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ABSTRACT In the smart mariculture, the timely and accurate predictions of water quality can help farmers
take countermeasures before the ecological environment deteriorates seriously. However, the openness of the
mariculture environment makes the variation of water quality nonlinear, dynamic and complex. Traditional
methods face challenges in prediction accuracy and generalization performance. To address these problems,
an accurate water quality prediction scheme is proposed for pH, water temperature and dissolved oxygen.
First, we construct a new huge raw data set collected in time series consisting of 23,204 groups of data. Then,
the water quality parameters are preprocessed for data cleaning successively through threshold processing,
mean proximity method, wavelet filter, and improved smoothing method. Next, the correlation between
the water quality to be predicted and other dynamics parameters is revealed by the Pearson correlation
coefficient method. Meanwhile, the data for training is weighted by the discovered correlation coefficients.
Finally, by adding a backward SRU node to the training sequence, which can be integrated into the future
context information, the deep Bi-S-SRU (Bi-directional Stacked Simple Recurrent Unit) learning network is
proposed. After training, the predictionmodel can be obtained. The experimental results demonstrate that our
proposed prediction method achieve higher prediction accuracy than the method based on RNN (Recurrent
Neural Network) or LSTM (Long Short-Term Memory) with similar or less time computing complexity.
In our experiments, the proposedmethod takes 12.5ms to predict data on average, and the prediction accuracy
can reach 94.42% in the next 3∼8 days.

INDEX TERMS Smart mariculture, precision agriculture, water quality prediction, SRU, deep learning.

I. INTRODUCTION
In the mariculture, water quality is one of the important
factors that affect fish production. However, water quality
is subject to change, because it is affected by many factors,
such as fish density, feed, climate, and more. The drastic
change of water quality can disrupt the balances of algae and
bacteria phases. The unbalance of ecological environment can
lead to serious consequences, such as the physiological stress,
the disease, and even the massive death of fish. An accurate
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and real-time prediction of water quality parameters can help
farmers take measures to adjust water quality in advance if
necessary in order to ensure a suitable breeding environment.
These measures can improve the efficiency of fish produc-
tion. Furthermore, through the accurate prediction and the
timely adjustment of water quality, the use of drugs can be
reduced, which is of great significance for green and precision
agriculture.

A. RELATED WORK AND MOTIVATION
The collected water quality data usually needs to be prepro-
cessed for data cleaning. Gao et al. proposed to repair the data
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by using linear interpolation and mean value smoothing [1].
The system clustering method and principal component anal-
ysis method have been used for feature selection to achieve
dimensionality reduction of the input data in the prediction
model. Finally, they employed wavelet denoising technol-
ogy to deal with the key influencing factors. Zhang et al.
proposed a missing data filling method based on convolu-
tional neural network, which has been used to fill data with
temporal correlation between time-series and spatiotemporal
correlation between sensor nodes [2]. Yang et al. proposed
a data preprocessing method based on feature extraction and
clustering. The Lasso algorithm andK-Means algorithmwere
used to extract and cluster the temperature data respectively,
which have greatly improved the prediction accuracy of tem-
perature [3]. Xia et al. proposed the optimal mixed imputa-
tion (OMI) algorithm for missing data filling [4]. Maria et al.
proposed a preprocessing method for decomposing mete-
orological data using wavelet decomposition and principal
component analysis [5]. Though the aforementioned meth-
ods can improve the precision of data preprocessing, their
structures are complex and difficult to be implemented.
Meanwhile, traditional linear interpolation methods have
breakpoint phenomena in actual interpolation, while themean
smoothing method can only be used for the dataset with less
deviation.

Next, Pearson correlation coefficient has been applied to
analyze the correlation between the predicted water quality
parameters and other water quality parameters. Advanced
integration method as spatial cross-correlations [6] can rem-
edy some shortcomings of Pearson correlation coefficient
method such as inaccuracy and fluctuation of correlation
analysis results when objects to be processed are insufficient.
Considering the abundant experimental objects in our paper,
the relatively simple Pearson correlation coefficient method
is going to be imported in our experiments.

