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ABSTRACT With the development of multi-spectral imaging techniques, many new multi-spectral imaging
devices have been developed in recent years. Red-green-blue and near-infrared (RGBN) cameras are widely
used because they capture visible light and near-infrared light simultaneously, but they inevitably introduce
color desaturation. Because there is clear multicollinearity among the RGBN channels, the ordinary least
squares regression (OLSR) color correction method performs poorly. To solve color bias and multicollinear-
ity, an RGBN camera color correction pipeline is proposed. A large number of nonlinear regression color
correctionmethods that consist of combinations of four regressionmethods and nine nonlinear transforms are
evaluated in this study. The results show that the proposedOLSR-based compound transform color correction
method and partial least-squares regression (PLSR) based Gaussian-core transform color correction method
yield better color correction results and are more robust. These approaches reduce the multicollinearity of the
RGBN camera channels and will be a valuable reference in the development of RGBN imaging applications.

INDEX TERMS Color correction, multicollinearity near-infrared, nonlinear regression, RGBN camera.

I. INTRODUCTION
Color imaging and multi-spectral imaging techniques are
widely used in fields such as environmental observation [1],
defense and security [1], biomedical applications [1], agri-
culture [2], product quality assessment [2], material classi-
fication [2] and night vision [3]. Siliconbased sensors can
capture multi-spectral information through a color filter array
(CFA) coating placed in front of the sensor. Furthermore,
if the sensor’s relative spectral sensitivity which is calculated
using the sensor’s spectral sensitivity and the CFA’s spectral
transmittance is consistent with the distribution of a standard
observer’s tristimulus, this enables us to obtain color images
that is close to human vision.

Most current color digital cameras use the well-known
Bayer CFA, and the camera’s spectral sensitivity is limited to
visible light. The signal-to-noise-ratio (SNR) of these cam-
eras decreases rapidly as the intensity of the environmental
illumination decreases. Generally speaking, the minimum

The associate editor coordinating the review of this manuscript and

approving it for publication was Jeon Gwanggil .

working environmental illumination of a camera is 10−1

lx or 5×10−2 lx. Although we could further decrease this
value to 5×103 lx by enlarging the pixel size of the sensor
(at the expense of resolution), the loss outweighs the gain.
To enable both color vision in the daylight and invisible-light
color night vision, RGBN CFAs replace one green channel
of the Bayer CFA with a near-infrared (NIR) channel and
extend the spectral transmittance of the color filter to NIR
light, as shown in Figure 1. A NIR cut-off filter (IRCF) is
used to block NIR light to achieve correct color vision in the
daylight, and the IRCF is removed at night so that the camera
can sense the additional NIR illuminant. It was found that
color images captured with color filters with the extended
spectral transmittance have a better SNR, but introduce severe
color bias and desaturation. As a result, RGBN camera color
restoration methods with IRCF removal have been proposed.
These methods enable RGBN cameras improve color vision
while retaining a good SNR.

The relative spectral sensitivity of an RGBN camera is
not consistent with the distribution of a standard observer’s
tristimulus, and the environment illumination always differs
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FIGURE 1. RGBN camera CFA arrangement.

from a standard illuminant, so it is necessary to restore
the colors of RGBN camera images. RGBN camera color
correction methods can be divided into color correction
matrix (CCM) based methods, spectral decomposition based
methods, sensor spectral sensitivity curve optimization based
methods, and learning based methods.

Park et al. [4] improved the traditional 3× 4 CCMmethod
by introducing RN, GN, and BN constraints. The nature of
Park et al.’s method is to introduce a nonlinear constraint
for RGBN channels, but this constraint is too simple to sub-
stantially improve color correction accuracy. Chen et al. [1]
proposed a 3 × 19 CCM by introducing R2, G2, B2, RB,
RB, GB, R3, G3, B3, R2G, R2B, G2B, G2R, G2B, B2R,
and B2G constraints. In detail, this method incorporates
a new cubic polynomial constraint with a zero coefficient
high-order N term. Using a quasi-linearization technique, it
calculates the CCM using ordinary least squares regression
(OLSR). Increasing the order of the polynomials increases
the risk of overfitting, in which case the generalization ability
of the model is not guaranteed. Monno et al. [5] use the chro-
matic values of color checker patches as samples to calculate
the CCM through OLSR and investigate polynomial and root
polynomial transforms. Teranaka et al. [6] took demosaicing,
CFA arrangement, and color restoration into consideration,
using a 3 × 4 CCM for color correction.

