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ABSTRACT Accelerated gradient methods have the potential of achieving optimal convergence rates and
have successfully been used in many practical applications. Despite this fact, the rationale underlying these
accelerated methods remain elusive. In this work, we study gradient-based accelerated optimization methods
obtained by directly discretizing a second-order ordinary differential equation (ODE) related to the Bregman
Lagrangian.We show that for sufficiently smooth objectives, the acceleration can be achieved by discretizing
the proposed ODE using s-stage q-order implicit Runge-Kutta integrators. In particular, we prove that under
the assumption of convexity and sufficient smoothness, the sequence of iteration generated by the proposed
accelerated method stably converges to the optimal solution at a rate of O((1− C̃p,q ·

µ
L )

NN−p), where p ≥ 2
is the parameter in the second-order ODE and C̃p,q is a constant depending on p and q. Several numerical
experiments are given to verify the convergence results.

INDEX TERMS Implicit Runge-Kutta methods, ordinary differential equations, unconstrained convex
optimization.

I. INTRODUCTION
Numerous problems in machine learning [1], system identi-
fication [2] and optimal control [3]–[5] involves minimizing
convex and strongly convex functions. Methods for solving
the minimization problems have therefore been extensively
developed (cf. [6]). The gradient descent (GD) is one of
these methods and it only use gradient information in the
optimization procedure so that very large-scale problems can
be touched. Currently, gradient-based optimization methods
have become the focus of intense research efforts. A central
tension in gradient-based optimization methods is the con-
vergence rate. Optimization methods with rapid convergence
rates are more popular in practical implementations due to
their reasonable computing costs.

Acceleration optimization methods have the potential of
achieving faster convergence rates than GD. The heavy-ball
(HB) method is an earlier class of acceleration algorithms,
which attains the fast convergence rate by incorporating
a momentum term into the gradient step [7]. However,
it is shown that the HB method hardly ensures global
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acceleration [7], [8]. In 1983, Nesterov introduced acceler-
ated gradient descent methods that have a global conver-
gence rate [9], [10], showing that an optimal convergence
rate is reachable under an oracle model of optimization com-
plexity. From the start, accelerated methods garnered wide
attention, which led to many different accelerated methods,
such as composite optimization [11], [12], accelerated coor-
dinate descent methods [13], [14] and stochastic optimization
[15], [16], to name only a few. More recently, authors
of [17] further extended Nesterov’s accelerated gradient
descent (NAG) to global convex and quasi-strongly convex
objectives and obtained linear convergence rates.

The progress of acceleration methods motivates many
researchers to explore the rationale underlying the phe-
nomenon of acceleration. Nesterov’s original derivation
heavily relies on case-specific algebra [18], which is unin-
tuitive and does not easily carry over to general settings.
In recent years, a promising direction is to look at acceleration
from a continuous-time perspective. Su et al. showed in [19]
that the continuous limit of NAG method is a second-order
ordinary differential equation (ODE) describing a physical
system with vanishing friction. With this ODE and the sta-
bility theory of dynamic system at hand, they revalidate

28624 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0745-4032
https://orcid.org/0000-0002-3876-583X
https://orcid.org/0000-0001-6880-6244


R. Chen, X. Li: ImRK Methods for Accelerated Unconstrained Convex Optimization

the convergence rate of NAG via the discrete version of a
Lyapunov function. Following the limiting arguments, refer-
ence [20] derived high-resolution ODEs for the HB method
and the NAG method respectively and found the difference
of the dynamics corresponding to the two methods. It is
also showed that the high-resolution ODEs combing with
a general Lyapunov function framework enable the analy-
sis of accelerated convergence rates of NAG. Furthermore,
reference [21] explored several discretization schemes for
ODEs and found the superiority of the symplectic scheme
combing with the high-resolution ODEs in the accelerated
rate. Notably, the limit arguments typically require a pri-
ori knowledge of existing discrete-time accelerated gradient
methods to derive ODEs. Alternatively, Wibisono et al. [22]
took a variational point of view for the derivation of ODEs.
The key point is to use a Lagrangian functional called the
Bregman Lagrangian to derive the Euler-Lagrange equations
and then elaborately discrete the ODE to generate accelerated
methods. It has been shown that the Bregman Lagrangian
framework permits a systematic understanding of the accel-
eration phenomenon among a family of discrete-time
accelerated algorithms. Other works in explaining the accel-
eration phenomenon include unification of mirror and gra-
dient step [23], explicit Runge-Kutta (ExRK) discretization
[24]–[26] and the Powerball method [27].

In this paper, we combine the Bregman Lagrangian frame-
workwith implicit Runge-Kutta (ImRK) integrator for further
analyzing acceleration methods and their connection with
continuous dynamics. More specifically, we first leverage the
Bregman Lagrangian defined in [22] to derive a second-order
ODE without resorting to known accelerated algorithms.
Then, we show that the sequence of iterations generated
by applying an ImRK integrator to the second-order ODE
converges to the optimal solution at an enhanced conver-
gence rate. Additionally, we also theoretically prove the sta-
ble convergence of the discrete-time algorithm via an newly
designed Lyapunov function. Finally, the effectiveness of
the proposed architecture is demonstrated on several convex
objectives and its performance is compared with other accel-
eration methods.

The remainder of the paper is organized as follows.
In Section II, we formulate the problem of interest and make
some mathematical preliminary on the Bregman Largangian
method, the Implicit Runge-Kutta methods and elementary
differentials. In Section III, the convergence of the proposed
accelerated algorithm is analyzed. In Section IV, we provide
some lemmas for our main results. In Section V, numerical
results of two convex optimization problems are presented
and compared with the performance of gradient descent
(GD), NAG and ExRK at different stages. In Section VI,
we summarize the work of this paper and discuss future work.

II. PROBLEM FORMULATION AND PRELIMINARY
Consider the following unconstrained optimization problem:

min
x∈Rd

f (x), (1)

where the function f ∈ Rd
→ R is sufficiently smooth

and convex. We assume that the optimization problem has
an optimal solution, denoted by x∗ ∈ Rd . The aim of this
paper is to construct an iterate sequence {xk}∞k=1 such that it
converges to x∗. There are numerous strategies for construct-
ing such a sequence. In this paper, we combine the Bregman
Lagrangian framework with implicit Runge-Kutta (ImRK)
integrator to generate it. For this, we briefly overview the
Bregman Lagrangian method as well as the ImRK integrator
in the following.