For water quality prediction, the major approaches include
time series method [7]–[9], Markovmethod [10], grey system
theory method [11] and support vector regression machine
method [12], [13]. However, these methods have some draw-
backs, such as weak generalization ability, low computa-
tional efficiency and unstable prediction accuracy. Hence,
they cannot meet the ever-increasing requirements in pre-
cision agriculture. In recent years, the prediction methods
based on ANN (Artificial Neural Network) and deep learning
have been proposed [14], [15]. They have the advantages of
good robustness, high fault tolerance and sufficient fitting
of complex nonlinear relations. Liu et al. used BP neural
network to predict multi-scale water temperature based on
empirical mode [16]. Han et al. established a water qual-
ity prediction model in wastewater treatment based on an
improved radial basis function neural network with flexible
structure [17]. Miao et al. used Levenberg Marquardt (LM)
neural network and genetic algorithm to build a dissolved
oxygen prediction model [18]. What’s more, prominent water
quality prediction models based on LSTM have also been
constructed [11], [19], [20].

B. MAIN CONTRIBUTIONS OF THE PAPER
In this paper, we design a procedure to fullfill the predic-
tion of the key water quality parameters. To improve the
data cleaning in the preprocessing stage, the fixed threshold
method is used to discard the abnormal individual data, and
themean proximitymehthod is used to complete the collected
data. Then, the wavelet analysis and improved smoothing
method are used for noise reduction and error correction
respectively. Next, the Pearson correlation coefficient method
is employed to discover the correlation between the key water
quality parameters. In the prediction phase, combined with
the results after preprocessing and the obtained correlation
prior, the prediction model based on our proposed Bi-S-SRU
deep learning network is used to predict the key water quality
parameters.

The Bi-S-SRU model is proposed to improve the
RNN [21], LSTM [22] and SRU [23], [24] network structures.
It has the advantages of simple structure, fast convergence,
and good stability. Our proposed Bi-S-SRU model is mainly
composed of two stages. The first stage is the preprocess-
ing of collected water quality data. The second stage is the
construction of the Bi-S-SRU-based water quality prediction
model. In addition, we discuss the prediction results of dif-
ferent water quality parameters in same environment setting,
and compare the Bi-S-SRU-based method with three other
aforementioned methods.

Our main contributions can be summarized as follows:

• In the data preprocessing, the proposed mean proxim-
ity method and improved smoothing method can accu-
rately complete and correct the water quality data to be
repaired, which solves the breakpoint phenomenon and
increases the accuracy of data cleaning.

• The Bi-S-SRU deep learning network is proposed,
which can integrate the future context information into
the prediction of the current time point data. Meanwhile,
according to the existing dynamic model, the degree of
correlation between important parameters is analyzed.
According to the results of correlation analysis, the train-
ing data of the learning model are multiplied by the
corresponding weight coefficient.

• An overall scheme for accurately predicting water
quality parameters is proposed. This scheme uses the
pre-processed data and correlation priors to train a
Bi-S-SRU model to obtain a prediction model. The pre-
diction model is then used to predict key water quality
parameters in aquaculture.

• We build and expose a large raw data set collected in
time series, which contains water quality and climate
environment data at 23,204 time nodes.

C. PAPER ORGANIZATION
The rest of this paper is arranged as follows. Section II
gives the acquisition method of data and the outline of the
proposed scheme. Section III introduces the preprocessing
process of water quality. Section IV presents the network
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FIGURE 1. The topology structure diagram of the smart mariculture IoT system.

structure of Bi-S-SRU and the construction of prediction
model. In Section V, we analyze and discuss the experimental
results. Section VI summarizes our work and illustrates future
works.

II. MATERIALS AND OVERVIEW OF METHODOLOGY
A. ACQUISITION OF DATA
In our investigation, we conduct our study by using real data
collected in the marine aquaculture base in Xincun Town,
LingShui County, Hainan Province, China. Fig. 1 illustrates
the water quality data acquisition module, transmission mod-
ule, cloud server module, and terminal display module in
the IoT system. The IoT hardware system mainly includes
one multi-sensor node, one wind power generation device,
one set of solar power panels, one 4G industrial routing
module, one wind-solar complementary controller, one local
storage module and one wireless transmission module. From
Fig. 1, the IoT system realizes the data acquisition, transmis-
sion, cloud storage of the data, business logic development,
intelligent prediction analysis and calculation, and related
application services.

Due to possible power failures, sensor device aging, arti-
ficial oxygenation, bait feeding, fish net switching and volt-
age instability, the received data may be lost, defective and
erroneous. Meanwhile, the water quality data monitored by
the sensors needs to be transmitted over a long distance via
a 4G wireless module. During this process, the transmitted
data is susceptible to interference from near-ground noise,
transceiver noise, etc. Therefore, before the construction of
deep learning network, the collected water quality parameters
have to be filled, recovered and filtered [25].