Park et al. [7], Kwon et al. [8], and Park et al. [9] devel-
oped a spectral decomposition based method that decom-
poses the NIR band into a color-correlated NIR band and
color-independent NIR band to obtain each element of a 3 ×
4 CCM. However, this method still relies on linear regression.
The 3 × 4 CCM calculated by OLSR is the optimal unbi-
ased estimation of the corrected color, and any modification
decreases the color correction accuracy. Hertel et al. [10] opti-
mized traditional 3 × 4 CCM by calculating the differences
of sensor’s relative spectral sensitivity curve and a destination
relative spectral sensitivity curve. The color correction accu-
racy still cannot surpass that of an OLSR-based 3 × 4 CCM.
Yamashita et al. [3] separately calculate the integration of
the NIR band sensitivity curve and the NIR part of the vis-
ible band sensitivity curve to obtain a constant ratio. They
corrected the colors by then directly subtracting the visible
band and the constant ratio of the NIR band, proposing two

FIGURE 2. Image color desaturation when NIR light is introduced. (a)
image captured with an IRCF, (b) image captured without an IRCF, and (c)
NIR image.

optimized versions in the same year [11], [12]. Zahra et al. [2]
optimized the traditional 3× 4CCMby calculating the differ-
ences in the sensor’s relative spectral sensitivity curve and a
designed ideal relative spectral sensitivity curve. The core of
these methods is still OLSR. Without introducing nonlinear
constrains, these approaches cannot surpass an OLSR-based
3 × 4 CCM color correction method.
Aguilera et al. [13] proposed a neural network based

RGBN camera color correction method using a simple
net structure. They use only two fully-connected-layers
between the input layer and output layer. Subsequently,
Soria et al. [14] used different optimizers and activation
functions with another simple network structure to correct
colors. They later trained the model with a convolutional
neural network [15].

Most Bayer CFA based industrial cameras, commercial
digital cameras, and smartphones correct colors using an
OLSR method. A set of CCMs are calibrated under dif-
ferent illuminations and one is chosen for color correction
during use. This widely accepted color correction method
obtains satisfactory results. However, in RGBN camera
color-correction applications, although OLSR-based color-
correction approaches yield good results for indoor scenes
with weak NIR light, color bias occurs in corrected out-
door scenes because of the strong NIR-light reflection of
plants, as shown in Figure 2. Moreover, RGBN channels are
strongly correlated. Hence, calculating CCM using OLSR
may lead to severe round-off errors, which can directly
cause poor color correction results. To improve the accu-
racy and robustness of RGBN camera color correction, suit-
able nonlinear transforms and regression methods should be
investigated.

Hence, this study investigates nine nonlinear trans-
form models and four regression methods: OLSR, ridge
least squares regression (RLSR), principal components
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regression (PCR), and partial least squares regression
(PLSR). By comparing all 40 potential color correction meth-
ods (4 regression methods × 10 transformations including
9 nonlinear transform), we determine the best-performing
color correction method.

II. RGBN CAMERA COLOR CORRECTION METHOD
A. RGBN CAMERA COLOR CORRECTION MODEL
1) NECESSITY OF NONLINEAR REGRESSION
Most industrial cameras, commercial digital cameras and
smartphones would place an IRCF in front of each sensor
and use the chromatic values of color checker patches and
calculate the CCM using OLSR. For normal visible scene
applications, the results of this color correction method are
satisfactory. In contrast, for an RGBN camera, the IRCF is
removed. Hence, there is a more complicated mapping rela-
tionship between real colors and image colors. In addition,
we cannot obtain satisfactory color correction results through
simple linear regression. Nonlinear transforms must hence be
introduced.