A. THE BREGMAN LAGRANGIAN
Under the ideal scaling assumption, the Bregman Lagrangian
can define a variational problem, the solutions to which min-
imize the objective function f in (1) at an exponential rate.
In [22], the Bregman Lagrangian is defined as the following
weighted Lagrangian of the mechanical system

L (v, x, t) = eαt+γt
(
Dd (x + e−αt v, x)− eβt f (x)

)
, (2)

where the functions αt , βt , γt : T → R are arbitrary smooth
functions with respect to time, T ⊆ R is a time interval.
Dd (y, x) = d(y) − d(x) − 〈∇d(x), y − x〉 is the Bregman
divergence of distance function d(·) : Rd

→ R. In this
paper, we consider the Euclidean setting, i.e., d(x) = 1

2‖x‖
2,

in which case the Bregman divergence reduce to
Dd (y, x) = 1

2‖y− x‖
2.

According to the calculation of variations, the necessary
condition for minimizing the function f is that x is the solu-
tion of the following Euler-Lagrange equation,

d
dt

{
∂L

∂v
(ẋ, x, t)

}
=
∂L

∂x

(
ẋ, x, t

)
. (3)

For general functions αt , βt , γt , (3) is actually a second-order
differential equation given by

ẍ +
(
γ̇t − α̇t

)
ẋ + e2αt+βt∇f (x) = 0. (4)

When the ideal conditions β̇t ≤ eαt and γ̇t = eαt is reachable,
and we choose the parameters αt = log2 p − log(t + 1),
βt = p log(t + 1) + log c and γt =2 p log(t + 1), where
p, c > 0 are constants, then (4) becomes

ẍ +
2p+ 1
t + 1

ẋ + 4cp2(t + 1)p−2∇f (x) = 0. (5)

Moreover, let y = [v; x] ∈ R2d , v = ẋ, then (5) can be written
as a dynamical system as follows,

ẏ =
[
−
2p+ 1
t + 1

v− p2(t + 1)p−2∇f (x); v
]
:= F(y), (6)

where c = 1/4. Denote by Fv = −
2p+1
t+1 v−p

2(t+1)p−2∇f (x)
and Fx = v the component of F . We have F = [Fv,Fx].

B. IMPLICIT RUNGE-KUTTA INTEGRATORS
Runge-Kutta methods offer a powerful class of numeri-
cal integrators, encompassing several basic discretization
schemes. In this subsection, we briefly recap implicit
Runge-Kutta (ImRK) integrators.
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Definition 1: Given a dynamical system ẏ = F(y).
Let y0 := [0; x0] be the current point and h be the step size.
An s-stage Runge-Kutta method generates the next step via
the updating procedure,

zi = y0 + h
s∑
j=1

aijF
(
zj
)
, i = 1, 2, . . . , s, (7)

8h(y0) = y0 + h
s∑
i=1

biF
(
zi
)
, (8)

where x0 is an arbitrary point in Rd , 0 ∈ Rd with all compo-
nents being 0, aij and bi are suitable coefficients defined by
the integrator.8h(y0) is the estimation of the state y after time
step size h, while zi, i = 1, . . . , s is a few neighboring points
where the value of F(zi) is evaluated.

In general, by combining the gradients of multiple evalu-
ation points and matching the Taylor expansion coefficients,
the higher accuracy can be obtained. Based on this, we first
introduce the definition of integrator order.
Definition 2: ( [28]) Let ϕh(y0) be the true solution to the

ODEs (6) with initial condition y0. We say that an integrator
8h(y0) has order q if its discretization error shrinks as∥∥8h(y0)− ϕh(y0)

∥∥ = O
(
hq+1

)
, as h→ 0. (9)

Definition 3: ( [29]) The function R(z) is called the sta-
bility function of the method. It can be interpreted as the
numerical solution after one step for the famous Dahlquist
test equation,

u̇ = λu, u0 = 1, w = hλ. (10)

The set

S = {w ∈ C, |R(w)| ≤ 1}, (11)

is called the stability domain of the method.
Proposition 4: ( [29]) The s-stage implicit Runge-Kutta

method (7)-(8) applied to u̇ = λu yields 8h(y0) = R(hλ)y0
with

R(w) = 1+ wbT (I − wA)−11, (12)

where bT = (b1, . . . , bs), A = (aij)si,j=1 and 1 = (1, . . . , 1)T .
Definition 5: ( [30], [31]) A method is called A-stable,

if its stability domain satisfies

S ⊃ C−1 = {w, Re w ≤ 0}. (13)

Lemma 6: ( [29]) A s-stage Runge-Kutta method (7)-(8) is
A-stable if and only if R(z) is analytic on C−1, and

|R(iz)| < 1, ∀z ∈ R, (14)

where i is the imaginary unit.
Throughout this paper, wemake the following assumption for
the implicit Runge-Kutta method.
Assumption 7: The implicit Runge-Kutta method (7)-(8)

is A-stable.

C. ELEMENTARY DIFFERENTIALS
In this subsection, we recall some facts on elementary differ-
entials. Unless otherwise specified, all the results presented in
this subsection have been proved in [32]. Given a dynamical
system ẏ = F(y), we want to find a convenient way to express
and compute its higher order derivatives. For this, let τ denote
a tree structure, and |τ | is the number of nodes in τ .
Definition 8: The set of (rooted) trees τ is recursively

defined as follows: a) the graph •with only one vertex (called
the root) belongs to τ ; b) if τ1, . . . , τm ∈ τ , then the graph
obtained by grafting the roots of τ1, . . . , τm to a new vertex
also belongs to τ . It is denoted by

τ = [τ1, . . . , τm], (15)

and the new vertex is the root of τ .
Definition 9: For a tree τ , the elementary differential is

a mapping F(τ ) : Rd
→ Rd , defined recursively by

F(•)(y) = F(y) and

F(τ )(y) = ∇mF(y)
[
F(τ1)(y), ...,F(τm)(y)

