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ABSTRACT Fully homomorphic encryption (FHE) is a form of public-key encryption that allows the
computation of arbitrary functions on encrypted data without decrypting the data. As a result, it is a useful
tool with numerous applications. Certificateless encryption (CLE) is a type of public-key encryption that
combines the advantages of PKI-based public-key encryption with those of identity-based encryption (IBE).
Thus, certificateless fully homomorphic encryption (CLFHE) has aroused considerable research interest.
Recently, Chen, Hu, and Lian proposed a leveled certificateless homomorphic encryption (CLHE) scheme
and proved its semantic security based on the learning with errors (LWE) problem in the random oracle
model. However, their scheme supports only homomorphic addition, but not homomorphic multiplication.
In this work, we construct two leveled CLFHE schemes using the approximate eigenvector method presented
by Gentry, Sahai, andWaters. Based on the hardness of the LWE problem, we prove that one scheme satisfies
adaptive semantic security and anonymity in the random oracle model, whereas the other satisfies selective
semantic security and anonymity in the standard model.

INDEX TERMS Certificateless fully homomorphic encryption, learning with errors, random oracle model,
standard model.

I. INTRODUCTION
Fully homomorphic encryption (FHE) [1], [2] is a variant
of public-key encryption. It allows anyone to perform arbi-
trary computation on encrypted data. Hence, it is a useful
tool with a number of attractive applications, such as pri-
vate outsourcing of computation, privacy-preservingmachine
learning, and secure multiparty computation. Leveled FHE is
a special variant of FHE. In a leveled FHE scheme, the system
parameters may depend on the depth of the circuits that the
system can evaluate. In 2013, Gentry, Sahai and Waters [3]
(GSW) proposed a new technique for building FHE schemes
of so-called approximate eigenvector method, and accord-
ingly constructed a leveled FHE scheme based on the learn-
ing with errors (LWE) problem [4]. In the GSW scheme,
the homomorphic evaluator does not need to obtain the user’s
evaluation key. Alperin-Sheriff and Peikert [5] subsequently

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

provided a technically simpler variant of the GSW scheme by
utilizing a gadget matrix G developed in [6].
Certificateless encryption (CLE) [7] is also a variant of

public-key encryption. In a CLE scheme, a semi-trusted third
party, referred to as the key generation center (KGC), calcu-
lates partial private keys for users in the system according
to their identities. In this way, the CLE removes the need to
distribute digital certificates. Moreover, a user also generates
a public/private key pair by itself. Since the private key of
a user is not available to the KGC, the CLE does not suffer
from the key escrow problem that is inherent in identity-based
encryption (IBE) [8], [9]. Consequently, CLE is public-key
encryption with unique characteristics. Dent [10], [11] pro-
vided a review of the syntax and security models for the CLE
scheme. Recently, several CLE schemes based on the LWE
problem have been proposed in the random oracle model [12]
or standard model [13].

Certificateless fully homomorphic encryption (CLFHE)
has drawn considerable attention from researchers. In 2013,
Guang, Gu, and Zhu [14] proposed a leveled CLFHE scheme
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using the re-linearization technique presented in [15] and
proved that it was semantically secure based on the hardness
of the LWE problem in the random oracle model. However,
their scheme incurs a very high computational complexity.
Thus, Chen, Hu, and Lian [16] proposed a leveled certifi-
cateless homomorphic encryption (CLHE) scheme using the
approximate eigenvector method presented in [3] and proved
its semantic security based on the hardness of the LWE prob-
lem in the random oracle model. This scheme has a relatively
lower time complexity in comparison with the scheme pro-
posed byGuang et al. However, the scheme proposed byChen
et al. supports only homomorphic addition, but not homomor-
phic multiplication. Thus, constructing an efficient leveled
CLFHE scheme is a problem that remains to be addressed.

A. OUR CONTRIBUTIONS
In this work, we focus on designing leveled CLFHE schemes.
By utilizing the approximate eigenvector method [3], a lot
of leveled identity-based FHE schemes [17]–[20] have been
proposed. Considering that the approximate eigenvector
method can be used to eliminate a user’s evaluation key,
we adopt it to design leveled CLFHE schemes. The contri-
butions of this work are as follows:

1) We propose a leveled CLFHE scheme in the random
oracle model. Specifically, we first construct a leveled
CLFHE scheme using the technically simpler GSW
variant presented in [5] and the preimage sampling
algorithm SamplePre presented in [21]. Next, we pro-
vide a parameter setting for the proposed CLFHE
scheme. Finally, we prove that the proposed CLFHE
scheme is semantically secure and anonymous for
adaptive chosen-identity based on the hardness of the
LWE problem in the random oracle model.

2) We remove the random oracles and propose a leveled
CLFHE scheme in the standard model. We first con-
struct a leveled CLFHE scheme using the technically
simpler GSW variant presented in [5] and the Gaus-
sian sampling algorithm SampleLeft presented in [22].
We then provide a parameter setting for the proposed
CLFHE scheme. Finally, by exploiting the Gaussian
sampling algorithm SampleRight presented in [22],
we prove that the proposed CLFHE scheme is seman-
tically secure and anonymous for selective-identity
based on the hardness of the LWE problem in the
standard model.

B. PAPER ORGANIZATION
The remainder of this paper is organized as follows.
In Section II, we give the preliminaries including notations,
lattice backgrounds, and the LWE problem. We describe
the syntax and security models for CLFHE schemes in
Section III. In Section IV, we put forth a leveled CLFHE
scheme based on the LWE problem in the random oracle
model. In Section V, we put forward a leveled CLFHE
scheme based on the LWE problem in the standard model.

Finally, we conclude and outline some future work in
Section VI.

II. PRELIMINARIES
A. NOTATIONS
For a positive integer k , we let [k] = {1, . . . , k}. For an
integer modulus q, we let Zq = (−q/2, q/2] ∩ Z. We treat
vectors as column vectors and denote them with bold lower-
case letters, e.g., x. We denote matrices with bold uppercase
letters, e.g., X, and view a matrix X as the set {xi} of its
column vectors. We denote by X̃ the Gram-Schmidt ordered
orthogonalization of a matrix X. We denote the Euclidean
norm of a vector x by ‖x‖. For a matrix X, the Euclidean
norm ofX is defined as ‖X‖ = maxj‖xj‖. Hence, for an n×m
matrix X and an n× m′ matrix Y, it holds that

‖XT
· Y‖ ≤

√
m · ‖X‖ · ‖Y‖.

Throughout this paper, we let λ denote a security param-
eter and negl(λ) denote a negligible function. The sta-
tistical distance between two random variables X and Y
over a countable domain S is defined as 1(X;Y ) =
maxA⊆S |Pr [X ∈ A]− Pr [Y ∈ A]|. Two ensembles of ran-
dom variables {Xλ} and {Yλ} are said to be statisti-
cally close if 1(Xλ;Yλ) = negl(λ). Two ensembles
of random variables {Xλ} and {Yλ} are computationally
indistinguishable if for every polynomial-time attacker A,∣∣Pr [A (1λ,Xλ) = 1

]
− Pr

[
A
(
1λ,Yλ

)
= 1

]∣∣ = negl(λ).

B. LATTICE BACKGROUNDS
1) INTEGER LATTICES
Definition 1: Let B = (b1, . . . ,bm) ∈ Rm×m be

a matrix whose columns are linearly independent vectors
b1, . . . ,bm ∈ Rm. The m-dimensional lattice 3 generated
by the basis B is defined as the set

3 = L(B) =
{
y ∈ Rm

: ∃s ∈ Zm, y = Bs =
m∑
i=1

sibi
}
.

Definition 2: For a positive integer q, a matrix A ∈ Zn×mq
and a vector u ∈ Znq, define two m-dimensional integer
lattices:

3⊥q (A) =
{
e ∈ Zm : Ae = 0 mod q

}
⊆ Zm,

3u
q(A) =

{
e ∈ Zm : Ae = u mod q

}
⊆ Zm.

We observe that if x ∈ 3u
q(A), then 3

u
q(A) = 3⊥q (A) + x,

and hence 3u
q(A) is a shift of 3

⊥
q (A).

Proposition 1 ( [23], [24]): There is a PPT algorithm
GenBasis (1n, 1m, q) that, for m ≥ 6n log q, outputs A ∈
Zn×mq and T ∈ Zm×m such that the distribution of A is
statistically close to uniform over Zn×mq , T is a basis of
3⊥q (A), and ‖T̃‖ ≤ O(

√
n log q).

2) GAUSSIANS ON LATTICES
Definition 3: For any vector c ∈ Rm and real σ > 0,

the Gaussian function onRm with center c and parameter σ is

26750 VOLUME 8, 2020



M. Li: Leveled Certificateless Fully Homomorphic Encryption Schemes From Learning With Errors

defined as

∀y ∈ Rm, ρσ,c(y) = exp
(
−π‖y− c‖2/σ 2

)
.