RGBN camera imaging is more complicated than normal
visible camera imaging from the point of view of its model.
The image of a target scene captured by an RGBN camera
is denoted as a matrix Pn×4, where n represents the RGBN
camera’s total pixel count. Each column of P is a color
channel pixel array, i.e., Pn×4 = [Rn×1,Gn×1,Bn×1,Nn×1].
Let P(:, i) denote the ith column of P. Then [16],

P(:, i) = α ·
∫ 1100

380
I (λ) · R(λ) · S(λ) · Fi(λ)dλ+ ε (1)

Here, I (λ) represents the spectral power distribution function
of the illumination, R(λ) represents the spectral reflectivity
function of the scene with respect to pixel location, S(λ)
represents the spectral response function of the sensor, and
Fi(λ) represents the ith channel filter’s spectral transmittance
function. Further, α represents the linear coefficient and ε
represents the image noise at each pixel location.

In this study, images captured by an RGBN camera
with an IRCF are treated as ground truth images. Let
Qn×3 be the ground truth image matrix, i.e., Qn×3 =
[GTRn×1,GTGn×1,GTBn×1]. Then,

Q(:, i) = α0 ·
∫ 760

380
I (λ) · R(λ) · S(λ) · F0i(λ)dλ+ ε0 (2)

The difference between F0i(λ) and Fi(λ) is that NIR light can
pass through Fi(λ) but not F0i(λ).

Because they go through the same imaging process, P and
Q have the same form. The only differences are the upper
limit of integral and the spectral transmittance functions of
the filters. Suppose

Q(:, i) = P(:, i)+ f (λ) (3)

Then, f (λ) has the form

f (λ) = β ·
∫ 760

380
I (λ) · R(λ) · S(λ) ·1Fi(λ)dλ

+γ ·

∫ 1100

760
I (λ) · R(λ) · S(λ) ·1Fi(λ)dλ+ ξ

= β · h(λ)+ γ · g(λ)+ ξ (4)

where 1Fi(λ) = Fi(λ)− F0i(λ).
Generally speaking, the chromatic values of color checker

patches are utilized to calculate the CCM for RGBN camera
color correction. The nature of this procedure is to fit f (λ)
with limited data. We only know S(λ) and 1Fi(λ), and they
are not accurate. I (λ) is often supposed to be one of a few lim-
ited types, andR(λ) is remains an arbitrary unknown function.
Hence, the optimal f (λ) cannot be calculated theoretically.
As a result, RGBN camera color correction is different from
normal commercial visible camera color correction. For nor-
mal visible cameras, the form of fVis(λ) is

fVis(λ) = β ·
∫ 760

380
I (λ) · R(λ) · S(λ) · Fi(λ)dλ+ ξ

= β · hVis(λ)+ ξ (5)

Function f (λ) has a form that is more complicated than that
of fVis(λ) and is best represented using nonlinear transforms.

2) NONLINEAR REGRESSION MODEL
As described above, the nonlinear transform of an image P
captured by an RGBN camera and the ground truth image Q
is arbitrary and unknown for various scenes. When the rela-
tionships between independent and dependent variables are
unknown, typical nonlinear functions are usually used to fit
the function. Then, the best performing nonlinear estimation
is chosen using proper evaluation indices.

The nonlinear transform models evaluated in this study all
can be quasi-linearized and estimated by common regression
methods. They are shown in Table 1. Let R0, G0, and B0 be the
corrected color channels, and let R, G, B, and N be the input
image channels with color bias. In an RGBN camera color-
correctionmodel, there are three dependent variables and four
independent variables. To simplify the notation, the nonlinear
transforms are written with one dependent variable and two
independent variables. Hence, y denotes the dependent vari-
able of a nonlinear transform function and x1 and x2 denote
the independent variables.

3) QUASI-LINEARIZATION IN NONLINEAR REGRESSION
Linear regression methods are widely used in model param-
eter estimation applications and are easy to calculate. How-
ever, the model must be linear and of the following form:

y = α0 + α1 · x1 + α2 · x2 + ...+ αp · xp (6)

Quasi-linearization enables nonlinear transform model
parameter prediction to be calculated using linear regres-
sion. This kind of nonlinear model has the following
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TABLE 1. Nonlinear transform models.

form:

h(y) = c0(b0)+ c1(b1) · g1(X)+ · · · + cp(bp) · gp(X) (7)

Here, h(y) represents the function y, ci(bi)(i = 0, 1, . . . , p)
represents the function bi, where bi is a model parameter, and
gi(x)(i = 0, 1, . . ., p) represents function x. Let η = h(y),
βi = ci(bi), and zi = gi(x). Then,

η = β0 + β1 · z1 + β2 · z2 + · · · + βp · zp (8)

This enables linear regression methods to be used.