]
, (16)

for τ = [τ1, . . . , τm] and
∑m

i=1 |τi| = |τ | − 1.
With these definitions, the following results hold and its proof
is obtained by recursively applying the product rule [32].
Lemma 10: The q-th order derivative of the exact solution

to ẏ = F(y) is given by

y(q)(t0) = F (q−1)(y0) =
∑
|τ |=q

α(τ )F(τ )(y0), (17)

where y(t0) = y0, α(τ ) is a positive integer determined by τ
and the number of occurrences of the tree pattern τ .
The expression for dqF(zi)

dhq can be calculated in the same way
as in Lemma 10 by the Leibniz rule.
Lemma 11: For a Runge-Kutta method defined in Defini-

tion 1, if F is q-th differentiable, then

dq8h(y0)
dhq

=

∑
i≤s

bi

[
h
dqF(zi)
dhq

+ q
dq−1F(zi)

dhq

]
, (18)

where dqF(zi)
dhq has the same structure as F (q)(y) in Lemma 10,

except that we need to replace all F in the expression by dzi
dh

and all ∇nF(y) by ∇nF(zi).

III. CONVERGENCE ANALYSIS
In this section, we combine the Bregman Lagrangian frame-
work with implicit Runge-Kutta (ImRK) integrator to derive
our accelerated optimization algorithm and then analyze the
convergence of the obtained optimization algorithm. Refer-
ence [22] pointed out that simple discretization (such as Euler
method) applied to ODEs is difficult to guarantee a stable
discrete-time algorithm . Based on this, we propose to use the
implicit Runge-Kutta integrators to discrete the second-order
ODE defined in (6) and then design the stable discrete-time
algorithm. Our designed optimization algorithm is summa-
rized in Algorithm 1.

In the following, we first give the definition of the stable
discrete-time algorithm.
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Algorithm 1 Computing of {xk}
1: Constants L is the same as in Assumption 13
2: Set the initial state y0 = [0; x0] ∈ R2d with arbitrary

initial time t0 ≥ 0 and E0 := E (y0)

3: Choosing step size h = 1
4

( E 2
0

Cp(q+1)2
)1/q 1

(E0+L+1)1+2/q

where Cp = cp1(p+ 1)! and c1 > 1 is a constant
4: xk ← s-stage q-order implicit Runge-Kutta integrator

(F, y0, k, h), where F is defined in equation (6)
5: Return xk

Definition 12: Assume that a discrete-time algorithm is
obtained by applying the A-stable discrete scheme (7)-(8) to
the ODE (6). We call the discrete-time algorithm stable, if the
discrete-time algorithm retains the convergence rate of the
underlying ODE (6).
In order to take advantage of the order conditions of the
implicit Runge-Kutta integrators, we make the following
assumptions about the boundedness of higher-order deriva-
tives of the function f .
Assumption 13: Based on (6), we assume F ⊆ Ck,q

L (Rd )
with k, q ≥ p, which means that for any f ∈ F , it is k
times continuous differentiable on Rd and its q-th derivative
is Lipschitz continuous on Rd with a constant L ≥ 1,∥∥f (q)(x)− f (q)(y)∥∥ ≤ L‖x − y‖,
for all x, y ∈ Rd . Moreover, assume that F is compact, then
for i = 1, . . . , q+ 1, ∥∥f (i)(x)∥∥ ≤ L. (19)

Assumption 14: Function f (x) is µ-strongly convex, i.e.,

f (y) ≥ f (x)+ 〈∇f (x), y− x〉 +
µ

2
‖y− x‖2, (20)

for all x, y ∈ Rd .
Lemma 15: Let f (x) be twice differentiable on Rd and

x∗ := argminx f (x). Then

1
4
λ1‖x − x∗‖2 ≤ f (x)− f (x∗), (21)

where λ1 is the smallest eigenvalue of matrix f (2)(x∗).
Proof: See the proof of Theorem 1.2.3 in [10].

Remark 16: Based on Assumption 14 and Lemma 15,
one can prove that the second derivative of f satisfies
f (2)(x) ≥ `Id , where Id is the identity matrix and
` = min{λ1, µ, 1}.
Lyapunov functions play a central role in the conver-

gence analysis of ODEs in both continuous time and discrete
time. For the nonlinear dynamical system (6), we define the
Lyapunov function as follows,

E (y(t)) = E
(
[v; x], t

)
= 2(t + 1)p

(
f (x)− f (x∗)

)
+

(t + 1)2

4p2
‖v‖2

+ 3

∥∥∥∥x + t + 1
2p

v− x∗
∥∥∥∥2. (22)

Remark 17: The Lyapunov function is different from ones
in [25] and [22] in terms of the coefficients and the quadratic
term. The difference are the key to prove the improved con-
vergence of the direct discrete optimization algorithm pro-
posed in this paper.

Now, we focus on obtaining the stability of the continuous
system (6). We start by introducing some notations. Given
a vector y0 = [0; x0] ∈ R2d with arbitrary initial time
t0 ≥ 0, we define the neighborhood of y0 as Uδ(y0) := {y =
[v; x]| ‖x − x0‖ ≤ δ, ‖v − v0‖ ≤ δ} and time interval
|t − t0| ≤ σ where 0 < σ < 1, t0 ≥ 0 and δ := 1/(t0 + 1).
Let E (y0) := E0, without loss of generality, assume that
E0 ≥ 1. The stability of the continuous system is justified
by the following Lemma.
Lemma 18: Consider y = [v; x] ∈ R2d as a trajectory of

the dynamical system (6). Let the Lyapunov function E be
defined by (22). Then, for any trajectory y, the time derivative
Ė (y) is non-positive and bounded above, more precisely,

Ė (y) ≤ −
p

C ′(t + 1)
E (y), (23)

where C ′ > 0 is a constant.
Proof: According to the dynamical system (6), we can

write

ẋ = v, ẍ = v̇ = −
2p+ 1
t + 1

v− p2(t + 1)p−2∇f (x). (24)

Then, it can be proved that

Ė =
(t + 1)2

4p2
〈
2v, v̇

〉
+

2(t + 1)
4p2

〈
v, v

〉
+ 2(t + 1)p

〈
∇f (x), ẋ

〉
+ 2p(t + 1)p−1

(
f (x)− f (x∗)