For any c ∈ Rm, σ > 0, and m-dimensional lattice 3,
the discrete Gaussian distribution over 3 is defined as

∀y ∈ 3, D3,σ,c(y) =
ρσ,c(y)
ρσ,c(3)

.

The subscripts σ and c are taken as 1 and 0 when omitted.
Proposition 2 ( [25]): For any m-dimensional lattice 3,

vector c ∈ Rm, and reals 0 < ε < 1, σ ≥ ηε(3), we have

Pr
[
y← D3,σ,c : ‖y− c‖ > σ

√
m
]
≤

1+ ε
1− ε

· 2−m,

where ηε(3) is the smoothing parameter of 3 and for any
basis B of 3, ηε(3) ≤ ‖B̃‖ · ω(

√
logm).

3) SAMPLING ALGORITHMS
Proposition 3 ( [21]): Let q ≥ 2 and m > n. Then there

exists a PPT algorithm SamplePre(A,TA,u, σ ) that, given
a matrix A ∈ Zn×mq , a basis TA of 3⊥q (A), a vector u ∈ Znq,
and a parameter σ ≥ ‖T̃A‖ · ω(

√
logm), outputs a vector

x ∈ Zm sampled from a distribution that is statistically close
to D3u

q (A),σ .
Proposition 4 ( [22]): Let q ≥ 2 and m ≥ 2n log q. There

exists a PPT algorithm SampleLeft(A,A1,TA,u, σ ) that,
given a matrix A ∈ Zn×mq , a matrix A1 ∈ Zn×mq , a basis
TA of 3⊥q (A), a vector u ∈ Znq, and a parameter σ ≥
‖T̃A‖ · ω(

√
logm), outputs a vector x ∈ Z2m sampled from a

distribution that is statistically close to D3u
q (A|A1),σ .

Proposition 5 ( [22]): Let q ≥ 2 and m > n. Then there
exists a PPT algorithm SampleRight(A,B,R,TB,u, σ )
that, given a matrix A ∈ Zn×mq , a matrix B ∈ Zn×mq , a matrix
R ∈ Zm×m sampled from Dm×mZ,ω(

√
logm)

, a basis TB of 3⊥q (B),

a vector u ∈ Znq, and a parameter σ ≥ ‖T̃B‖ ·m ·ω(
√
logm)2,

outputs a vector x ∈ Z2m sampled from a distribution that is
statistically close to D3u

q (A|AR+B),σ .

C. THE LWE Problem
The LWE problem was introduced by Regev [4]. For positive
integers n and q ≥ 2, a vector s ∈ Znq, and a probability
distribution χ over Z, define the LWE distribution As,χ to be
the distribution over Znq × Zq obtained by choosing a vector
a← Znq uniformly at random and an error term e← χ , and
outputting (a, b = aT · s + e mod q). The decisional LWE
(DLWE) is defined as follows.
Definition 4: Let n = n(λ) be an integer dimension, let

q = q(λ) ≥ 2 be an integer modulus, and let χ = χ (λ)
be an error distribution over Z. The average-case DLWEn,q,χ
problem is to distinguish between any desired number of
samples (ai, bi) ← As,χ , and the same number of samples
chosen from the uniform distribution over Znq × Zq. The
DLWEn,q,χ assumption is that the DLWEn,q,χ problem is
infeasible.

There are reductions between the DLWEn,q,χ assumption
and the standard lattice assumptions as follows. These reduc-
tions take the error distribution χ to be a discrete Gaussian
distribution DZ,αq that has parameter αq for some α ∈ (0, 1).
Proposition 6 ( [4], [6], [26], [27], Stated as Corol-

lary 1 From [28]): Let q = q(n) ∈ N be either a prime power
or a product of small (size poly(n)) distinct primes, and let
α ≥ 2

√
n/q. If there exists an efficient algorithm that solves

the average-case DLWEn,q,DZ,αq problem, then:

• there exists an efficient quantum algorithm that solves
GapSVPÕ(n/α) and SIVPÕ(n/α) in the worst-case for
any n-dimensional lattices;

• if in addition q ≥ Õ(2n/2), then there exists an efficient
classical algorithm that solves GapSVPÕ(n/α) in the
worst-case for any n-dimensional lattices.

We extend the LWE distribution to w ≥ 1 secrets, defining
AS,χ for S ∈ Zn×wq to be the distribution obtained by choosing
a vector a← Znq and an error vector e← χw, and outputting
(a,bT = aT · S + eT mod q) ∈ Znq × Z1×w

q . Clearly,
distinguishing such samples from uniformly random is as
hard as the DLWEn,q,χ problem. It is generally convenient to
group many sample pairs together in matrices. We can thus
express the DLWEn,q,χ problem as distinguish any desired
number of sample pairs (A,BT

= AT
· S + ET mod q) ∈

Zn×mq × Zm×wq from uniformly random.

III. SYNTAX AND SECURITY MODELS FOR CLFHE
A. SYNTAX DEFINITION
Dent [10], [11] gave three formal definitions for CLE,
namely, AP definition [7], BSS definition [29], and LK
definition [30]. Using the BSS definition [29] in which a user
cannot publish its public key until it has obtained a partial
private key, we define a leveled CLFHE scheme CLFHE =
(Setup,Extract,KeyGen,Encrypt,Decrypt,Eval) as
follows.

• Setup(1λ, 1L): This algorithm is run by the KGC.
It takes as input a security parameter λ and a circuit
depth L. It outputs a master public keympk and a master
private key msk .

• Extract(mpk,msk, id): This algorithm is run by the
KGC. It takes as input a master public keympk , a master
private key msk , and an identity id ∈ ID, where ID
is the identity space of the scheme. It outputs a partial
private key pskid .

• KeyGen(mpk, id, pskid ): This algorithm takes as input
a master public key mpk , an identity id , and a partial
private key pskid . It outputs a public key pkid and a
private key skid .

• Encrypt(mpk, id, pkid , µ): This algorithm takes as
input a master public key mpk , an identity id , a pub-
lic key pkid , and a message µ ∈ M, where M is
the message space of the scheme. It outputs a cipher-
text c ∈ C, where C is the ciphertext space of the
scheme.
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• Decrypt(mpk, skid , c): This algorithm takes as input
a master public key mpk , a private key skid , and a
ciphertext c ∈ C. It outputs a message µ ∈ M or a
failure symbol ⊥.

• Eval(mpk, id, f , c1, . . . , c`): This algorithm takes as
input a master public key mpk , an identity id , a cir-
cuit f : M`

→ M of depth ≤ L, and ciphertexts
{ci← Encrypt(mpk, id, pkid , µi)}i∈[`] under the iden-
tity id . It outputs an evaluated ciphertext cf ∈ C.

Correctness. A CLFHE scheme is correct if for any iden-
tity id ∈ ID, circuit f : M`

→ M of depth ≤ L, and
messages {µi ∈M}i∈[`], it holds that

Pr
[
Decrypt(mpk, skid , cf ) 6= f (µ1, . . . , µ`)

]
= negl(λ),

where cf ← Eval(mpk, id, f , c1, . . . , c`).
Compactness.ACLFHE scheme is compact if there exists

a polynomial p(λ,L) such that

|cf | ≤ p(λ,L).

That is to say, the size of the evaluated ciphertext cf should
be independent of f and `, but can depend on λ and L.
Security. The security model for CLFHE is the same as

that for CLE. There are two types of attackers, Type I attacker
(denoted byAI ) and Type II attacker (denoted byAII ), for the
CLE scheme. A Type I attacker acts as an outsider that can
replace the public keys, whereas a Type II attacker acts as the
KGC that cannot replace the public keys, but can access the
master private key. According to the security models for CLE
given by Dent [10], [11], we define the indistinguishabil-
ity from random under an adaptive-identity chosen-plaintext
attack (INDr-ID-CPA) model and the indistinguishability
from random under a selective-identity chosen-plaintext
attack (INDr-sID-CPA) model for CLFHE in the following
two sections. The concept of the indistinguishability from
random under a chosen-plaintext attack implies both seman-
tic security and recipient anonymity. The selective-identity
security is a weaker variant of the adaptive-identity security.
In the selective-identity security model, the attacker must fix
an identity it intends to attack before seeing the master public
key.

B. ADAPTIVE-IDENTITY SECURITY MODEL FOR CLFHE
The INDr-ID-CPA security for CLFHE against Type I attacks
is defined by the following game.

Setup: The challenger runs (mpk,msk)← Setup(1λ, 1L)
and sends mpk to the attacker AI .
Phase 1: AI may adaptively make the following queries:
• Extract partial private key: If AI submits an identity
id ∈ ID to the challenger, the challenger runs pskid ←
Extract(mpk,msk, id) and returns the partial private key
pskid to AI .