B. OVERVIEW OF SCHEME
The overall prediction scheme is shown in Fig. 2, where
our main innovations are marked with shaded colors. The
specific steps of the proposed scheme are as follows: (1)
After receiving water quality data from the wireless transmis-
sion network, a series of improved interpolation, smoothing

and wavelet transform filtering techniques are used to repair,
correct and denoise the water quality data respectively;
(2) Pearson’s correlation coefficient is used to obtain correla-
tion priors of water quality parameters and climate param-
eters; (3) The water quality prediction model based on
Bi-S-SRU is constructed using the preprocessed data and
its correlation information. When the prediction accuracy
of the model reaches the expected requirements, the overall
prediction model is considered to be established successfully.
Otherwise, it will be retrained to obtain better results.

III. PREPROCESSING OF WATER QUALITY DATA
In this section, we take the preprocessing of water tempera-
ture data as example.

A. THRESHOLD PROCESSING AND DATA COMPLETION
METHOD SELECTION
The data stored at the collection site and obtained after trans-
mission are termed as backup data and received data respec-
tively. Firstly, the abnormal individual data can be removed
by setting the upper and lower threshold ranges. Thus,
the data convergence can be preliminarily improved and the
completion accuracy of the mean proximity method can be
enhanced as well. Setting up a threshold can recover data
to some extent. However, it may lead to over-aggregation of
data. In actual application process, the threshold range should
be appropriately enlarged according to the actual situation.
The incereasing deviation produced by such enlarging pro-
cess can be compensated by using the subsequent improved
smoothing method to achieve higher recovery accuracy.

Next, we examined the performance of several existing
data interpolation methods for obtaining better data comple-
tion accuracy. Fig. 3 shows the data restoration effects of
Linear, Spline, and Cubic interpolation for the received data.
In our experiment, the missing data is supplemented with the
value 0 to refrain from breakpoints.

It can be seen from Fig. 3 that all three interpolation meth-
ods have acceptable completion effects. However, the data
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FIGURE 2. The prediction scheme of the water quality parameters.

FIGURE 3. Experimental effects of Linear, Spline and Cubic interpolation.

TABLE 1. Performance comparison between three interpolation methods.

processed using linear interpolation is slightly closer to the
backup data. We accumulated the absolute values of the
difference between recovered data and backup data, and use
the accumulated result as an evaluation index. As shown
in Table 1, the experimental results of Linear interpolation are
better than Spline interpolation and Cubic interpolation.The
main reason is that the time interval of data acquisition is
short, and the water quality parameters change slowly and
stably in time series.

However, the traditional linear interpolation methods still
have the phenomenon of data discontinuity. Fig. 4 shows a
detail view of some of the data breakpoints. When training
the prediction model, the data set with breakpoints in the time
series may engender inaccurate input training samples.

FIGURE 4. Filling effect of data with linear interpolation.

In order to refrain from breakpoints, we propose a mean
proximity method. To maintain stable and continuous vari-
ation of water quality parameters in time series, the missing
data is replaced with the average value of the nearest effective
data by mean proximity method given in (1).

ai =
ai−n + ai+m

2
(1)

where ai, ai−n, and ai+m denote the ith data in the data set,
the nth non-empty data before ai, and themth non-empty data
after ai respectively.
From Fig. 5, it is obvious that all breakpoints’ locations are

successfully filled with meaningful values. Fig. 6 shows that
the number of error points where the red point deviates from
the backup data is approximately equal to or even slightly
less than the number of points of cyan. For error points
where the two do not coincide, the number of cyan error
points is slightly more than that of red. Therefore, the mean
proximity method performs better with Linear interpolation
in data completion.

B. DATA FILTERING METHOD SELECTION
There are noise interferences in collected dataset during
long-distance wireless transmission. Filtering is the operation
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FIGURE 5. The completion effect using the improved method.

FIGURE 6. Comparison of the completion effect represented by scatter
plot.

of filtering the frequency of specific interference band in
the signal. Three filtering methods including moving average
filter method, median filter method and wavelet transform
method have been tested and compared separately in our
study. The wavelet transform method is adopted after our
investigation as it has the characteristics of low entropy,
multi-resolution and de-correlation.