)
+ 2 · 3

〈
x +

t + 1
2p

v− x∗, ẋ +
ẋ
2p
+
t + 1
2p

ẍ
〉

=
2(t + 1)2

4p2
〈
ẋ, ẍ +

2p+ 1
(t + 1)

ẋ
〉
−

2(t + 1)
4p2

〈
ẋ, 2pẋ

〉
+ 2(t + 1)p

〈
∇f (x), ẋ

〉
+ 2 p(t + 1)p−1

(
f (x)− f (x∗)

)
+ 2

3(t + 1)
2p

〈
x +

t + 1
2p

ẋ − x∗, ẍ +
2p+ 1
(t + 1)

ẋ
〉

=
(t + 1)2

2p2
〈
ẋ, −p2(t + 1)p−2∇f (x)

〉
−

(t + 1)
p
‖ẋ‖2

+ 2(t + 1)p
〈
∇f (x), ẋ

〉
+ 2 p(t + 1)p−1

(
f (x)− f (x∗)

)
−

3(t + 1)
p

〈
x +

t + 1
2p

ẋ − x∗, p2(t + 1)p−2∇f (x)
〉
.

By introducing the term p`
16(t+1)

∥∥x + t+1
2p ẋ − x

∗
∥∥2, we have

Ė = −
(t + 1)p

2

〈
ẋ, ∇f (x)

〉
−

(t + 1)
p
‖ẋ‖2

+ 2(t + 1)p
〈
∇f (x), ẋ

〉
+ 2 p(t + 1)p−1

(
f (x)− f (x∗)

)
−

3(t + 1)2

2 p2
〈
ẋ, p2(t + 1)p−2∇f (x)

〉
−

3(t+1)
p

〈
x−x∗,
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p2(t + 1)p−2∇f (x)
〉
−

p`
16(t + 1)

∥∥∥∥x+ t + 1
2p

ẋ − x∗
∥∥∥∥2

+
p`

16(t + 1)

∥∥∥∥x + t + 1
2p

ẋ − x∗
∥∥∥∥2 + 1

2
p(t + 1)p−1

(
f (x)

− f (x∗)
)
−

1
2
p(t + 1)p−1

(
f (x)− f (x∗)

)
.

Following the elementary inequality (a + b)2 ≤ 2 a2 + 2 b2

with any real numbers a and b, one can prove

Ė ≤ −
(t + 1)p

2

〈
ẋ, ∇f (x)

〉
−

3
2
(t + 1)p

〈
ẋ, ∇f (x)

〉
+ 2(t + 1)p

〈
∇f (x), ẋ

〉
−

(t + 1)
p
‖ẋ‖2 −

1
2
p(t + 1)p−1

·
(
f (x)− f (x∗)

)
−

p`
16(t + 1)

∥∥∥∥x + t + 1
2p

ẋ − x∗
∥∥∥∥2

+ 2 p(t + 1)p−1
(
f (x)− f (x∗)

)
− 3 p(t + 1)p−1

〈
x − x∗,

∇f (x)
〉
+

1
2
p(t + 1)p−1

(
f (x)− f (x∗)

)
+

2p`
16(t + 1)

‖x − x∗‖2 +
2p`

16(t + 1)
·
(t + 1)2

4p2
‖ẋ‖2

= −
(t + 1)
p
‖ẋ‖2 +

(t + 1)`
32 p

‖ẋ‖2 −
1
2
p(t + 1)p−1

·
(
f (x)− f (x∗)

)
−

p`
16(t + 1)

∥∥∥∥x + t + 1
2p

ẋ − x∗
∥∥∥∥2

− 3 p(t + 1)p−1
〈
x − x∗, ∇f (x)

〉
+

5
2
p(t + 1)p−1(

f (x)− f (x∗)
)
+

2 p`
16(t + 1)

‖x − x∗
∥∥2.

From Assumption 15, we have `
16(t+1)‖x − x∗‖2 ≤

1
4 (f (x)− f (x

∗)) ≤ 1
4 (t + 1)p(f (x)− f (x∗)) and then

Ė ≤ −
t + 1
2p
‖ẋ‖2 −

1
2
p(t + 1)p−1

(
f (x)− f (x∗)

)
−

p`
16(t + 1)

∥∥∥∥x+ t + 1
2p

ẋ−x∗
∥∥∥∥2−3p(t + 1)p−1

〈
x−x∗,

∇f (x)
〉
+

5
2
p(t + 1)p−1

(
f (x)− f (x∗)

)
+

1
2
p(t + 1)p−1

(
f (x)− f (x∗)

)
= −

t + 1
2p
‖ẋ‖2 −

1
2
p(t + 1)p−1

(
f (x)− f (x∗)

)
−

p`
16(t + 1)

∥∥∥∥x+ t + 1
2p

ẋ−x∗
∥∥∥∥2−3p(t + 1)p−1

〈
x−x∗,

∇f (x)
〉
+ 3p(t + 1)p−1

(
f (x)− f (x∗)

)
. (25)

From the convexity of f , then

Ė ≤ −
t + 1
2p
‖ẋ‖2 −

1
2
p(t + 1)p−1

(
f (x)− f (x∗)

)
−

p`
16(t + 1)

∥∥∥∥x + t + 1
2p

ẋ − x∗
∥∥∥∥2

≤ −
(t + 1)`
192 p

‖ẋ‖2 −
`

24
p(t + 1)p−1

(
f (x)− f (x∗)

)

−
`

16
p

t + 1

∥∥∥∥x + t + 1
2p

v− x∗
∥∥∥∥2

= −
p`

48(t + 1)
E (y)

= −
p

C ′(t + 1)
E (y), (26)

where C ′ = 48/` > 0 is a constant.
Before giving the main convergence results in this paper,

we first present some properties enjoyed by the Lyapunov
function (22).
Proposition 19: Under the Assumption 13, we dis-

cretize (5) with a s-stage q-order Runge-Kutta integrator.
By setting

h ≤
(

1
4C ′

E0

Cp(t0 + 1)p(q+ 1)2

)1/q 1
(E0 + L + 1)1+2/q

,

where Cp = cp1(p+ 1)! is a constant, then

E (yN ) ≤
(
1−

hp
2C ′(t0 + 1)

)N
E 2
0 . (27)