• Request public key: If AI submits an identity
id ∈ ID to the challenger, the challenger
runs (pkid , skid ) ← KeyGen(mpk, id, pskid ) and

pskid ← Extract(mpk,msk, id) (as necessary) and
returns the public key pkid to AI . The challenger also
stores the tuple (id, pkid , skid ).

• Replace public key: If AI submits an identity id ∈ ID
and a public key pk ′id to the challenger, the challenger
replaces the public key of id with pk ′id and updates the
corresponding information in the storage.

Challenge: OnceAI decides that Phase 1 is over, it outputs
a target identity id∗ ∈ ID and a message µ ∈M on which
it wishes to be challenged. The challenger randomly chooses
a bit b← {0, 1} and a ciphertext c← C. If b = 0, it sets the
challenge ciphertext to c∗0 = Encrypt(mpk, id∗, pkid∗ , µ),
where pkid∗ can be the replaced public key pk ′id∗ . If b = 1,
it sets the challenge ciphertext to c∗1 = c. The challenger
sends c∗b to AI .
Phase 2:AI may continue to make the queries as described

in Phase 1.
Guess: Finally, AI outputs a guess b′ ∈ {0, 1}.
In the above game, AI is not allowed to replace the public

key of id∗ in Phase 1 and request the partial private key of id∗

in Phase 1 or 2 because it can then compute a full private key
for id∗.
The attacker AI wins the game if b = b′. We define the

advantage of AI in attacking the CLFHE scheme as

AdvINDr−ID−CPACLFHE,AI
(λ) =

∣∣∣Pr[b = b′
]
−

1
2

∣∣∣.
The CLFHE scheme is considered INDr-ID-CPA secure
against Type I attacks if AdvINDr−ID−CPACLFHE,AI

(λ) = negl(λ).
The INDr-ID-CPA security for CLFHE against Type II

attacks is defined by the following game.
Setup: The challenger runs (mpk,msk)← Setup(1λ, 1L)

and sends mpk and msk to the attacker AII .
Phase 1: AII may adaptively make the following queries:

• Request public key: If AII submits an identity id ∈ ID
and a partial private key pskid to the challenger, the chal-
lenger runs (pkid , skid )← KeyGen(mpk, id, pskid ) and
returns the public key pkid to AII .

Challenge: AII outputs a target identity id∗ ∈ ID and a
message µ ∈ M. The challenger picks a random bit b ←
{0, 1} and a random ciphertext c ← C. If b = 0, it sets the
challenge ciphertext to c∗0 = Encrypt(mpk, id∗, pkid∗ , µ).
If b = 1, it sets the challenge ciphertext to c∗1 = c. The
challenger sends c∗b to AII .
Phase 2: AII may continue to make the queries as

described in Phase 1.
Guess: AII outputs a guess b′ ∈ {0, 1}.
The attacker AII wins the game if b = b′. We define the

advantage of AII in attacking the CLFHE scheme as

AdvINDr−ID−CPACLFHE,AII
(λ) =

∣∣∣Pr[b = b′
]
−

1
2

∣∣∣.
The CLFHE scheme is considered INDr-ID-CPA secure
against Type II attacks if AdvINDr−ID−CPACLFHE,AII

(λ) = negl(λ).
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C. SELECTIVE-IDENTITY SECURITY MODEL FOR CLFHE
The INDr-sID-CPA security for CLFHE against Type I
attacks is defined by the following game.

Init: The attacker AI outputs an identity id∗ ∈ ID on
which it wishes to be challenged.

Setup: The challenger runs (mpk,msk)← Setup(1λ, 1L)
and sends mpk to AI .
Phase 1: AI may adaptively make partial private key

extraction, public key request, and public key replacement
queries. The challenger responds to these queries as outlined
in Section III-B.

Challenge: OnceAI decides that Phase 1 is over, it outputs
a message µ ∈ M on which it wishes to be challenged.
The challenger randomly chooses a bit b ← {0, 1} and a
ciphertext c ← C. If b = 0, it sets the challenge ciphertext
to c∗0 = Encrypt(mpk, id∗, pkid∗ , µ), where pkid∗ may be
the replaced public key pk ′id∗ . If b = 1, it sets the challenge
ciphertext to c∗1 = c. The challenger sends c∗b to AI .

Phase 2:AI may continue to make the queries as described
in Phase 1.

Guess: Finally, AI outputs a guess b′ ∈ {0, 1}.
In the above game, AI cannot replace the public key of

id∗ in Phase 1 and request the partial private key of id∗ in
Phase 1 or 2 because this would otherwise make it possible
to compute the full private key for id∗.
The attacker AI wins the game if b = b′. We define the

advantage of AI in attacking the CLFHE scheme as

AdvINDr−sID−CPACLFHE,AI
(λ) =

∣∣∣Pr[b = b′
]
−

1
2

∣∣∣.
The CLFHE scheme is said to be INDr-sID-CPA secure
against Type I attacks if AdvINDr−sID−CPACLFHE,AI

(λ) = negl(λ).
The INDr-sID-CPA security for CLFHE against Type II

attacks is defined by the following game.
Init: The attacker AII outputs an identity id∗ ∈ ID.
Setup: The challenger runs (mpk,msk)← Setup(1λ, 1L)

and sends mpk and msk to AII .
Phase 1: AII may adaptively make public key request

queries. The challenger responds to these queries as outlined
in Section III-B.

Challenge:AII outputs a messageµ ∈M. The challenger
picks a random bit b ← {0, 1} and a random ciphertext
c ← C. If b = 0, it sets the challenge ciphertext to c∗0 =
Encrypt(mpk, id∗, pkid∗ , µ). If b = 1, it sets the challenge
ciphertext to c∗1 = c. The challenger sends c∗b to AII .
Phase 2: AII may continue to make the queries as

described in Phase 1.
Guess: AII outputs a guess b′ ∈ {0, 1}.
The attacker AII wins the game if b = b′. We define the

advantage of AII in attacking the CLFHE scheme as

AdvINDr−sID−CPACLFHE,AII
(λ) =

∣∣∣Pr[b = b′
]
−

1
2

∣∣∣.
The CLFHE scheme is said to be INDr-sID-CPA secure
against Type II attacks if AdvINDr−sID−CPACLFHE,AII

(λ) = negl(λ).

IV. A LEVELED CLFHE SCHEME IN
THE RANDOM ORACLE MODEL
A. CONSTRUCTION
The proposed leveled CLFHE scheme in the random oracle
model is described as follows.

Setup(1λ, 1L): On input a security parameter λ and a
circuit depth L, do:
1) Set the parameters n = n(λ,L), m = m(λ,L), α =

α(λ,L), q = q(λ,L), σ1 = σ1(λ,L), and σ2 =
σ2(λ,L) as specified in Section IV-B below.

2) Define the gadget matrix G = I2m+1 ⊗ gT ∈

Z(2m+1)×N
q , where g =

(
1, . . . , 2dlog qe−1

)T
∈ Zdlog qeq ,

N = (2m + 1) · dlog qe. Define the inverse func-
tion G−1 : Z(2m+1)×N

q → {0, 1}N×N that expands
each entry a ∈ Zq of the input matrix into a vector(
a0, . . . , adlog qe−1

)T, where ai is the ith bit in a’s binary
representation. For any matrix X ∈ Z(2m+1)×N

q , it is
clear that G ·G−1(X) = X holds. The definitions of G
and G−1 can also be found in [31], [32].

3) Invoke the algorithm GenBasis (1n, 1m, q) to generate
a random matrix A ∈ Zn×mq and a basis TA for 3⊥(A)
such that ‖T̃A‖ ≤ O(

√
n log q).

4) Select two matrices V,W← Zn×mq at random.
5) Select a cryptographic hash functionH : {0, 1}∗→ Znq.
6) Output a master public key mpk =

(
A,V,W,H

)
and

a master private key msk = TA.
Extract(mpk,msk, id): On input a master private keymsk

and an identity id ∈ {0, 1}∗, do:
1) Compute u = H (id).
2) Invoke the algorithm SamplePre(A,TA,u, σ1) to

sample a vector d ∈ Zm. Note that A · d = u mod q
and d is distributed as D3u

q (A),σ1 by Proposition 3.
3) Output a partial private key pskid = d.
KeyGen(mpk, id, pskid ): On input an identity id ∈ {0, 1}∗

and a partial private key pskid = d, do:
1) Sample a vector x← DZm,σ2 .
2) Let v = V · x mod q.
3) Let w =W · d mod q.
4) Let z =

(
−d
−x
1

)
∈ Z2m+1.

5) Output a public key pkid = (v,w) and a private key
skid = z.

Encrypt(mpk, id, pkid , µ): On input an identity id ∈
{0, 1}∗, a public key pkid , and a message µ ∈ {0, 1}, do:
1) Compute u = H (id).
2) Pick three matrices S1,S2,S3← Zn×Nq at random.
3) Sample three noise matrices E1,E2,E3← Dm×NZ,αq , and

sample three noise vectors e1, e2, e3← DNZ,αq.
4) Output a ciphertext C given below.