The details of the quasi-linearization of the nonlinear trans-
fer models are shown in Appendix.

4) MULTICOLLINEARITY IN RGBN CAMERA CHANNELS
Multicollinearity is a common problem in camera color
correction applications. It is even more apparent in RGBN
camera color correction. Strong correlation between RGBN
camera channels decreases the color correction accuracy and
robustness when a CCM calculated by OLSR is used. The
degree of correction between channels depends on the degree
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TABLE 2. RGBN channel correlation coefficients.

of overlap between each filter’s spectral transmittance distri-
bution curve. There exists a strong overlap between R, G,
B, and N channels, especially in the NIR band, as shown
in Figure 4. Table 2 shows the correlation coefficients of R,
G, B, and N channels of an RGBN camera that was used to
capture a color checker scene. The four channels are strongly
correlated.

A stronger correlation between channels degrades the color
correction performance of a CCM calculated by OLSR. Let
βOLSR be the regression coefficient of OLSR. Then,

βOLSR = (PTP)−1PTQ (9)

If there exists a completely linear relationship between chan-
nels, then PTP is irreversible, and βOLSR cannot be estimated.
If there exists a strong correlation between channels, det(PTP)
will tend to zero and (PTP)−1 has a large rounding error.
Hence, the color correction results could be unstable.

Biased estimation methods can be used instead of OLSR.
On the one hand, PTP is guaranteed to be reversible (e.g.
in RLSR). On the other hand, applying the transform and
truncation to the data of P could weaken the multicollinearity
(e.g., as in PCR and PLSR).
• RLSR

Let βRidge be the regression coefficient of RLSR. Then [17],

βRidge = (PTP+ λI )−1PTQ (10)

where λ is a constant number and I is the unit matrix.
Because the L2 norm penalty term is introduced [17],

PTP + λI is guaranteed to be reversible. Although OLSR is
the optimal unbiased estimation whereas RLSR is a biased
estimation, a small-variance biased estimation may perform
better than unbiased estimation in color correction. The val-
ues of λ are sampled 200 times in [10−5, 102] with equal
distance and determined by 10-fold-cross-validation [18] in
this study.
• PCR

Principal component analysis (PCA) [19] is applied to P to
obtain k principal componentsF . Let Fi be the ith component.
Then,

Fi = Pai, ‖ai‖ = 1 (11)

where ai is the eigenvector the ith biggest eigenvalue of
PTP

/
n. Then, we use OLSR to estimate regression coeffi-

cient βPCR of F and Q, calculated as

βPCR = (FTF)−1FTQ (12)

FIGURE 3. (a) Photonis NOCTURN night vision CMOS camera and (b) its
spectral sensitivity.

FIGURE 4. (a) Spectral transmittances and (b) relative spectral
sensitivities of the RGBN optical filters.

FIGURE 5. Experimental setup.

FIGURE 6. RGBN camera CCM calibration pipeline.

• PLSR
Different from PCR, PLSR [20] not only requires the com-
ponents with the most data information (i.e., Var(Fi) →
max), but also requires the independent variable that can
best explain the dependent variable (i.e., r(Fi,Gi) → max).
Hence,

Fi = Pai, ‖ai‖ = 1,Var(Fi)→ max

Gi = Qci, ‖ci‖ = 1,Var(Gi)→ max

r(Fi,Gi)→ max (13)

Regression coefficient βPLSR is calculated using
SIMPLS [20] in this study.

B. EXPERIMENTAL SETUP
We used a Photonis NOCTURN XL night vision CMOS
grayscale camera as the experimental imaging device
(as shown in Figure 3, resolution 1280×1024 pixels, pixel
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Algorithm 1 CCM Calibration
Input variables:
P: n×4 color checker patch chromatic value matrix captured
by RGBN camera.
Q: n ×3 ground truth chromatic value matrix
nonLinearMethod: specific nonlinear transform method
(chosen in table 1)
regressionMethod: specific regression method
(chosen in OLSR,RLSR,PCR,PLSR)
Output variable:
CCM: the color correction matrix