1) MOVING AVERAGE FILTER METHOD
Based on the statistical law, the mobile average filter treats
the continuous sampled data as a queue with a fixed length
as N . When the queue enters a new data, one data exits at
the same time. Then, the queue is arithmetically averaged to
yield the result of this measurement.

2) MEDIAN FILTER METHOD
Median filtering method is a kind of nonlinear signal process-
ing technology that can effectively suppress noise based on
sorting statistics theory. Its basic principle is to replace the
median value of a point in a digital image or digital sequence
with the median value of each point in the neighborhood of
current point, and thus eliminate the isolated noise points.

3) WAVELET TRANSFORM METHOD
Wavelet transform is a new transform analysis method that
can analyze the location of time (space) frequency [26].

TABLE 2. Performance of different norms for three filtering methods.

Through the telescopic translation operation, the signal (func-
tion) is gradually multi-scale refined to achieve time subdi-
vision at high frequency and frequency subdivision at low
frequency, which can automatically adapt to the requirements
in time-frequency signal analysis.

Wavelet transform method is mainly divided into three
steps to filter. In the first step, the noise signals are wavelet
transformed. In the second step, the threshold value of the
wavelet coefficients obtained by the transformation is quan-
tized to remove the noise contained in the signal. In the final
step, inverse wavelet transform is carried out on the processed
wavelet coefficients to reconstruct the wavelet and obtain the
filtered signal.

4) COMPARISON OF DATA FILTERING METHODS
The noise reduction effects of three filteringmethods, defined
SNR, BIAS and RMS [27] are compared. In our experiment,
the fixed window value of the moving average method and
the median filtering method is set to 4 and 10 respectively.
Then the threshold value of wavelet analysis method is set as
√
2 log (length (X)), where X denotes the input data set.
As shown in Table 2 that the signal-to-noise ratio achieved

by the wavelet transform method is 1.5 and 1.2 times of
that achieved by the moving average method and the median
filtering method. In addition, the metric of RMS for wavelet
transform method is smaller than that of the moving aver-
age method and the median filtering method. Although the
effect of wavelet transform method is slightly worse than
that of median filter method in the evaluation process of
BIAS, the idea of median has been introduced in data error
correction, which can improve the reliability of data. Thus,
wavelet transform method is the most suitable one to filter
noise among three methods.

C. ERROR CORRECTION METHOD SELECTION
Since there are still some deviations in the repaired data
after applying the wavelet transform method, further error
correction is significant. Hence, error correction needs to be
performed and divided into two stages as error detection and
error correction. In the process of error detection, the average
of the relative deviation value among the data set in the
backup data is calculated as the comparison index, which
is used for testing the data set in the received data. When
the relative deviation value of one data exceeds m times of
itself in backup data, this data is identified as a wrong data,
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FIGURE 7. Comparison of two evaluation standards when m differs between the data before or after error correction and the
received data.

TABLE 3. Correlation matrix.

which needs to be corrected. The median of k data before
and after the error data is used as the error correction value
for modification. In (2), as shown at the bottom of the this
page, median ([ai−k : ai+k ]) is the median of k data before
and after, α is the average of the relative deviation of the two
adjacent data in backup data relative to the latter data, β is the
average relative deviation of the two adjacent data in backup
data relative to the former data, and m is used to adjust the
degree of error correction. The values of α, β, and m can be
preseted basing on historical data.

Our data acquisition frequency is 5 minutes each time.
In order to better reflect the actual situation with guaranteed
accuracy, we take the value of k as 10. For the selection
of m values, we introduce two evaluation metrics, defined
BIAS and RMS. The error correction experiments are per-
formed with the data processed in Section II.B, the deviations
between the data before or after error correction and the
backup data have been evaluated.

It can be seen from Fig. 7 that the corrected data is much
closer to the backup data when evaluated by BIAS and RMS.
When the value of m is in the range of 0 and 0.8, the BIAS
and RMS are almost unchanged. To avoid processing the
normal data, m is set to 0.8. It is calculated that when m is
0.8, the value of BIAS after error correction is 0.0268, while
the value without error correction is 0.0347. The value of

RMS after error correction is 0.038, while the value without
error correction is 0.0545. Therefore, the improved smooth-
ing method has a pretty result on the error correction of the
filtered data.