C =

 ATS1 + E1 +WTS3 + E3
VTS2 + E2

uTS1 + eT1 + vTS2 + eT2 + wTS3 + eT3


+ µ ·G ∈ Z(2m+1)×N

q .
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Decrypt(mpk, skid ,C): On input a private key skid = z
and a ciphertext C, do:
1) Let c be the penultimate column of C.
2) Output a message

µ =

⌊
zT · c

2dlog qe−2

⌉
.

Add(mpk, id,C1,C2): On input two ciphertexts C1, C2
under the same identity id , output

CAdd = C1 + C2 ∈ Z(2m+1)×N
q .

Mult(mpk, id,C1,C2): On input two ciphertexts C1, C2
under the same identity id , output

CMult = C1 ·G−1(C2) ∈ Z(2m+1)×N
q .

B. CORRECTNESS AND PARAMETER SELECTION
For a ciphertext C← Encrypt(mpk, id, pkid , µ), we have

zTC = zT

 ATS1 + E1 +WTS3 + E3
VTS2 + E2

uTS1 + eT1 + vTS2 + eT2 + wTS3 + eT3


+ µ · zTG

= eT1 + eT2 + eT3 − dTE1 − xTE2 − dTE3︸ ︷︷ ︸
error term

+ µ · zTG.

We write rT = eT1 + eT2 + eT3 − dTE1 − xTE2 − dTE3. The
error term is bounded by

‖rT‖ = ‖eT1 + eT2 + eT3 − dTE1 − xTE2 − dTE3‖

≤ ‖eT1 + eT2 + eT3‖ + ‖d
TE1 + xTE2 + dTE3‖

≤ 3αq+ ‖d‖ · ‖E1‖ + ‖x‖ · ‖E2‖ + ‖d‖ · ‖E3‖

≤ 3αq+ 2σ1
√
m · αq

√
m+ σ2

√
m · αq

√
m

= ((2σ1 + σ2)m+ 3) αq,

where ‖d‖ ≤ σ1
√
m, ‖x‖ ≤ σ2

√
m. Additionally, we write

B = ((2σ1 + σ2)m+ 3) αq.
For CAdd ← Add(mpk, id,C1,C2) and CMult ←

Mult(mpk, id,C1,C2), we have

zTCAdd = zT (C1 + C2)

= rT1 + rT2 + (µ1 + µ2) · zTG,

zTCMult = zTC1 ·G−1(C2)

=
(
rT1 + µ1 · zTG

)
·G−1(C2)

= rT1 ·G
−1(C2)+ µ1 · zTC2

= rT1 ·G
−1(C2)+ µ1 · rT2 + µ1µ2 · zTG.

The error terms are bounded by ‖rTAdd‖ ≤ ‖r
T
1‖ + ‖r

T
2‖ and

‖rTMult‖ ≤ N ·‖r
T
1‖+‖r

T
2‖, respectively. IfC1 andC2 are fresh

ciphertexts, then the error terms are bounded by ‖rTAdd‖ ≤ 2B
and ‖rTMult‖ ≤ (N + 1)B, respectively.

By iteratively applying Add(mpk, id,C1,C2) and
Mult(mpk, id,C1,C2), we can homomorphically compute
Cf ← Eval (mpk, id, f ,C1, . . . ,C`), where f is a circuit

of depth ≤ L. Since ‖rTAdd‖ < ‖r
T
Mult‖, the error term of

the evaluated ciphertext Cf is bounded by ‖rTf ‖ ≤ (N +
1)LB. Since 2dlog qe−2 ∈ [q/4, q/2), Decrypt(mpk, skid ,Cf )
will output the value f (µ1, . . . , µ`) on the condition that
(N + 1)LB < q/8.

To work correctly, the scheme requires that:
• m ≥ 6n log q;
• σ1 ≥ ‖T̃A‖ · ω(

√
logm), where ‖T̃A‖ ≤ O(

√
n log q);

• σ2 ≥ ω(
√
logm);

• (N + 1)LB < q/8, where B = ((2σ1 + σ2)m+ 3) αq;
• α ∈ (0, 1) and α ≥ 2

√
n/q.

To satisfy the above requirements, we set the parameters
(n,m, α, q, σ1, σ2) as follows:

n = n(λ,L),

m = 6n1+δ,

α =
(
2O(L log n)

· O(m3/2) · ω(
√
log n)

)−1
,

q = 2O(L log n)
· O(m2) · ω(

√
log n),

σ1 =
√
m · ω(

√
log n),

σ2 = ω(
√
log n).

Here, we assume that δ is such that nδ > dlog qe =
O (L log n).
In addition, we observe that the evaluated ciphertext

Cf ∈ Z(2m+1)×N
q . Therefore,∣∣Cf
∣∣ ≤ (2m+ 1) · N · dlog qe

= (2m+ 1) · (2m+ 1) · dlog qe · dlog qe

= (2m+ 1)2 · dlog qe2 ,

whereN = (2m+1)·dlog qe. As a result, the proposed scheme
enjoys the compactness.

C. SECURITY PROOF
Theorem 1: Suppose the hash function H is a random

oracle. Then, the CLFHE scheme in Section IV-A is INDr-
ID-CPA secure against Type I attacks provided that the
DLWEn,q,χ assumption holds. Specifically, suppose there
exists an attacker AI that wins the INDr-ID-CPA game
defined in Section III-B with advantage AdvINDr−ID−CPACLFHE,AI

(λ),
making at most Qr public key request queries and Qh hash
queries to H , then there exists an algorithm that solves the
DLWEn,q,χ problem with advantage AdvDLWE(λ), such that

AdvINDr−ID−CPACLFHE,AI
(λ) ≤ 2 (Qr + Qh) · AdvDLWE(λ)+ negl(λ).

Proof:We prove this theorem using a sequence of indis-
tinguishable games. In Game i, we let Yi denote the event that
the attacker wins the game, i.e., the event b = b′.
Game 0. This game is the original INDr-ID-CPA game

between an attacker AI attacking the CLFHE scheme and a
challenger. By definition,

AdvINDr−ID−CPACLFHE,AI
(λ) =

∣∣∣Pr[Y0]− 1
2

∣∣∣.
Game 1. Compared with Game 0, Game 1 makes two

changes:
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1) The challenger generates a guess h ← {0, 1} as to
whether AI will request the partial private key for the
target identity or not. We know that if AI requests the
partial private key of the target identity, then it is not
allowed to replace the public key of the target identity
in Phase 1. Thus, if h = 0, then we assume that AI
will request the partial private key of the target identity.
If h = 1, then we assume that AI does not request the
partial private key of the target identity, and therefore it
has the option of replacing the public key of the target
identity in Phase 1.

2) We also change the conditions in which AI wins the
game. Let Ext be the event that AI queries the partial
private key on the target identity. The new conditions
are as follows:
• If h = 0 and Ext occurs, then AI wins the game if
b = b′.

• If h = 0 and Ext does not occur, then AI wins
the game with probability 1/2. (i.e., the value b′ is
ignored andAI is assumed to have output a random
guess for b.)

• If h = 1 and Ext occurs, then AI wins the game
with probability 1/2. (as above)

• If h = 1 and Ext does not occur, then AI wins the
game if b = b′.

It is easy to show that∣∣∣Pr[Y0]− 1
2

∣∣∣ = 2 ·
∣∣∣Pr[Y1]− 1

2

∣∣∣.
We note that∣∣∣Pr[Y1]− 1

2

∣∣∣ = ∣∣∣1
2
· Pr

[
Y1|h = 0

]
+
1
2
· Pr

[
Y1|h = 1

]
−

1
2

∣∣∣
≤

1
2
·

∣∣∣Pr[Y1|h = 0
]
−

1
2

∣∣∣
+
1
2
·

∣∣∣Pr[Y1|h = 1
]
−

1
2

∣∣∣.
Consequently, we continue the game hopping in two different
chains depending on the value of the guess h ∈ {0, 1}. Since
the guess h is either 0 or 1 at any time, only one of these two
chains will happen after Game 1.

