ANN is a
robust authentication approach that adapts to complex time-
varying environments, and is superior to other learning-based
methods. With these advantages, we believe that ANN is
promising in physical layer authentication and other related
applications.
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