To verify the correctness of the improved smoothing
method, we compared the effect of the improved smoothing
method with the traditional smoothing method basing on the
filtered data.

By applying the mean smoothing method, the value of
BIAS is 0.034 and the value of RMS is 0.053. But the value
of BIAS is 0.0268 and the value of RMS is 0.038 by conduct-
ing the improved smoothing method, which means that the
precision of the improved smoothing method is higher than
the traditional smoothing method. From Fig. 8, it is obvious
that the data processed by the improved smoothing method is
closer to the backup data.

D. CORRELATION ANALYSIS
Before establishing the model for key water quality parame-
ters, correlation analysis is necessary for determining the cor-
relation degree among water quality parameters. In this case,
Pearson correlation coefficient method [28] is introduced to
measure the correlation degree between the two variables.
According to Pearson method, the correlation coefficient
among these parameters and other water quality parameters

ai =

{
median ([ai−k : ai+k ]) if |ai+1 − ai| > m ∗ ᾱ ∗ ai+1 or |ai+1 − ai| > m ∗ β̄ ∗ ai
ai else

(2)
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FIGURE 8. Comparison of data before and after correction.

FIGURE 9. RNN model.

can be obtained, as shown in Table 3. The closer the value is
to 1 or −1, the higher the degree of correlation is.
In Table 3, Temp, DO, Precipitation, and Air Temp stands

for water temperature, dissolved oxygen, precipitation of
rainfall, and air temperature, respectively. It can be concluded
from Table 3 that the water temperature has a moderate
negative correlation with the salinity and the dissolved oxy-
gen, a moderate positive correlation with the air temperature,
a moderate negative correlation with the pH and precipita-
tion. On the other hand, pH has a strong positive correlation
with dissolved oxygen, a moderate positive correlation with
water temperature and air temperature, a moderate negative
correlation with salinity, and almost no correlation with pre-
cipitation. In addition, dissolved oxygen has a strong positive
correlation with pH, a moderate negative correlation with
water temperature, and almost no correlationwith salinity and
air temperature.

When a parameter is being predicted, if all other relevant
parameters are directly fed into the model, it is likely to affect
the overall averageness. Therefore, when relevant parameters
are inputed, the model will conduct weighted input process
on them with reference to correlation coefficient.

IV. PROPOSED BI-S-SRU BASED PREDICTION MODEL
A. PRINCIPLE OF SRU DEEP LEARNING MODEL
In recent years, deep learning methods [29]–[31] derived
from neural networks have been applied in many fields.

FIGURE 10. The structure of SRU.

RNN is a kind of ANNs, and is evolved from Hopfield
network [21] for modeling serialized data.

In the forward propagation of RNN, the data is transmitted
along the time series from the input layer to the hidden layer
and then to the output layer. In Fig. 9, t, x, s, and y denote
different moments, the input set, and the hidden unit input
set, the output set of the RNN, respectively. U is the weight
matrix of the input set, W is the weight matrix of the input
of the hidden layer input at the previous moment, and V is
the weight matrix between the input data of the hidden layer
output data and the output layer.

When the forward propagation completes, the RNN per-
forms back-propagation through time (BPTT) to reverse the
deviation between the predicted value and the true value
in each round of forward propagation to adjust and update
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FIGURE 11. The detail construction between SRU cells.

FIGURE 12. The structure of Bi-S-SRU.

various parameters (such as weights, offsets) involved in
the forward propagation process. Neural networks require
constant adaptive training to adjust the overall parameters of
the network to keep the predicted values close to the true
values. Back propagation is a necessary process for training
high-quality neural network models.

However, due to the limitations of RNN structure and
algorithm, its capacity has certain range of restrictions. In the
absence of an effective information screening mechanism,
important information in the early stage may be discarded
in the post-training process. Therefore, there is a bottleneck
in the improvement of training accuracy. SRU is a sort of
improved neural network based on RNN [32]. The main dif-
ference between SRU and RNN is the ‘‘cell state’’ part added
in hidden layer. This part exists for judging and filtering the
effective information in the training process. The structure of
SRU is shown in Fig. 10.

Similar to other neural networks based on RNN improve-
ments (such as LSTM, GRU), the SRU determines the
throughput of the cell state at different time by adjusting the
‘‘gate’’ structure. The difference is that the SRU avoids the
situation that the current time step depends on the output
of the previous time step st−1. Hence, parallel calculation
can be performed to ensure the control of the information
and improve the overall speed with little loss of precision.