1. normP = P/max(P); % normalize P
2. normQ = Q/max(Q); % normalize Q
3. wbP = whiteBalance(normP); % white balance
4. wbQ = whiteBalance(normQ);
5. transP, transQ = nonLinearTransfer(wbP, wbQ, nonLin-
earMethod);
% specific nonlinear transform on wbP,wbQ
% some nonlinear transform apply identical transform on
variables, such as wbQ in polynomial transform, i.e., transP
== wbQ.
6. Q0 = transQ-mean(transQ); % centralize transQ
7. P0 = (transP-mean(transP))/std(transP); % normlize trans
P
8. Q1 = shuffle(Q0); % shuffle Q0
9. P1 = shuffle(P0); % shuffle P0 with same seed
10. CCM = tenFoldCrossValidation(P1,Q1, regression-
Method);
% for OLSR, choose CCM with smallest MSE
% for RLSR, choose λ with smallest MSE
% for PCR and PLSR, go through the component numbers
from 1, when 1MSE< ε stop
11. α = mean(transQ)/mean(transP);
% save mean value ratio of transP and transQ for the color
correction procedure
% small variance for same illumination
Return CCM

size = 9.7 µm, dynamic range 60 dB, frame rate 100 Hz).
An Edmund TECHSPEC 50 mm Vis-NIR fixed-focus lens
with a high transmittance in the NIR band was used as the
experimental objective lens. Thorlabs FD1D RGBN optical
filters that are designed for capturing high contrast ratio color
images were used as the experimental optical filters. The R,
G, and B channels also have a high transmittance in the NIR
band as well as their own bands. A 700 nm high-pass filter
was used to capture the N channel. The spectral transmittance
curve and the relative spectral sensitivity curve are shown
in Figure 4. Finally, the XRITE Color Checker Digital SG
140 was used for color calibration. The overall experimental
system is shown in Figure 5.

C. RGBN CAMERA CCM CALIBRATION PIPELINE
The proposed RGBN camera CCM calibration pipeline is
shown in Figure 6, and its pseudo code is shown in

FIGURE 7. RGBN camera color correction pipeline.

Algorithm 2 RGBN Camera Color Correction
Input variables:
P: r ×c ×4 RGBN camera image, where r and c represent
image row and column counts, respectively.
CCM: p ×p matrix, CCM calculated in Algorithm 1.
nonLinearMethod: the same nonlinear transform as Algo-
rithm 1
Output variable:
sP: image after color correction

1. normP = P/max(P); % normalization
2. wbP = whiteBalance(normP); % white balance
3. transP = nonLinearTransfer(wbP, nonLinearMethod);
% the same nonlieanr transform as Algorithm 1
4. P0 = (transP-mean(transP))/std(transP); % normalize P
5. reshapeP0 = reshape(P0); % reshape
6. P1 = reshapeP0×hap; % color correction
7. reshapeP1 = reshape(P1); % reshape
8. correctP = reshapeP1+α× mean(transP);
% treat α× mean(transP) as predict image mean value
%α from Algorithm 1
9. sP = gammaCorrection(correctP); % gamma correction
Return sP

Algorithm 1. Image preprocessing, which consists of image
normalization and white balance adjustment, are first per-
formed on the color checker scene captured by the RGBN
camera. Then, a candidate nonlinear transform (chosen
from Table 1) is applied on each color patch vector of
the color checker image. After a quasi-linearized proce-
dure, the nonlinear feature vectors are converted to high-
dimensional feature vectors that can be calculated by linear
regression methods. The feature vectors are normalized
and the CCM is calculated using a candidate regression
method. The CCM is then used in the color correction
procedure.

D. RGBN CAMERA COLOR CORRECTION PIPELINE
The proposed RGBN camera color correction pipeline is
shown in Figure 7. First, image preprocessing (normalization
and white balance adjustment) are applied on the images
captured by the RGBN camera. Then, a nonlinear trans-
form (as in the CCM calibration) is applied to obtain multi-
dimensional feature images. After CCM color correction,
the gamma is corrected.
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FIGURE 8. RGBN color correction results for scene 1, which consists of plants with a color
checker. (a) Image with IRCF, (b) IRCF removal, (c) CZY [1], (d) direct OSLR [5], (e) direct
polynomial [5], (f) direct root polynomial [5], (g) PLSR root polynomial, (h) linear compound,
and (i) PLSR Gaussian core.