Proof: By Taylor’s theorem and triangle inequality,
we know that∣∣E (8h(y0))− E (ϕh(y0))

∣∣
≤ hq+1 max

0≤λ≤h

( ∣∣∣∣ dq+1dhq+1
E (8λ(y0))

∣∣∣∣+∣∣∣∣ dq+1dhq+1
E (ϕλ(y0))

∣∣∣∣ ).
Since E (ϕh(y0)) ≤

(
1− hp

C ′(t0+1)

)
E0, then

E (8h(y0))

≤

(
1−

hp
C ′(t0 + 1)

)
E0 + hq+1

· max
0≤λ≤h

( ∣∣∣∣ dq+1dhq+1
E (8λ(y0))

∣∣∣∣+ ∣∣∣∣ dq+1dhq+1
E (ϕλ(y0))

∣∣∣∣ )
≤

(
1−

hp
C ′(t0 + 1)

)
E0 + hq+1

(
Cp,q+1
(t0 + 1)

(1+ L + E0)q+2

+
C ′p,q+1
(t0 + 1)

(1+ L + E0)q+2
)

≤

(
1−

hp
C ′(t0 + 1)

)
E 2
0 + h · h

q 2Ĉp,q+1
t0 + 1

(1+ L + E0)q+2.

The second inequality follows by Lemma 24 and Lemma 25
in Section IV. The last inequality obtained from Ĉp,q+1 :=
max{Cp,q+1,C ′p,q+1}. Without loss of generality, assume that
Cp,q+1 ≥ C ′p,q+1, i.e., Ĉp,q+1 = Cp,q+1 = Cp(t0+1)p(q+1)2.

Choosing step-size h to satisfy

h ≤
(

1
4C ′

E 2
0

Cp(t0 + 1)p(q+ 1)2

)1/q 1
(E0 + L + 1)1+2/q

.

Then we have

E (8h(y0)) ≤
(
1−

hp
2C ′(t0 + 1)

)
E 2
0 .

The last inequality follows by the choice of h.
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Remark 20: It has been shown in [28] that the implicit
Runge-Kutta integrator with the same stage has higher con-
vergence order than the corresponding explicit methods.
In the following, we use Proposition 19 to obtain the stable
convergence of our proposed algorithm.
Theorem 21: Consider (6), suppose that f satisfies

Assumption 13 and Assumption 14. Further, let q be the order
of the Runge-Kutta integrator with s-stage used in (7)-(8),
N be the total number of iterations and x0 be the initial point.
It there exists constants E0 = L and Cp such that the step

size h = 1
4

(
E 2
0

Cp(q+1)2

)1/q
1

(E0+L+1)1+2/q
, then the iterate xN

generated after N times satisfies the following inequality,

f (xN )− f (x∗) ≤ C̃
(
1− C̃p,q ·

µ

L

)N
N−p, (28)

where C̃ = 4pE 2
0

(
Cp(q+1)2

E0

)p/q
(E0 + L + 1)2p and

C̃p,q =
p

3600(t0+1)

( 1
Cp(q+1)2

)1/q.
Proof: According to Definition 12, we first prove the

convergence of the algorithm according to the A-stability
of the discrete format. When the objective function f is
quadratic, denoted as f (x) = 1/2 xTUx + Vx +W , where U
is a positive definite, symmetric n × n matrix. Then (6) is a
linear dynamical system

ẏ = F(y) = 2y+3, (29)

where 2 =
[
−

2p+1
t+1 I p

2(t + 1)p−2U
I 0

]
and 3 =

[
V
0

]
.

Using ImRK (7)-(8) to discretize (29), the following algo-
rithm can be obtained

zn,i = yn + h
s∑
j=1

aijF
(
zn,j
)
, i = 1, 2, . . . , s, (30)

yn+1 = yn + h
s∑
i=1

biF
(
zn,i
)
, (31)

We rewrite (30)-(31) as matrix format

zn = 1⊗ yn + h(A⊗ I )F
(
zn
)

= 1⊗ yn + h(AT ⊗ I )(2zn +3), (32)

yn+1 = yn + h(bT ⊗ I )F
(
zn
)
, (33)

where 1 = [1, · · · , 1]T ∈ Rs. Then we have zn = (I − h(A⊗
I )(1⊗2))−11yn+ (I − h(A⊗ I )(1⊗2))−1h(A⊗ I )(1⊗3).
Substituting it into (33), we have

yn+1
= yn + h(bT ⊗ I )(1⊗2)(I − h(A⊗ I )(1⊗2))−1(1⊗ yn)

+ h(bT ⊗ I )2(I − h(A⊗ I )(1⊗2))−1h(A⊗ I )(1⊗3)

+ (1⊗3), (34)

which means the proposed optimization algorithm has a
linear format,

yn+1 = 0yn + ϒ, (35)

where 0 = I + h
(
(bT ⊗ I )(1 ⊗ 2)

)
(I − h(A ⊗ I )(1 ⊗

2))−1(1 ⊗ I ). Because of the A-stability of the implicit
Runge-Kutta method, the spectral norm ρ(0) < 1 can be
obtained according to the definition of A-stability, which
means the convergence of the algorithm (35). When f is a
nonlinear function, one can do a similar analysis.

Next, we continue to analyze the convergence rate of the
proposed algorithm. If the step size h satisfies the condition
in Proposition 19, then from the definition of Lyapunov func-
tion (22), we can see that

f (xN )−f (x∗)≤
E (yN )

tpN
≤

(
1−

hp
2C ′(t0 + 1)

)N 1
(1+ Nh)p

E0.

If we choose the step size as h = 1
4

( E 2
0

Cp(q+1)2
)1/q 1

(E0+L+1)1+2/q
.

It is easy to prove that h satisfies

h ≤
(

1
4C ′

E 2
0

Cp(t0 + 1)p(q+ 1)2

)1/q 1
(E0 + L + 1)1+2/q

.