In addition, through the design of the gate, the update gradient
vanishing and the gradient explosion problem in the RNN
can be greatly alleviated [24], and the deviation between the
predicted value and the real value during the training process
is reduced. Fig. 11 shows the gate control structure between
the states of the SRU unit. The current input xt enters the
forget gate, input gate, and reset gate via three paths.

The tools specifically used to select the training informa-
tion in the gate control structure are the activation function
sigmoid with value field [0, 1] and tanh with value field
[−1, 1]. The regulation is accomplished by multiplying the
output vector of the gate by the element of the data vector
to be controlled. In extreme cases, all information is retained
when the gate output is 1, and all information will be dis-
carded when the gate output is 0.

B. PRINCIPLE OF BI-S-SRU DEEP LEARNING MODEL
Typical RNN and its derivative networks, such as LSTM
and SRU, tend to ignore future information when processing
sequence in time series. One obvious solution is to add a delay
between input and output, which can leave some time for the
network to add future context information. In other words,
the future information of theM frame is added to predict the
output together. In theory, the value of M can be very large
to capture all available information in the future, but in fact it
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TABLE 4. Description of Bi-S-SRU forward propagation process in both directions.

is found that if M is too large, the prediction results become
worse. This is due to the fact that the network concentrates
on memorizing a large amount of input information, which
leads to the decline of the ability to combine predictive
knowledge with different input vectors. Therefore, the size
of M needs to be adjusted manually. To address the above
problems, we propose an improved model called Bi-S-SRU
(Bi-directional stacked simple recurrent unit).

Other bi-directional stacked neural networks [33], [34]
have shown excellent experimental results. The basic idea of
Bi-S-SRU is to superimpose a forward and a backward SRU
into each training sequence, and the two SRUs are connected
to an output layer. This structure provides both past and future
context information for each point in the input sequence of the
output layer. Fig. 12 shows a Bi-S-SRU network unfolding
along time. The six weight sets in the figure respectively
represent: the weight of input layer to forward and backward
hidden layer (W1, W3), the weight transferred between hid-
den layer (W2,W5), and the weight of forward and backward
hidden layer to output layer (W4, W6). In addition, there
is no information flow between the forward and backward
hidden layers, which ensures that the expansion diagram is
non-cyclic.

The specific algorithmflow of the Bi-S-SRU forward prop-
agation process in both directions is shown in Table 4. The
forward process in two directions in the model shares the
same batch of data, which is summarized in the output layer
after passing through the same network structure in different
directions.

The calculation process of Bi-S-SRU is divided into two
steps: forward pass and backward pass. In the forward
pass, the forward calculation process of the hidden layer of

Bi-S-SRU is the same as that of one-way SRU, except that the
input sequence is in the opposite direction for the two hidden
layers. The output layer is not updated until the two hidden
layers have processed all the input sequences. The description
of the forward pass is shown in Table 5.

In the second step, the backward pass of Bi-S-SRU is
similar to RNN backpropagation process. In the beginning,
several items are stored in the output layer for calculation
in each time step, then the stored items return to two hidden
layers in different directions. All processes of backward pass
are shown in Table 6.

In the above training model, we introduce three evalua-
tion metrics [35] to evaluate the prediction effect, which are
defined as follows:
Definition 1 [MAE (Mean Absolute Error)]: MAE is the

basic evaluation metric, and the following methods are gen-
erally used as a reference to compare the advantages and
disadvantages.

MAE =
1
N

N∑
i=1

∣∣yi − yi∣∣ (3)

Definition 2 [RMSE (Root Mean Squared Error)]: RMSE
denotes the mean error, which is more sensitive to extreme
values. If there is an extreme value in the training process
at some time points, RMSE will be greatly affected by the
increasing error. The change of the evaluation index can
be used as the benchmark for the robustness test of the
model.

RMSE =

√√√√ 1
N

N∑
i=1

(|yi − ȳi|)2 (4)

24792 VOLUME 8, 2020



J. Liu et al.: Accurate Prediction Scheme of Water Quality in Smart Mariculture With Deep Bi-S-SRU Learning Network

TABLE 5. Description of forward pass in Bi-S-SRU.

TABLE 6. Description of backward pass in Bi-S-SRU.