FIGURE 9. RGBN color correction results for scene 2, which consists of plants, wood, and water.
(a) Image with IRCF, (b) IRCF removal, (c), CZY, (d) direct OSLR, (e) direct polynomial, (f) direct
root polynomial, (g) PLSR root polynomial, (h) linear compound, and (i) PLSR Gaussian core.

III. RESULTS
The CCMs were calibrated with combinations of four
regression methods and nine nonlinear transforms using

Algorithm 1. Including the combinations for four comparison
algorithms and the OLSR method, the total number of CCMs
was 41. Then, color correction (Algorithm 2) was performed
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FIGURE 10. RGBN color correction results for scene 3, which consists of plant leaves with
different colors. (a) Image with IRCF, (b) IRCF removal, (c) CZY, (d) direct OSLR, (e) direct
polynomial, (f) direct root polynomial, (g) PLSR root polynomial, (h) linear compound, and (i)
PLSR Gaussian core.

FIGURE 11. RGBN color correction results for scene 4, which consists of flowers, a wall, and
stone. (a) Image with IRCF, (b) IRCF removal, (c) CZY, (d) direct OSLR, (e) direct polynomial,
(f) direct root polynomial, (g) PLSR root polynomial, (h) linear compound, and (i) PLSR Gaussian
core.

with the 41 CCMs. Ten sets of different scenes (a total
of 50 images) were tested. Part of the color correction results
are shown in Figures 8 to 12.

To evaluate the results, we adopted angular error
(AE), CIE 1976 L∗a∗b∗ color space color error (1Eab),
peak SNR (PSNR), and the structural similarity index
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FIGURE 12. RGBN color correction results for scene 5, which consists of flowers with
different colors. (a) Image with IRCF, (b) IRCF removal, (c) CZY, (d) direct OSLR, (e) direct
polynomial, (f) direct root polynomial, (g) PLSR root polynomial, (h) linear compound, and
(i) PLSR Gaussian core.

measure (SSIM). These metrics are described in detail
below.

A. AE
AE is used to assess the angular bias between two color vec-
tors. A smaller value of AE indicates that two color vectors
are more similar. The equation of AE is

AE = arccos(
XY
|X | |Y |

) (14)

Here, X is the reference color vector and Y is the evaluated
color vector.

B. CIE 1976 L∗a∗b∗ COLOR SPACE COLOR ERROR (1Eab)
CIE1976 L∗a∗b∗ color space is a uniform color space that
is a nonlinear transformation of the CIE XYZ color space.
It is usually used to assess color changes perceived by human
vision. Smaller values of1Eab are better. Its equation is [21]

1Eab =
√
(1L∗)2 + (1a∗)2 + (1b∗)2
L∗ = 116 f (

Y
Yn

)− 16

a∗ = 500 [f (
X
Xn

)− f (
Y
Yn

)]

b∗ = 200 [f (
Y
Yn

)− f (
Z
Zn

)]

f (T ) =

(T )
1
3 T > 0.008856

7.787(T )+
16
116

T ≤ 0.008856

T ∈ {
X
Xn
,
Y
Yn
,
Z
Zn
} (15)

C. PSNR
A bigger PSNR value means the image is more similar to the
ground truth. The equation of PSNR is [22]

PSNR(f, g) = 10 log10(
(2bit − 1)2

MSE(f, g)
)

MSE(f, g) =
1
MN

M∑
i=1

N∑
j=1

(fij − gij)
2

(16)

Here, f is the reference image, g is the test image, and ‘‘bit’’
is the image’s bit depth.

D. SSIM
The range of SSIM is (0,1). A bigger SSIM value means the
image is more similar to the ground truth. The equation of
SSIM is [23]

SSIM (f , g) = l(f , g)c(f , g)s(f , g)

l(f , g) =
2µf µg + C1

µ2
f + µ

2
g + C1

c(f , g) =
2σf σg + C2

σ 2
f + σ

2
g + C2

s(f , g) =
σfg + C3

σf σg + C3

(17)

Here, µf and µg are the mean values of the whole images f
and g, respectively, and σf and σg are their standard devia-
tions. In addition, σfg is the covariance of images f and g and
C1, C2, and C3 are constants to avoid division by zero.
The results for 10 sets of test scene are shown in Table 3.