Then we have

f (xN )− f (x∗)

≤

(
1−

p
2C ′(t0 + 1)

1
4

(
E 2
0

Cp(q+ 1)2

)1/q 1
(E0+L + 1)1+2/q

)N
·N−p · 4p

(
Cp(q+ 1)2

E 2
0

)p/q
(E0 + L + 1)2p · E 2

0 , (36)

which means that

f (xN )− f (x∗) ≤ C̃(1− C)NN−p, (37)

where C̃ = 4pE 2
0

(
Cp(q+1)2

E 2
0

)p/q
(E0 + L + 1)2p and

C =
p

8 C ′(t0+1)
1

(E0+L+1)1+2/q

(
E 2
0

Cp(q+1)2

)1/q

are constants

depending on p and q.
Furthermore, if we choose E0 = L, then C satisfies

C ≥
µp

8 · 48(t0 + 1)
1

(2L + 1)1+2/q

(
L2

C ′p(q+ 1)2

)1/q

=
p

8 · 48(t0 + 1)

(
1

Cp(q+ 1)2

)1/q

·
µ

2L + 1

(
L

2L + 1

)2/q

≥ C̃p,q ·
µ

L
, (38)

where the last inequality is obtained from L ≥ 1 and
C̃p,q =

p
3600(t0+1)

( 1
Cp(q+1)2

)1/q is determined by p and q.
Then from (37), we have

f (xN )− f (x∗) ≤ C̃
(
1− C̃p,q ·

µ

L

)N
N−p. (39)

It is noted from (28) that when the number of iterations
N tends to infinity, (1 − C̃p,q

µ
L )

N is a higher order infinity
smaller than N−p, indicating that the final convergence rate
of the algorithm is mainly determined by (1 − C̃p,q

µ
L )

N .
According to the conclusion of convergence in Theorem 21,
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it can be noted that when p is fixed, h is positively correlated
with q and with the increase of q, the step size h can be
taken in a larger range. When q is fixed, h is negatively
correlated with p, and with the increase of p, the step size h
can only be taken in a smaller range. Additionally, according
to the definition of C̃p,q in (28), C̃p,q is positively correlated
with q, and the increase of q can accelerate the convergence of
the algorithm. On the contrary, C̃p,q is negatively correlated
with p, and the increase of p will reduce the convergence rate
of the algorithm.

IV. BOUNDEDNESS OF DERIVATIVES
In this section, we present several key lemmas to prove Propo-
sition 19. First, the bounded properties of higher derivatives
of ϕh(y0) and 8h(y0) is given in the following lemma.
Lemma 22: Given the state y = [v; x]. If Assump-

tion 13 holds, then for n = 1, . . . , q+ 1, we have∥∥∥∥dnϕh(y0)dhn

∥∥∥∥ ≤ C0(1+ L + E0)n, (40)

and∥∥∥∥dn8h(y0)
dhn

∥∥∥∥≤C1(1+L+E0)n+C ′1h(1+L+E0)n−1, (41)

where the constants C0, C1 and C ′1 are determined by p, q
and the integrator.

Proof: Notice that the system dynamic F : R2d
→ R2d

in (12) is a vector valued multivariate function. We denote
its i-th order derivatives by ∇ iF(y), which is a (2d)1 × · · · ×
(2d)i+1 tensor. The tensor is symmetric by the continuity and
the Schwartz theorem. As a shorthand, we use ∇ iF to denote
∇
iF(y). We know that y(i) = F (i−1)(y) = d iy

dt i . Notice that
F (i−1)(y) is a vector, that is,

y(1) = F, y(2) = F (1)
= ∇F(F),

y(3) = F (2)
= ∇

2F(F,F)+∇F(∇F(F)).

The derivative ∇ iF(y) can be interpreted as a linear map
∇
iF : R2d

× · · · × R2d
→ R2d . ∇2F(F1,F2) is a mapping

from F1 and F2 to an element in European space R2d . Since
enumerating the expressions is tedious, we aim to compactly
express them with elementary differentials summarized in
Section II-C (see Chapter 3.1 in [32] for more details).
First we bound ∇ iF by explicitly computing its entries.
Let a(t) = −p2(t + 1)p−2 and b(t) = − 2p+1

t+1 . Based on
the definition in (12), we have

∂ iF
∂x i
=

[
a(t)∇ i+1f (x); 0

]
,

∂F
∂v
= [b(t)1; 1] ,

∂ i+jF
∂vj∂x i

= 0,
∂ jF
∂vj
= 0, j ≥ 2,

where 1, 0 ∈ Rd are vectors with all components are 1 and 0,
respectively. For any vector y = [v; x], we can show that the
norm of ∇nF is upper bounded by∥∥∇nF(F1, . . . ,Fn)∥∥≤∥∥a(t)∇n+1f (x)∥∥·5n

i=1

∥∥Fi2∥∥, (42)

where [n] = {1, 2, . . . , n}, 3 ⊂ [n] are the index sets and
Fi = [Fi1;Fi2], Fi1, Fi2 ∈ Rd , i = 1, 2, . . . , n. Finally,

we are ready to bound the time derivative. We first bound
the elementary differential f (τ ) defined in Definition 9.
Let F(τ ) = F(τ )(y) for convenience. Using the definition
of the Lyapunov function E , it can be shown that

‖v‖ ≤ ‖v0‖ + ‖v− v0‖ ≤
2pE 1/2

0

t0 + 1
+ δ ≤

p+ 1
t0 + 1

(E0 + 1).

(43)

Substituting (43) and (19) into (42), then∥∥∇nF(F1, . . . ,Fn)∥∥ ≤ c1L(t0 + 1)p−2 ·5n
i=1‖Fi2‖,

where c0 depend on n and p.
Let |τ | = n and it has m subtrees attached to the root, i.e.,

τ = [τ1, . . . , τm] with
∑m

i=1 |τi| = n− 1. Then we have∥∥∇mF(F(τ1), . . . ,F(τm))∥∥ ≤ c0L(t0 + 1)p−25m
i=1‖Fx(τi)‖.