TABLE 7. Records of MAE/RMSE/MAPE when training process reach specific times in water temperature training model.

Definition 3 [MAPE (Mean Absolute Percent Error)]:
MAPE considers not only the deviation between the predicted
data and the real data, but also the ratio between the deviation
and the real data.

MAPE =
1
N

N∑
i=1

|yi − ȳi|
yi

(5)

In (3), (4) and (5), yi denotes the real value, ȳi denotes
the value predicted by the model, i.e., the output value of the
deep learning model; N is the number of samples in the data
set. The closer the above three evaluation metrics are to 0,
the better the prediction and fitting effect of the model will
be.

C. CONSTRUCTION OF BI-S-SRU PREDICTION MODEL
AND METRICS ANALYSIS
As described in section III.A and III.B, we establish the
Bi-S-SRU water quality prediction model with the
pre-processed data of pH, water temperature and dissolved
oxygen in Section II. Water temperature, air tempera-
ture, salinity, precipitation, pH, and dissolved oxygen are

contained in raw data, and the data collection interval is
5 minutes. A total of 20,000 groups are used for model
training, and another 3,000 groups are used for comparison of
prediction results. The experimental environment is: Inter(R)
Core (TM) i7-7800X processor, NVIDIA TITAN RTX GPU,
32 GB RAM, Windows 10 (64-bit) operating system, Ana-
conda3 IDE, and the construction of neural network model is
based on python 3.6 and Tensorflow 1.6.0 package.

According to the coefficient correlation analysis in
Section II.D, there is a strong or moderate correlation for
pH with dissolved oxygen, air temperature, salinity and water
temperature, a strong or moderate correlation for water tem-
perature with salinity, air temperature, pH, precipitation and
dissolved oxygen, and a strong or moderate correlation for
dissolved oxygen with pH and water temperature. The histor-
ical data of these parameters and the parameter to be predicted
are used as the weighted input data of the prediction model
according to correlation coefficient construction for training,
and the output of the model is the predicted data.

There are 20,000 sets of preprocessed data imported into
three parameter models, and the data in each model is

VOLUME 8, 2020 24793



J. Liu et al.: Accurate Prediction Scheme of Water Quality in Smart Mariculture With Deep Bi-S-SRU Learning Network

TABLE 8. Records of MAE/RMSE/MAPE when training process reach specific times in pH training model.

TABLE 9. Records of MAE/RMSE/MAPE when training process reach specific times in dissolved oxygen training model.

FIGURE 13. Comparisons of RMSE and MAPE in water temperature prediction model training.

separately trained by RNN, LSTM, SRU and Bi-S-SRU.
In the pH, water temperature and dissolved oxygen training
model, the input unit dimensions are set to 5, 6 and 3 respec-
tively, the output layer dimensions are all 1, the learning rate
is set to 0.005, and the time step is set as 20, both of which
are trained 1,000 times with cell=5. In each training process,
the evaluation metrics including MAE, RMSE and MAPE

between the output values of all output layers and the real
values are recorded in Table 7, 8, and 9.

From Fig. 13∼15 and Table 7∼9, the model is greatly
affected by the initial random weight value in the initial
stage of training, and the MAE/RMSE/MAPE of the three
prediction models tends to be stable in the latter stage. Three
metrics of the Bi-S-SRU in the whole process are always
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FIGURE 14. Comparisons of RMSE and MAPE in pH prediction model training.

FIGURE 15. Comparisons of RMSE and MAPE in dissolved oxygen prediction model training.

FIGURE 16. The prediction effect of pH, water temperature and dissolved oxygen.

much smaller than those of other models. In addition, it can
be observed that the RNN has a lower RMSE when training
500 times than when training 1,000 times in water temper-
ature model, which is called over-fitting. It is due to slight
insufficiency of learning rate and high complexity of RNN,
and RMSE (or other metrics) may fall into local minimum
temporarily in later training period, which can be solved by
adjusting the learning rate, simplifying the network construc-
tion, and performing adequate data-preprocessing.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. COMPARISON OF PREDICTION EFFECTS FOR
DIFFERENT PARAMETERS
We retrieve the models trained by the different neural net-
works in four parameter prediction models, and predict the
future pH, water temperature and dissolved oxygen data
respectively. The results are shown in Fig. 16.

Low-pass filters are used to remove abnormal prediction
results or points with high regional frequencies in above
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TABLE 10. The accuracy and range ability of the sensors.