The games under the guess h = 0 are as follows.
Game 2. Compared with Game 1, Game 2 makes three

changes:
1) In the setup phase, the challenger picks an index

i← [Qr].
2) OnAI ’s kth distinct query idk for a public key, assume

without loss of generality that AI has not queried the
partial private key on idk . If k = i, the challenger
chooses vi ← Znq at random, extracts the partial
private key di ← Extract(mpk,msk, idi) and lets
wi = W · di mod q, and returns pkid i = (vi,wi)

to AI . Otherwise, the challenger extracts the partial
private key dk ← Extract(mpk,msk, idk ), generates

(
pkidk , skidk

)
← KeyGen(mpk, id,dk ), and returns the

public key pkidk to AI .
3) When AI produces a target identity id∗ and a message

µ, assume without loss of generality that AI already
queried the public key on id∗. If id∗ 6= idi, the chal-
lenger aborts and outputs the symbol ⊥. Otherwise,
the challenger sends the challenge ciphertext C∗b toAI ,
where

C∗0 =

 ATS1 + E1 +WTS3 + E3
VTS2 + E2

uTi S1 + eT1 + vTi S2 + eT2 + wT
i S3 + eT3


+ µ ·G ∈ Z(2m+1)×N

q .

ByCorollary 5.4 in [21], Game 2 is statistically indistinguish-
able from Game 1, provided that Game 2 has not aborted and
output ⊥. Thus,∣∣∣Pr[Y1|h = 0

]
−

1
2

∣∣∣ = Qr ·

∣∣∣Pr[Y2]− 1
2

∣∣∣.
Game 3. In this game, the challenger changes the way in

which the challenge ciphertext C∗0 is generated. The chal-
lenger chooses V̂ ← Zm×Nq and v̂i ← ZNq at random and
sets the challenge ciphertext

C∗0 =

 ATS1 + E1 +WTS3 + E3

V̂
uTi S1 + eT1 + v̂Ti + wT

i S3 + eT3

+ µ ·G.
Suppose AI has a non-negligible advantage in distin-

guishing Game 2 from Game 3. We use AI to construct
an algorithm B1 to solve a DLWEn,q,χ problem instance((
F, f

)
,
(

P
pT

))
∈ Zn×(m+1)q × Z(m+1)×N

q . To solve this
instance using AI , B1 simulates the challenger for AI as
follows:
• In the setup phase, B1 sets V = F.
• On AI ’s kth distinct query idk for a public key, B1 does
the following: if k = i, it lets vi = f, extracts the
partial private key di ← Extract(mpk,msk, idi) and
lets wi = W · di mod q, and returns pkid i = (f,wi)

to AI . Otherwise, the challenger extracts the partial
private key dk ← Extract(mpk,msk, idk ), generates(
pkidk , skidk

)
← KeyGen(mpk, id,dk ), and returns the

public key pkidk to AI .
• WhenAI produces a target identity id∗ and amessageµ,
B1 does the following: if id∗ 6= idi, it aborts and
outputs the symbol ⊥. Otherwise, it sends the challenge
ciphertext C∗b to AI , where

C∗0 =

 ATS1 + E1 +WTS3 + E3
P

uTi S1 + eT1 + pT + wT
i S3 + eT3

+ µ ·G.
• B1 is otherwise the same as the Game 2 challenger.
• Finally, AI guesses whether the challenger that it is
interacting with is the Game 2 challenger or the Game 3
challenger. B1 outputs AI ’s guess as the answer to the
given DLWE instance.
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It can be seen that B1’s advantage in solving the given DLWE
instance is the same as AI ’s advantage in distinguishing
Game 2 from Game 3. Therefore,∣∣Pr[Y2]− Pr

[
Y3
]∣∣ ≤ AdvDLWE,B1 (λ).

Game 4. In this game, the challenger changes the way in
which the challenge ciphertext C∗0 is generated. The chal-

lenger selects
4

V i← ZNq at random and sets the challenge
ciphertext

C∗0 =

ATS1 + E1 +WTS3 + E3

V̂
4

vTi

+ µ ·G.
In Game 3, v̂Ti is uniformly random in Z1×N

q ; hence, uTi S1 +
eT1 + v̂Ti + wT

i S3 + eT3 is also uniformly random in Z1×N
q .

Therefore, ∣∣Pr[Y3]− Pr
[
Y4
]∣∣ = negl(λ).

Game 5. In this game, the challenger changes the way in
which the challenge ciphertext C∗0 is generated. The chal-
lenger chooses Ŵ← Zm×Nq at random and sets the challenge
ciphertext

C∗0 =

ATS1 + E1 + Ŵ
V̂
4

vTi

+ µ ·G.
SupposeAI has a non-negligible advantage in distinguish-

ing Game 4 from Game 5. We use AI to construct an algo-
rithm B2 to solve a DLWEn,q,χ problem instance (F,P) ∈
Zn×mq ×Zm×Nq . To solve this instance usingAI , B2 simulates
the challenger for AI as follows:
• In the setup phase, B2 sets W = F.
• When AI produces a target identity id∗ and a message
µ, B2 does the following: if id∗ 6= idi, it aborts and
outputs the symbol ⊥. Otherwise, it sends the challenge
ciphertext C∗b to AI , where

C∗0 =

ATS1 + E1 + P
V̂
4

vTi

+ µ ·G.
• B2 is otherwise the same as the Game 4 challenger.
• Finally, AI guesses whether the challenger that it is
interacting with is the Game 4 challenger or the Game 5
challenger. B2 outputs AI ’s guess as the answer to the
given DLWE instance.

It can be seen that B2’s advantage in solving the given DLWE
instance is the same as AI ’s advantage in distinguishing
Game 4 from Game 5. Therefore,∣∣Pr[Y4]− Pr

[
Y5
]∣∣ ≤ AdvDLWE,B2 (λ).

Game 6. In this game, the challenger changes the way in
which the challenge ciphertext C∗0 is generated. The chal-

lenger selects
4

W← Zm×Nq at random and sets the challenge

ciphertext

C∗0 =


4

W
V̂
4

vTi

+ µ ·G.
In Game 5, Ŵ is uniformly random in Zm×Nq ; hence, ATS1+
E1 + Ŵ is also uniformly random in Zm×Nq . Therefore,∣∣Pr[Y5]− Pr

[
Y6
]∣∣ = negl(λ).

Game 7. In this game, the challenger changes the way in
which the challenge ciphertext C∗0 is generated. The chal-
lenger chooses the challenge ciphertext C∗0 ← Z(2m+1)×N

q

at random. In Game 6,

 4

W
V̂
4

vTi

 is a random element in

Z(2m+1)×N
q ; hence,

 4

W
V̂
4

vTi

+ µ ·G is also a random element

in Z(2m+1)×N
q . Thus,∣∣Pr[Y6]− Pr

[
Y7
]∣∣ = negl(λ).

In addition, in Game 7, the challenge ciphertext C∗0 is chosen
at random from Z(2m+1)×N

q . Therefore,∣∣∣Pr[Y7]− 1
2

∣∣∣ = 0.

The games under the guess h = 1 are as follows.
Game 2′. Compared with Game 1, Game 2′ makes six

changes:
1) In the setup phase, the challenger picks an index

j← [Qh].
2) In the setup phase, the challenger generates A as a

random matrix in Zn×mq .
3) OnAI ’s kth distinct hash query idk toH , the challenger

does the following: If k = j, it chooses uj,wj ← Znq
at random, locally stores the tuple

(
idj,uj,wj,⊥

)
, and

returns uj to AI . Otherwise, it samples dk ← DZm,σ1 ,
lets uk = A · dk mod q and wk = W · dk mod q,
locally stores the tuple (idk ,uk ,wk ,dk), and returns uk
to AI .

4) When AI asks for a partial private key for the
identity id , assume without loss of generality that
AI already made the hash query on id . If id = idj,
then the challenger aborts and outputs a random bit,
i.e., AI wins the game with a probability of 1/2. Oth-
erwise, the challenger retrieves the tuple (id,u,w,d)
from local storage and returns d to AI .

5) When AI requests for a public key for the identity id ,
assume without loss of generality thatAI already made
the hash query on id . If id = idj, then the challenger
samples a vector xj ← DZm,σ2 and lets vj = V · xj
mod q, retrieves the tuple

(
idj,uj,wj,⊥

)
from local

storage, and returns pkidj =
(
vj,wj

)
to AI . Otherwise,

the challenger samples a vector x ← DZm,σ2 and lets
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v = V ·x mod q, retrieves the tuple (id,u,w,d) from
local storage, and returns pkid = (v,w) to AI .

6) When AI produces a target identity id∗ and a mes-
sage µ, assume without loss of generality that AI
already queried the public key on id∗. If id∗ 6= idj,
the challenger aborts and outputs the symbol⊥. Other-
wise, the challenger sends the challenge ciphertext C∗b
to AI , where

C∗0 =

 ATS1 + E1 +WTS3 + E3
VTS2 + E2

uTj S1 + eT1 + vTj S2 + eT2 + wT
j S3 + eT3


+ µ ·G ∈ Z(2m+1)×N

q .