The results for the PCR- and PLSR-based logarithm, inverse,
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TABLE 3. Evaluation indices of different color correction methods.

power, compound, and S transforms have the same number of
components as OLSR after 10-fold cross-validation. Hence,

the values of the final evaluation indices are the same as those
of OLSR and they are omitted. RLSR based polynomial, root
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polynomial, logarithm, inverse, power, compound, Smethods
obtain a λ of less than 10−2. The variation in the evaluation
are so small, they are also omitted. A comparison shows that
the OLSR-based compound and PLSR-based Gaussian core
combinations yield the best performance.

The OLSR-, RLSR-, PCR-, and PLSR-based compound
RGBN camera color correction methods yield similar results.
For the compound transform, PCR and PLSR return a compo-
nent count that is equal to the total component count through
10-fold cross-validation. Hence, PCR- and PLSR-based com-
pound methods are equal to the OLSR-based compound in
this case. The RLSR-based compound obtains a λ that is
too small to improve the results and perform similarly. The
OLSR-based compound method is recommended because,
of the four regression methods, OLSR is the easiest to calcu-
late. Applying the compound transform to the image has the
same effect as some preprocessing procedures in color image
applications. The compound transform applies a logarithm
transform to dependent variables and then fits them with
the independent variables. Logarithm transform preprocess-
ing has been adopted in color correction and color transfer
applications and is thought to have a basis in human visual
physiology [24]. The relationship between the compound
transform and image preprocessing techniques remains a task
for further study.

The Gaussian core transform and cubic B spline transform
are typical nonlinear transform models in regression meth-
ods. If there is plenty of sample data, these models have
a better capacity to express more complicated relationships
than nonlinear transform models based on a single type of
function. However, only 96 reference color patches are used
in CCM calibration. Hence, the PLSR method is adopted to
select the components that best express the model. This is a
tradeoff between the expressiveness of the model and the risk
of overfitting. The results in Table 3 show that the Gaussian
core transform outperforms the cubic B spline transform and
is more robust. The Gaussian core transform has a uniform
function form in its domain (−∞,+∞). When applying the
Gaussian core transform to an image, each channel interval’s
feature takes all intervals into consideration. When applying
the cubic B spline transform, each channel interval’s feature
only takes its neighborhood into consideration. Hence, it is
more difficult to balance model expressiveness and overfit-
ting risk in the cubic B spline transform given limited data.

In summary, the OLSR-based compound and PLSR-based
Gaussian core methods have the best performance for RGBN
camera color-correction applications.

IV. CONCLUSION
RGBN cameras can capture visible and NIR information
simultaneously, but introduce color desaturation into the
images. The image color bias becomes obvious especially
when capturing outdoor scenes with strong NIR illumina-
tion. The inclusion of NIR light makes the relationship
between the color biased image and the ground truth image
more complicated. Moreover, the multicollinearity in RGBN

camera channels makes the OLSR color correction result
unsatisfactory. Hence, in this study, the combination of four
regression methods and nine nonlinear transform color cor-
rection methods were investigated and compared in a uni-
form color correction pipeline. The OLSR-based compound
and PLSR-based Gaussian core methods achieve the best
color correction accuracy and are the most robust. These
results demonstrate that the proposed RGBN camera color
correction pipeline performs better than the traditional OLSR
method. However, the proposed RGBN camera color correc-
tion method still needs a pre-calibrated CCM, as in traditional
CCM color correction methods. In future work, to obtain
more accurate color correction results and high SNR images,
we would like to modify the spectral transmittance of the
optical filters and further study color correction in low-light
multi-spectral imaging devices.

APPENDIX
QUASI-LINEARIZATION OF THE NONLINEAR TRANSFORM
A. POLYNOMIAL MODEL
For the polynomial model,

y = α+β1 · x1+β2 · x2+β3 · x21 +β4 · x
2
2 +β5 · x1 · x2. Let

η = y, z1 = x1, z2 = x2, z3 = x21 , z4 = x22 , z5 = x1x2. Then,

η = α+β1 · z1+β2 · z2+β3 · z3+β4 · z4+β5 · z5. (18)

B. ROOT POLYNOMIAL MODEL
For the root polynomial model,

y = α + β1 · x1 + β2 · x2 + β3 ·
√
x1 · x2.