FIGURE 17. Comparison of training time cost.

figures. According to the actual situation, four models predict
1,000 pH and dissolved oxygen data and 2,500 water temper-
ature data with five minutes frequency.

The predicted data in all four models are close to the true
data (pH deviation is less than 0.05 on average, water temper-
ature deviation is less than 0.8 degree Celsius on average, and
dissolved oxygen deviation is less than 0.3mg/l on average).
It is obvious that the Bi-S-SRU has a higher degree of fitting
with the real value and the outputs of the Bi-S-SRU train-
ing model have much smaller MAE/RMSE/MAPE. Hence,
the water quality parameter prediction with the proposed Bi-
S-SRU model achieves better prediction results.

The accuracy and range ability of the sensors are shown
in Table 10, where F.S., NTU, PSU denote Full Scale,
Nephelometric Turbidity Unit, and Practical Salinity Unit,
respectively.

B. COMPARISON OF TRAINING TIME FOR RNN, LSTM,
SRU AND BI-S-SRU
As shown in Fig. 17, the SRU model spends more time than
RNN but less than LSTM, which is a result of adding the new
unit states to RNN for controlling information in the network
into SRU.

In the pH prediction model, RNN (cell=5) train-
ing 1,000 times and its duration is 5,860.128s, while
SRU (cell=5) spends 6,136.598s, LSTM (cell=5) spends
6,754.23s andBi-S-SRU (layer=2, cell=5) spends 6,535.63s.
In conclusion, Bi-S-SRU consumes 10.33% more time than
RNN and 6.11% more time than SRU. In the water tem-
perature prediction model, the training time cost of RNN
is 4,675.35s, while LSTM spends 6,979.47s, SRU spends
5,388.66s and Bi-S-SRU spends 5,942.75s. Bi-S-SRU takes
21.32% more time than RNN and 9.32% more time than

SRU. In the dissolved oxygen prediction model, Training
time of RNN is 4,763.81s, while LSTM spends 6,085.53s,
SRU spends 5,878.16s and Bi-S-SRU spends 6,199.34s.
Bi-S-SRU takes 26.01% more time than RNN and 5.21%
more time than SRU.

It can be concluded that all models above take more time to
train when there are more relevant parameters (such as water
temperature prediction). Under the same conditions, SRU,
LSTM and Bi-S-SRU training is more time-expensive than
RNN. The prediction performance of RNN and Bi-S-SRU is
shown in Fig. 16. The prediction accuracy of Bi-S-SRU is
up to 94.42%, and the RMSE of Bi-S-SRU is only 52.1% to
81.1% of RNN. Compared with RNN, the Bi-S-SRU-based
method also shows better fitting effect when comparing
actual data for prediction. The Bi-S-SRU takes 8.99% to
23.51% more training time than RNN on average. In gen-
eral, Bi-S-SRU has more practical significance when con-
structing a key water quality prediction model in the marine
aquaculture.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed the process and model for
the accurate prediction of key water quality parameters
(pH, water temperature and dissolved oxygen) in smart mari-
culture. Firstly, the collectedwater quality data is repaired and
corrected by the improved preprocessing method, and then
the data is filtered and denoised bywavelet transformmethod.
After preprocessing, the data received by remote transmission
can be recovered well. Next, we construct the Bi-S-SRU
(Bi-directional Stacked SRU) deep learning prediction model
by importing pretreated dataset weighted with the discovered
correlation coefficients. The experimental results demon-
strate that our proposed prediction model can achieve higher
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prediction accuracy and stability compared with RNN-based
and SRU-based prediction models. In the actual prediction,
the average prediction time taken was 12.5ms, and the pre-
diction accuracy can reach 94.42% in the next 3∼8 days.
Therefore, in smart aquaculture, our proposed scheme can
meet the requirements of accurate prediction for water quality
parameters.

In the construction of prediction model, the deep
Bi-S-SRU network used in the experiment is superior to
most other neural networks in terms of prediction accuracy.
The experimental results also show that the Bi-S-SRU-based
prediction method is only slightly higher in time complexity
than the traditional RNN-based or LSTM-based prediction
method.

In order to make the water quality prediction model more
robust and practical, our future work is mainly to optimize
the existing deep neural network structure and combine
more relevant prior knowledge for combined prediction to
achieve higher prediction accuracy and further lower time
cost.
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