By Proposition 3, Game 2′ is statistically indistinguishable
from Game 1, provided that Game 2′ has not aborted and
output ⊥. Hence,∣∣∣Pr[Y1|h = 1

]
−

1
2

∣∣∣ = Qh ·

∣∣∣Pr[Y ′2]− 1
2

∣∣∣.
Game 3′. In this game, we change the way in which the

challenge ciphertext C∗0 is created. The challenger chooses
Â← Zm×Nq and ûj ← ZNq at random and sets the challenge
ciphertext

C∗0 =

 Â+WTS3 + E3
VTS2 + E2

ûTj + vTj S2 + eT2 + wT
j S3 + eT3

+ µ ·G.
Suppose AI has a non-negligible advantage in distin-

guishing Game 2′ from Game 3′. We use AI to construct
an algorithm B3 to solve a DLWEn,q,χ problem instance((
F, f

)
,
(

P
pT

))
∈ Zn×(m+1)q × Z(m+1)×N

q . B3 simulates the
challenger for AI as follows:
• In the setup phase, B3 sets A = F.
• On AI ’s kth distinct hash query idk to H , B3 does the
following: If k = j, it lets uj = f, chooses wj ← Znq
at random, locally stores the tuple

(
idj, f,wj,⊥

)
, and

returns f toAI . Otherwise, it samples dk ← DZm,σ1 , lets
uk = A · dk mod q and wk = W · dk mod q, locally
stores the tuple (idk ,uk ,wk ,dk), and returns uk to AI .

• WhenAI produces a target identity id∗ and amessageµ,
B3 does the following: If id∗ 6= idj, it aborts and
outputs the symbol ⊥. Otherwise, it sends the challenge
ciphertext C∗b to AI , where

C∗0 =

 P+WTS3 + E3
VTS2 + E2

pT + vTj S2 + eT2 + wT
j S3 + eT3

+ µ ·G.
• B3 is otherwise the same as the Game 2′ challenger.
• Finally, AI guesses whether the challenger it is inter-
acting with is the Game 2′ challenger or the Game 3′

challenger. B3 outputs AI ’s guess as the answer to the
given DLWE instance.

It can be seen that the advantage of B3 in solving the given
DLWE instance is the same as that of AI in distinguishing

Game 2′ from Game 3′. Therefore,∣∣Pr[Y ′2]− Pr
[
Y ′3
]∣∣ ≤ AdvDLWE,B3 (λ).

Game 4′. In this game, we change the way in which the
challenge ciphertext C∗0 is created. The challenger chooses
4

A← Zm×Nq and
4

u j← ZNq at random and sets the challenge
ciphertext

C∗0 =


4

A
VTS2 + E2

4

uTj

+ µ ·G.
In Game 3′, Â and ûTj are uniformly random in Zm×Nq and
Z1×N
q , respectively. Therefore, Â + WTS3 + E3 and ûTj +

vTj S2 + eT2 +wT
j S3 + eT3 are also uniformly random in Zm×Nq

and Z1×N
q , respectively. Thus,∣∣Pr[Y ′3]− Pr

[
Y ′4
]∣∣ = negl(λ).

Game 5′. In this game, we change the way in which the
challenge ciphertext C∗0 is created. The challenger chooses
V̂← Zm×Nq at random and sets the challenge ciphertext

C∗0 =


4

A
V̂
4

uTj

+ µ ·G.
SupposeAI has a non-negligible advantage in distinguish-

ing Game 4′ from Game 5′. We use AI to construct an algo-
rithm B4 to solve a DLWEn,q,χ problem instance (F,P) ∈
Zn×mq ×Zm×Nq . B4 simulates the challenger forAI as follows:
• In the setup phase, B4 sets V = F.
• When AI produces a target identity id∗ and a message
µ, B4 does the following: If id∗ 6= idj, it aborts and
outputs the symbol ⊥. Otherwise, it sends the challenge
ciphertext C∗b to AI , where

C∗0 =


4

A
P
4

uTj

+ µ ·G ∈ Z(2m+1)×N
q .

• B4 is otherwise the same as the Game 4′ challenger.
• Finally, AI guesses whether the challenger it is inter-
acting with is the Game 4′ challenger or the Game 5′

challenger. B4 outputs AI ’s guess as the answer to the
given DLWE instance.

It can be seen that the advantage of B4 in solving the given
DLWE instance is the same as that of AI in distinguishing
Game 4′ from Game 5′. Therefore,∣∣Pr[Y ′4]− Pr

[
Y ′5
]∣∣ ≤ AdvDLWE,B4 (λ).

Game 6′. In this game, we change the way in which the
challenge ciphertext C∗0 is created. The challenger chooses
the challenge ciphertext C∗0 ← Z(2m+1)×N

q at random.
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In Game 5′,

 4

A
V̂
4

uTj

 is a random element in Z(2m+1)×N
q ; thus 4

A
V̂
4

uTj

 + µ · G is also a random element in Z(2m+1)×N
q .

Therefore, ∣∣Pr[Y ′5]− Pr
[
Y ′6
]∣∣ = negl(λ).

In Game 6′, the challenge ciphertext C∗0 is chosen at random
from Z(2m+1)×N

q . Thus,∣∣∣Pr[Y ′6]− 1
2

∣∣∣ = 0.

In summary, we obtain that

AdvINDr−ID−CPACLFHE,AI
(λ) =

∣∣∣Pr[Y0]− 1
2

∣∣∣
= 2 ·

∣∣∣Pr[Y1]− 1
2

∣∣∣
≤

∣∣∣Pr[Y1|h = 0
]
−

1
2

∣∣∣+ ∣∣∣Pr[Y1|h = 1
]
−

1
2

∣∣∣
= Qr ·

∣∣∣Pr[Y2]− 1
2

∣∣∣+ Qh ·

∣∣∣Pr[Y ′2]− 1
2

∣∣∣
≤ Qr ·

(
AdvDLWE,B1 (λ)+ AdvDLWE,B2 (λ)

)
+Qh ·

(
AdvDLWE,B3 (λ)+ AdvDLWE,B4 (λ)

)
+ negl(λ)

≤ 2 (Qr + Qh) · AdvDLWE(λ)+ negl(λ),

where AdvDLWE(λ) = max
{
AdvDLWE,Bi (λ)

}
i∈[4].

�
Theorem 2: Suppose the hash function H is a random

oracle. Then, the CLFHE scheme in Section IV-A is INDr-
ID-CPA secure against Type II attacks assuming that the
DLWEn,q,χ assumption holds. In particular, suppose there
exists an attacker AII that wins the INDr-ID-CPA game
defined in Section III-B with advantage AdvINDr−ID−CPACLFHE,AII

(λ),
making at most Qr public key request queries, then there
exists an algorithm that solves the DLWEn,q,χ problem with
advantage AdvDLWE(λ), such that

AdvINDr−ID−CPACLFHE,AII
(λ)) ≤ 2Qr · AdvDLWE(λ)+ negl(λ).

The proof of Theorem 2 is similar to that of Theorem 1
under the guess h = 0. As a result, we omit a detailed proof
of Theorem 2 here.

V. A LEVELED CLFHE SCHEME IN THE STANDARD MODEL
A. CONSTRUCTION
The proposed leveled CLFHE scheme in the standard model
is described as follows.

Setup(1λ, 1L): On input a security parameter λ and a
circuit depth L, do:

1) Set the parameters n = n(λ,L), m = m(λ,L), α =
α(λ,L), q = q(λ,L), σ1 = σ1(λ,L), and σ2 =
σ2(λ,L) as specified in Section V-B below.

2) Define the gadget matrix G = I3m+1 ⊗ gT ∈

Z(3m+1)×N
q , where g =

(
1, . . . , 2dlog qe−1

)T
∈ Zdlog qeq ,

N = (3m + 1) · dlog qe. Define the inverse func-
tion G−1 : Z(3m+1)×N

q → {0, 1}N×N that expands
each entry a ∈ Zq of the input matrix into a vector(
a0, . . . , adlog qe−1

)T, where ai is the ith bit in a’s binary
representation. For any matrix X ∈ Z(3m+1)×N

q , it is
clear that G · G−1(X) = X. The definitions of G and
G−1 can also be found in [31], [32].

3) Invoke the algorithm GenBasis (1n, 1m, q) to generate
a random matrix A ∈ Zn×mq and a basis TA for 3⊥(A)
such that ‖T̃A‖ ≤ O(

√
n log q).

4) Select three matrices A1,B,V ← Zn×mq at random,
select a matrix W ← Zn×2mq at random, and select a
vector u← Znq at random.

5) Choose a function H : Znq → Zn×nq which is an
encoding with full-rank differences as defined in [22].

6) Output a master public key and a master private key:
mpk =

(
A,A1,B,V,W,u,H

)
and msk = TA.