We know that ‖Fx(τ )‖ ≤ ‖v‖. Based on t0−σ ≤ t ≤ σ + t0,
there always exists some constants c1, c2 > 0 such that
c2(t0 + 1) ≤ t + 1 ≤ c1(t0 + 1) and

‖Fv(t)‖ ≤
2p+ 1
t + 1

‖v‖ + p2(t + 1)p−2‖∇f (x)‖

≤
2p+ 1

c2(t0 + 1)
1+ E0

t0 + 1
+ p2cp−21 (t0 + 1)p−2L

≤ cp
1+ E0 + L
(t0 + 1)2

,

where cp is a constant depending on p. Substituting the
bounds of ‖Fv(t)‖ and ‖Fx(t)‖ into (42) to obtain that, for
n = 1, . . . , p,∥∥∇nF(F1, . . . ,Fn)∥∥ ≤ cn,p (1+ L + E0)n

t0 + 1
, (44)

where cn,p depends on n and p. Now we proceed to
derive an upper bound for higher order time derivatives.
By Lemma 10 we can write ‖ ∂

nϕh(y0)
∂hn ‖ = ‖F

(n−1)(ϕh(y0))‖ =
‖
∑
|τ |=n α(τ )F(τ )(ϕh(y0))‖. Hence, there exists a constantC

depending on n and p, such that∥∥∥∥dnϕh(y0)dhn

∥∥∥∥ ≤ C0(1+ L + E0)n

t0 + 1
≤ C0(1+ L + E0)n.

Similarly, by Lemma 11, we have the following equation

dn8h(y0)
dhn

=

s∑
i=1

bi

[
h
dnF(zi)
dhn

+ n
dn−1F(zi)
dhn−1

]
.

Hence, d (n)F(zi)
dhn has the same recursive tree structure as

F (n)(y), except that we need to replace all F in the expression
by dzi

dh and all ∇nF(y) by ∇nF(zi). By Definition 1, we know
that∥∥dzi1

dh

∥∥ ≤ S∑
j=1

|aij| ·
ĉ1(1+ E0 + L)

(t0 + 1)2
,

∥∥dzi2
dh

∥∥ ≤ S∑
j=1

|aij| ·
p+ 1
t0 + 1

ĉ2(E0 + 1),
∥∥dzi3
dh

∥∥ ≤ ∣∣ S∑
j=1

aij
∣∣.
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Because ‖∇nF(zi)‖ has the same boundary as ‖∇nF(y)‖,
we also can get a boundary of

∥∥ ∂nF(zi)
∂hn

∥∥ by the same argu-
ment with the boundedness of

∥∥ ∂nϕh(y0)
∂hn

∥∥, which is a constant
determined by the integrator. We conclude that

∂n8h(y0)
∂hn

=
C1(1+ L + E0)n + C ′1h(1+ L + E0)n−1

t0 + 1
≤ C1(1+ L + E0)n + C ′1h(1+ L + E0)n−1,

where the constants C1 and C ′1 are determined by n, p and the
integrator.
Lemma 23: For any n ≥ 1, ‖∇nE (y)‖ ≤ Cp(t0 + 1)p(1 +

L + E0), where Cp is a constant depending on p.
Proof: By explicitly computing its entries ∂

nE
∂vn ,

∂nE
∂xn and

∂nE
∂tn , we bound ∇

nE (y) by

‖∇
nE ‖ ≤

∥∥∥∥∂nE∂vn
∥∥∥∥+ ∥∥∥∥∂nE∂xn

∥∥∥∥+ ∥∥∥∥∂nE∂tn
∥∥∥∥+ p∑

l=1

(∥∥∥∥ ∂nE

∂t l∂xn−l

∥∥∥∥
+

∥∥∥∥ ∂nE

∂t l∂vn−l

∥∥∥∥+ ∥∥∥∥ ∂nE

∂vl∂xn−l

∥∥∥∥). (45)

When n > p, from the definition of E , we have

‖∇
nE ‖ ≤

p∑
l=0

∥∥∥∥ ∂nE

∂t l∂xn−l

∥∥∥∥
≤

p∑
l=0

p!
(p− l)!

(t + 1)p−l
∥∥∇n−l f (x)∥∥

≤

p∑
l=0

p!
(p− l)!

(t + 1)p−lL

≤ (p+ 1)!L(t + 1)p,

where the third inequality uses ‖∇ if (x)‖ ≤ L. Because
t + 1 ≤ c1(t0 + 1), we have that

‖∇
nE ‖ ≤ (p+ 1)!Lcp1(t0 + 1)p ≤ Ĉp(t0 + 1)p(L + E0 + 1),

(46)

where Ĉp = (p+ 1)!cp1 depends on p.
Similarly, for n ≤ p, there is a similar bound, that is,
‖∇

nE ‖ ≤ C̄p(t0 + 1)p(L + E0 + 1) where the constant C̄p
depends on p and n. LetCp = max{Ĉp, C̄p} and then the proof
of the lemma is completed.
Lemma 24: For any n > 1,∥∥∥∥dnE (ϕh(y0))

dhn

∥∥∥∥ ≤ Cp,n(1+ L + E0)n+1,

where the constant Cp,n depends on n and p.
Proof: By the chain rule, we have

dnE (ϕh(y0))
dhn

=

∑
k1,...,kn

n!
k1! · · · kn!

∇
kE (y) 5n

i=1

(
d i(ϕh(y0))

dhi
1
i!

)ki
,

where the sum takes over {k1, . . . , kn ∈ Z≥0|
∑n

i=1 iki = n}
and k =

∑n
i=1 ki.

Then from (40), we have

5n
i=1

(
d i(ϕh(y0))

dhi
1
i!

)ki
≤ 5n

i=1

(
C0(1+ L + E0)i

t0 + 1
1
i!

)ki
=

1
(1!)k1 (2!)k2 · · · (n!)kn

(1+ L + E0)k1+2k2+···+nkn

(t0 + 1)k1+k2+···+kn

=
1

(1!)k1 (2!)k2 · · · (n!)kn
(1+ L + E0)n

(t0 + 1)k
.

From Lemma 23, ‖∇nE ‖ ≤ Cp(t0+1)p(L+E0+1) and then
we have
dnE (ϕh(y0))

dhn

= Cp(t0 + 1)p(1+ L + E0)n+1

·

∑
k1,...,kn

n!
k1! · · · kn!

1
(1!)k1 (2!)k2 · · · (n!)kn

1
(t0 + 1)k

≤ Cp,n(1+ L + E0)n+1,

where Cp,n = Cpn2(t0 + 1)p is a positive constant.