Let η = y, z1 = x1, z2 = x2, z3 =
√
x1 · x2. Then,

η = α + β1 · z1 + β2 · z2 + β3 · z3. (19)

C. LOGARITHM MODEL
For the logarithm model y = α + β1 · ln x1 + β2 · ln x2.
Let η = y, Zi = xi(i = 1, 2). Then,

η = α + β1 · z1 + β2 · z2. (20)

D. INVERSE MODEL
For the inverse model, y = α + β1

x1
+

β2
x2
.

Let η = y, Zi = 1
xi
. Then,

η = α + β1 · z1 + β2 · z2. (21)

E. POWER MODEL
For the power model, y = α · xβ11 · x

β2
2 and lny = lnα +

x1 lnβ1 + x2 lnβ2. Let η = ln y, γ = lnα, and zi = ln xi(i =
1, 2). Then,

η = γ + β1 · z1 + β2 · z2. (22)

F. COMPOUND MODEL
For the compound model, y = α · βx11 · β

x2
2 and lny = lnα +

x1 lnβ1+x2 lnβ2. Let η = ln y, zi = xi, λi = lnβi (i = 1, 2).
Then,

η = α + λ1 · z1 + λ2 · z2. (23)
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G. S MODEL
For the S model, y = exp(α+ β1

x1
+
β2
x2
) and lny = α+ β1

x1
+
β2
x2
.

Let η = ln y, zi = 1
xi
(i = 1, 2). Then,

η = α + β1 · z1 + β2 · z2. (24)

H. CUBIC B SPLINE MODEL
1) Let xi(i ∈ [R,G,B,N ]) be the input image channel.

Divide xi intoM intervals so that there areM+1 interval
endpoints. Let ξi be the endpoints of channel i; then
ξi = [ξ0, . . . , ξM ]. In addition, the interval length
hi =

max(xi)−min(xi)
M . In this paper, M= 5. For example,

if the maximum pixel value of the red channel max(R)
= 1, and the minimum value min(R) = 0, then ξR =
[0, 0.2, 0.4, 0.6, 0.8, 1] and hR = 0.2.

2) All xi are cubic-B-spline transformed in each interval.
We then obtain new feature vectors zi,j = �3(

xj−ξi,j
hi

).
Moreover,

�3(x) =
1
6
(x+ 2)3+ −

2
3
(x+ 1)3+

+x3+ −
2
3
(x− 1)3+ +

1
6
(x− 2)3+

(x− a)3+ =
{
(x− a)3 (x ≥ a)
0 (x < a)

(25)

3) The normalized feature vectors can be used in regres-
sion methods, e.g.,

[R0G0B0]T = CCM · [�3(
R− ξ0
h

) . . . �3(
R− ξM

h
)

�3(
G− ξ0
h

) . . . �3(
G− ξM

h
)

�3(
B− ξ0
h

) . . . �3(
B− ξM

h
)

�3(
N − ξ0
h

) . . . �3(
N − ξM

h
) ]T . (26)

I. GAUSSIAN CORE MODEL
1) Let xi(i ∈ [R,G,B,N ]) be the input image channel.

Divide xi intoM intervals so that there areM+1 interval
endpoints. Let ξi be the endpoints of channel i; then
ξi = [ξ0, . . . , ξM ]. Moreover, the interval length hi =
max(xi)−min(xi)

M .
2) All xi are Gaussian-core transformed in each interval to

obtain feature vectors zi,j = Gau( xj−ξi,jhi
). Moreover,

Gau(x) =
1
√
2π

exp(−
x2

2
) (−∞ < x <∞). (27)

3) The normalized feature vectors can be used in regres-
sion methods, e.g.,

[R0 G0 B0]T = CCM · [Gau(
R− ξ0
h

) . . .Gau(
R− ξM

h
)

Gau(
G− ξ0
h

) . . .Gau(
G− ξM

h
)

Gau(
B− ξ0
h

) . . .Gau(
B− ξM

h
)

Gau(
N − ξ0
h

) . . .Gau(
N − ξM

h
)]T . (28)
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