Extract(mpk,msk, id): On input a master private keymsk
and an identity id ∈ Znq, do:
1) Invoke the algorithm SampleLeft(A,A1 + H (id) ·

B,TA,u, σ1) to sample a vector d ∈ Z2m. Let Aid =

(A|A1 + H (id) · B) ∈ Zn×2mq , thenAid ·d = u mod q
and d is distributed as D3u

q (Aid ),σ1 by Proposition 4.
2) Output a partial private key pskid = d.
KeyGen(mpk, id, pskid ): On input an identity id ∈ Znq

and a partial private key pskid = d, do:
1) Sample a vector x← DZm,σ2 .
2) Let v = V · x mod q.
3) Let w =W · d mod q.
4) Let z =

(
−d
−x
1

)
∈ Z3m+1.

5) Output a public key pkid = (v,w) and a private key
skid = z.

Encrypt(mpk, id, pkid , µ): On input an identity id ∈ Znq,
a public key pkid , and a message µ ∈ {0, 1}, do:
1) Set Aid = (A|A1 + H (id) · B) ∈ Zn×2mq .
2) Pick three matrices S1,S2,S3← Zn×Nq at random.
3) Sample a matrix R← Dm×mZ,ω(

√
logm)

.

4) Sample a noise matrix E1 ← Dm×NZ,αq and set Eid =(
E1

RT
·E1

)
∈ Z2m×N , sample two noise matrices E2 ←

Dm×NZ,αq and E3 ← D2m×N
Z,αq , and sample three noise

vectors e1, e2, e3← DNZ,αq.
5) Output a ciphertext C given by

C =

 AT
idS1 + Eid +WTS3 + E3

VTS2 + E2
uTS1 + eT1 + vTS2 + eT2 + wTS3 + eT3


+ µ ·G ∈ Z(3m+1)×N

q .

Decrypt(mpk, skid ,C): On input a private key skid = z
and a ciphertext C, do:

1) Let c be the penultimate column of C.
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2) Output a message

µ =

⌊
zT · c

2dlog qe−2

⌉
.

Add(mpk, id,C1,C2): On input two ciphertexts C1, C2
under the same identity id , output CAdd = C1 + C2 ∈

Z(3m+1)×N
q .
Mult(mpk, id,C1,C2): On input two ciphertexts C1,

C2 under the same identity id , outputCMult = C1·G−1(C2) ∈
Z(3m+1)×N
q .

B. CORRECTNESS AND PARAMETER SELECTION
For a ciphertext C← Encrypt(mpk, id, pkid , µ), we have

zTC = zT

 AT
idS1 + Eid +WTS3 + E3

VTS2 + E2
uTS1 + eT1 + vTS2 + eT2 + wTS3 + eT3


+ µ · zTG

= eT1 + eT2 + eT3 − dTEid − xTE2 − dTE3︸ ︷︷ ︸
error term

+µ · zTG,

We write rT = eT1 + eT2 + eT3 − dTEid − xTE2 − dTE3. The
error term is bounded by

‖rT‖ = ‖eT1 + eT2 + eT3 − dTEid − xTE2 − dTE3‖

≤ ‖eT1 + eT2 + eT3‖ + ‖d
TEid + xTE2 + dTE3‖

≤ 3αq+ ‖dTEid‖ + ‖xTE2‖ + ‖dTE3‖

≤ 3αq+ ‖d‖ · ‖Eid‖ + ‖x‖ · ‖E2‖ + ‖d‖ · ‖E3‖

≤ 3αq+ ‖d‖ ·
(
‖E1‖ +

√
m · ‖R‖ · ‖E1‖

)
+σ2
√
m · αq

√
m+ σ1

√
2m · αq

√
2m

≤ 3αq+ σ1
√
2m
(
αq
√
m+
√
m · ω(

√
logm)

√
mαq
√
m
)

+σ2 mαq+ 2σ1 mαq

=
(√

2σ1 m2ω(
√
logm)+ (2+

√
2)σ1 m+ σ2 m+ 3

)
αq,

where ‖d‖ ≤ σ1
√
2m, ‖x‖ ≤ σ2

√
m. In addition, we write

B =
(√

2σ1 m2ω(
√
logm)+ (2+

√
2)σ1 m+ σ2 m+ 3

)
αq.

For two fresh ciphertexts C1 and C2 under the same
identity id , the error term of CAdd and CMult is bounded
by ‖rTAdd‖ ≤ 2B and ‖rTMult‖ ≤ (N + 1)B,
respectively. Hence, for an evaluated ciphertext Cf ←

Eval (mpk, id, f ,C1, . . . ,C`), the error term of Cf is
bounded by ‖rTf ‖ ≤ (N + 1)LB, where f is a circuit of depth
≤ L. Since 2dlog qe−2 ∈ [q/4, q/2), Decrypt(mpk, skid ,Cf )
will output the value f (µ1, . . . , µ`) on the condition that
(N + 1)LB < q/8.

To work correctly, the scheme requires that:
• m ≥ 6n log q;
• σ1 ≥ ‖T̃A‖·ω(

√
logm) and σ1 ≥ ‖T̃B‖·m·ω(

√
logm)2,

where ‖T̃A‖, ‖T̃B‖ ≤ O(
√
n log q);

• σ2 ≥ ω(
√
logm);

• (N + 1)LB < q/8, where B =
(√

2σ1 m2ω(
√
logm) +

(2+
√
2)σ1 m+ σ2 m+ 3

)
αq;

• α ∈ (0, 1) and α ≥ 2
√
n/q.

To satisfy the requirements, we set the parameters
(n,m, α, q, σ1, σ2) as follows:

n = n(λ,L),

m = 6n1+δ,

α =
(
2O(L log n)

· O(m7/2) · ω(
√
log n)3

)−1
,

q = 2O(L log n)
· O(m4) · ω(

√
log n)3,

σ1 = m3/2
· ω(

√
log n)2,

σ2 = ω(
√
log n).

Here we assume that δ is such that nδ > dlog qe =
O (L log n).
In addition, we observe that the evaluated ciphertext Cf ∈

Z(3m+1)×N
q . Hence,∣∣Cf

∣∣ ≤ (3m+ 1) · N · dlog qe

= (3m+ 1) · (3m+ 1) · dlog qe · dlog qe

= (3m+ 1)2 · dlog qe2 ,

where N = (3m + 1) · dlog qe. Consequently, the proposed
scheme satisfies the compactness requirement.

C. SECURITY PROOF
Theorem 3: The CLFHE scheme in Section V-A is

INDr-sID-CPA secure against Type I attacks if the
DLWEn,q,χ assumption holds. Specifically, suppose there
exists an attacker AI that wins the INDr-sID-CPA game
defined in Section III-C with an advantage AdvINDr−sID−CPACLFHE,AI
(λ), then there exists an algorithm that solves the
DLWEn,q,χ problem with an advantage AdvDLWE(λ) such
that

AdvINDr−sID−CPACLFHE,AI
(λ) ≤ 4 · AdvDLWE(λ)+ negl(λ).

Proof: We prove this theorem via a series of indistin-
guishable games. In Game i, we let Yi denote the event that
the attacker wins the game, i.e., the event b = b′.
Game 0. This game is the original INDr-sID-CPA game

between an attacker AI in attacking our CLFHE scheme and
a challenger. By definition,

AdvINDr−sID−CPACLFHE,AI
(λ) =

∣∣∣Pr[Y0]− 1
2

∣∣∣.
Game 1. Similar to the proof of Theorem 1, In Game 1 we

also introduce a guess h← {0, 1} and change the conditions
in which AI wins the game. Thus, we obtain∣∣∣Pr[Y0]− 1

2

∣∣∣ = 2 ·
∣∣∣Pr[Y1]− 1

2

∣∣∣,∣∣∣Pr[Y1]− 1
2

∣∣∣ ≤ 1
2
·

∣∣∣Pr[Y1|h = 0
]
−

1
2

∣∣∣
+
1
2
·

∣∣∣Pr[Y1|h = 1
]
−

1
2

∣∣∣.
The games in the case of the guess h = 0 are as follows.
Game 2. In this game, the challenger changes the way

to answer the public key request queries. When AI asks
for a public key for the identity id , assume that AI has
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not queried the partial private key on id . If id = id∗,
the challenger chooses vid∗ ← Znq at random, extracts
d∗ ← Extract(mpk,msk, id∗) and lets wid∗ = W · d∗

mod q, and returns pkid∗ = (vid∗ ,wid∗ ) to AI . Otherwise,
the challenger extracts d ← Extract(mpk,msk, id), gener-
ates (pkid , skid ) ← KeyGen(mpk, id,d), and returns pkid
to AI . By Corollary 5.4 in [21], Game 2 is statistically indis-
tinguishable from Game 1. Hence,∣∣Pr[Y1|h = 0

]
− Pr

[
Y2
]∣∣ = negl(λ).