Lemma 25: For any n > 1,

∥∥∥∥ dnE (8h(y0))
dhn

∥∥∥∥ ≤ C ′p,n(1 +

L + E0)n+1, where C ′p,n is similar to Cp,n in Lemma 24.
Proof: The proof is similar to Lemma 24. The difference is
that instead of using (40), we use (41) to bound the high order
derivatives of the trajectories.

V. NUMERICAL EXPERIMENTS
In this section, we perform a series of numerical experi-
ments to verify the performance of the proposed scheme for
minimizing strongly convex functions. First, when p = 2,
we consider the effectiveness of ImRK with different objec-
tive functions, and compare it with GD as well as NAG.
Then, with the same objectives, we considered the ODE (6)
for different p ≥ 2. Each experiment was repeated 10 times
with differentW ,H and initial value conditions and averaged.
For each method tested, we empirically choose the step size
among {10−k |k ∈ Z }. All figures in this section are on
log-log scale.

A. OBJECTIVE FUNCTIONS
We first verify the convergence of the algorithm for fixed p
and different integrators. The theoretical results show that for
the gradual increase of s, the corresponding ImRK has an
increase of q, which finally realizes the accelerated conver-
gence of the algorithm. By minimizing a quadratic convex
function of the form f1(x) = ‖Wx − H‖2, the ODE (5) with
p = 2 is simulated, i.e.,

ẍ(t)+
5

t + 1
ẋ(t)+ 4∇f (x(t)) = 0,
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FIGURE 1. Convergence paths of GD, NAG, ExRK and the proposed
method with integrators of stages s = 1, s = 2 and s = 3. Top: The
objective is a quadratic function f1. Bottom: The objective is a logistic
regression f2.

where W ∈ R10×10 and H ∈ R10. The entries of H are
randomly selected from value 0 or 1. Each row Wi of W are
generated by an i.i.d multivariate Gaussian distribution. Note
that the quadratic objective f1(x) satisfies Assumption 13with
p = 2. The convergence paths of GD, NAG, ExRK and the
proposed ImRK discretization procedure for minimizing the
quadratic function f1(x) are demonstrated in the top subfig-
ure of Figure 1. For the proposed method we consider the
A-stable integrators with different stages, i.e., s ∈ {1, 2, 3}.
We observe that GD reaches a exponential convergence rate,
which verifies the theoretical convergence rate of GD when
the function is strongly convex. NAG displays local acceler-
ation when setting the optimal point as mentioned in [19].
Our theoretical results suggest that the convergence rate for
s ∈ {1, 2, 3} is O((1 − C̃p,q

µ
L )

NN−2) for some constant C ,
which is faster than O(N−2). At the same time, as shown
in the top subfigure of Figure 1, the ImRK discretization
algorithm actually achieves a convergence rate faster than
O(N−2). As a second example, we consider the logistic
regression function f2(x) =

∑10
i=1 log

(
1 + e−Hix

TWi
)
which

is convex and Lipschitz smooth. The used data points
are generated in the same way as before. As shown in
Section II, it satisfies Assumption 13 for arbitrary p ≥ 2.

FIGURE 2. Experiment results for the cases that Assumption 13 holds for
p ≥ 2. Minimizing the objective by simulating different ODEs with the
2-stage 4-order ImRK integrator. Top: the objective is a quadratic
function. Bottom: the objective is a logistic regression.

The convergence results for f2 are demonstrated in the bottom
subfigure of Figure 1. It is observed that the ImRK tends to
converge faster than the explicit method, which is consistent
with our theoretical result in this paper.

B. DIFFERENT ODES
In this section, we discretize the ODE (6) with the objective
functions that satisfy Assumption 13 with p ≥ 2. However,
it should be noted that for the quadratic objective function f1,
it is easy to known from (6) that when the parameter p
changes, the dynamic system may become a stiff system.
In general, the discrete-time algorithms, such as the explicit
Runge-Kutta methods, are invalid for the stiff problem. In this
paper, the A-stable implicit Runge-Kutta methods can effec-
tively solve the above defects.

For all ODE discretization algorithms, we use an A-stable
2-stage 4-order ImRK integrator that calls the gradient oracle
twice per iteration. In particular, we use the above quadratic
objective f1(x) = ‖Wx − H‖2 and f2(x) =

∑10
i=1 log(

1+ e−Hix
TWi
)
. We run all algorithms for the quadratic func-

tion and the logistic regression function with 104 iterations.
We simulate the ODE (6) with different p values using the
same numerical integrator and the same step size. Figure 2
summarizes the experimental results. For the quadratic
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objective function, we observe that when p = 2, the con-
vergence of ImRK methods is faster than NAG. And it is
interesting that when p = 3, the discretization is still stable
with the convergence rateO((1− C̃p,q

µ
L )

NN−3). When p = 4
and p = 5, although the discretization is stable, the conver-
gence rate is lower than O(N−4) and O(N−5), respectively.
The reason for this is that the term (1 − C̃p,q

µ
L )

N on the
right side of (28) plays a major role in the convergence of the
algorithm, especially, that C̃p,q decreases with the increase
of p makes the convergence rate slow. On the contrary, for
the logistic regression function f2, this kind of phenomenon
disappears. On the one hand, it is because the ODE corre-
sponding to the function f2 has good properties. On the other
hand, it is because the use of the A-stable method restrain
the divergence effectively. By Theorem 21, if we set p = 2,
we can achieve a faster convergence rate than O(N−2). We
run the experiments with different p values and summarize
the results in the bottom subfigure of Figure 2. Note that
when q > 2, the convergence of ImRK methods is faster
than NAG.

VI. CONCLUSION AND DISCUSSION
In this paper, we have demonstrated the effective integra-
tion of implicit Runge-Kutta method and Bregman Lagrange
equation in obtaining accelerated optimization methods.
By applying the A-stable implicit Runge-Kutta method to the
ODE derived by the Bregman Lagrangian, we found that our
discrete-time algorithm are provably faster than other algo-
rithms, such as gradient and Nesterov’s accelerated gradient
descent and the convergence rate is closely related with the
order of integrator is higher as well as the larger range of step
size h.

The future work is to extend the existing results to more
general hybrid algorithms, such as explicit-implicit Runge-
Kutta method, multi-stage high-order implicit Runge-Kutta
method and the general form of multi-level multi-stage
method.
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