Game 3. In this game, the challenger changes the way in
which the challenge ciphertext C∗0 is generated. The chal-
lenger selects V̂ ← Zm×Nq and v̂id∗ ← ZNq at random and
sets the challenge ciphertext

C∗0 =

 AT
id∗S1 + Eid∗ +WTS3 + E3

V̂
uTS1 + eT1 + v̂Tid∗ + wT

id∗S3 + eT3

+ µ ·G.
Suppose AI has a non-negligible advantage in distin-

guishing Game 2 from Game 3. We use AI to construct
an algorithm B1 to solve a DLWEn,q,χ problem instance((
F, f

)
,
(

P
pT

))
∈ Zn×(m+1)q × Z(m+1)×N

q . B1 simulates the
challenger for AI using the following way: B1 sets V = F,
sets vid∗ = f, and sets the challenge ciphertext

C∗0 =

 AT
id∗S1 + Eid∗ +WTS3 + E3

P
uTS1 + eT1 + pT + wT

id∗S3 + eT3

+ µ ·G.
It can be seen that the advantage of B1 in solving the given
DLWE problem instance is the same as that of AI in distin-
guishing Game 2 from Game 3. Therefore,∣∣Pr[Y2]− Pr

[
Y3
]∣∣ ≤ AdvDLWE,B1 (λ).

Game 4. In this game, the challenger changes the way in
which the challenge ciphertext C∗0 is generated. The chal-

lenger selects
4

v id∗ ← ZNq at random and sets the challenge
ciphertext

C∗0 =

AT
id∗S1 + Eid∗ +WTS3 + E3

V̂
4

vid∗T

+ µ ·G.
In Game 3, v̂Tid∗ is uniformly random in Z1×N

q ; thus, uTS1 +
eT1 + v̂Tid∗ + wT

id∗S3 + eT3 is also uniformly random in Z1×N
q .

Therefore, ∣∣Pr[Y3]− Pr
[
Y4
]∣∣ = negl(λ).

Game 5. In this game, the challenger changes the way in
which the challenge ciphertext C∗0 is generated. The chal-
lenger selects Ŵ← Z2m×N

q at random and sets the challenge
ciphertext

C∗0 =

AT
id∗S1 + Eid∗ + Ŵ

V̂
4

v T
id∗

+ µ ·G.

SupposeAI has a non-negligible advantage in distinguish-
ing Game 4 from Game 5. We use AI to construct an algo-
rithm B2 to solve a DLWEn,q,χ problem instance (F,P) ∈
Zn×2mq × Z2m×N

q . B2 simulates the challenger for AI in the
following way: B2 sets W = F and sets the challenge
ciphertext

C∗0 =

AT
id∗S1 + Eid∗ + P

V̂
4

vTid∗

+ µ ·G.
It can be seen that the advantage of B2 in solving the given
DLWE problem instance is the same as that of AI in distin-
guishing Game 4 from Game 5. Therefore,∣∣Pr[Y4]− Pr

[
Y5
]∣∣ ≤ AdvDLWE,B2 (λ).

Game 6. In this game, the challenger changes the way in
which the challenge ciphertext C∗0 is generated. The chal-
lenger selects Ŵ← Z2m×N

q at random and sets the challenge
ciphertext

C∗0 =


4

W
V̂
4

vTid∗

+ µ ·G.
In Game 5, Ŵ is uniformly random in Z2m×N

q ; thus,AT
id∗S1+

Eid∗ + Ŵ is also uniformly random in Z2m×N
q . Therefore,∣∣Pr[Y5]− Pr

[
Y6
]∣∣ = negl(λ).

Game 7. In this game, the challenger changes the way in
which the challenge ciphertext C∗0 is generated. The chal-
lenger selects the challenge ciphertext C∗0 ← Z(3m+1)×N

q

at random. In Game 6,

 4

W
V̂
4

vTid∗

 is a random element in

Z(3m+1)×N
q ; hence

 4

W
V̂
4

vTid∗

+µ ·G is also a random element

in Z(3m+1)×N
q . Therefore,∣∣Pr[Y6]− Pr

[
Y7
]∣∣ = negl(λ).

In Game 7, ∣∣∣Pr[Y7]− 1
2

∣∣∣ = 0.

The games in the case of the guess h = 1 are as follows.
Game 2′. Compared with Game 1, Game 2′ makes two

changes:
1) At the setup phase, the challenger samples R ←

Dm×mZ,ω(
√
logm)

. Notice that the challenger will use R to
generate the challenge ciphertext C∗0 in the challenge
phase.

2) At the setup phase, the challenger constructs A1 as
A1 = AR− H (id∗) · B. In this way, we obtain

Aid∗ =
(
A|A1 + H (id∗) · B

)
= (A|AR) .
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By the leftover hash lemma [33], [34], we obtain∣∣Pr[Y1|h = 1
]
− Pr

[
Y ′2
]∣∣ = negl(λ).

Game 3′. Compared with Game 2′, Game 3′ makes four
changes:

1) At the setup phase, the challenger generates A as a
random matrix in Zn×mq .

2) At the setup phase, the challenger generatesB by invok-
ing the algorithm GenBasis (1n, 1m, q) so that B is
a random matrix in Zn×mq , but the challenger gets a
trapdoor TB for3⊥(B) such that ‖T̃B‖ ≤ O(

√
n log q).

3) When AI asks for a partial private key for the iden-
tity id , the challenger does the following: If id = id∗,
it aborts and outputs a random bit, i.e., AI wins the
gamewith a probability of 1/2. Otherwise for id 6= id∗,
we have that

Aid = (A|A1 + H (id) · B)

=
(
A|AR+

(
H (id)− H (id∗)

)
· B
)
.

Since H (id) − H (id∗) 6= 0 ∈ Zn×nq , TB is also a
trapdoor for 3⊥q ((H (id)− H (id∗)) · B). It samples

d← SampleRight
(
A,B′,R,TB,u, σ1

)
∈ Z2m,

where B′ = (H (id)− H (id∗)) ·B, and returns d toAI .
Note that Aid · d = u mod q and d is distributed as
D3u

q (Aid ),σ1 by Proposition 5.
4) When AI asks for a public key for the identity id ,

the challenger does the following: If id = id∗, it sam-
ples x∗ ← DZm,σ2 and lets vid∗ = V · x∗ mod q,
chooses wid∗ ← Znq at random, and returns pkid∗ =
(vid∗ ,wid∗ ) toAI . Otherwise for id 6= id∗, assume that
AI has not queried the partial private key on id . It sam-
ples d ← SampleRight

(
A,B′,R,TB,u, σ1

)
where

B′ = (H (id)− H (id∗)) · B, generates (pkid , skid ) ←
KeyGen(mpk, id,d), and returns pkid to AI .

Since σ1 used in the scheme is sufficiently large, Game 3′ is
statistically indistinguishable from Game 2′. Therefore,∣∣Pr[Y ′2]− Pr

[
Y ′3
]∣∣ = negl(λ).

Game 4′. In this game, we change the way in which the
challenge ciphertext C∗0 is generated. The challenger selects
Âid∗ ← Z2m×N

q and û ← ZNq at random and sets the
challenge ciphertext

C∗0 =

 Âid∗ +WTS3 + E3
VTS2 + E2

ûT + vTid∗S2 + eT2 + wT
id∗S3 + eT3

+ µ ·G.
Suppose AI has a non-negligible advantage in distin-

guishing Game 3′ from Game 4′. We use AI to construct
an algorithm B3 to solve a DLWEn,q,χ problem instance((
F, f

)
,
(

P
pT

))
∈ Zn×(m+1)q × Z(m+1)×N

q . B3 simulates the

challenger for AI as follows: B3 sets A = F and u = f, sets
Pid∗ =

(
P

RT
·P

)
, and sets the challenge ciphertext

C∗0 =

 Pid∗ +WTS3 + E3
VTS2 + E2

pT + vTid∗S2 + eT2 + wT
id∗S3 + eT3

+ µ ·G.
When

((
F, f

)
,
(

P
pT

))
← AS,χ where the secret S ∈ Zn×Nq ,

it can be observed that

Pid∗ =
(

P
RT
· P

)
=

(
ATS+ E

RT
· ATS+ RT

· E

)
=
(
A|AR

)T S+ ( E
RT
· E

)
= AT

id∗S+
(

E
RT
· E

)
,

pT = uTS+ eT.

Thus, C∗0 is distributed exactly as in Game 3′. When((
F, f

)
,
(

P
pT

))
is chosen from the uniform distribution over

Zn×(m+1)q × Z(m+1)×N
q , we obtain that Pid∗ is uniform in

Z2m×N
q by the leftover hash lemma [33], [34], and that p

is uniform in ZNq . Consequently, C∗0 is distributed exactly
as in Game 4′. Hence, the advantage of B3 in solving the
given DLWE problem instance is the same as that of AI in
distinguishing Game 3′ from Game 4′. Therefore,∣∣Pr[Y ′3]− Pr

[
Y ′4
]∣∣ ≤ AdvDLWE,B3 (λ).

Game 5′. In this game, we change the way in which the
challenge ciphertext C∗0 is created. The challenger selects
4

A id∗ ← Z2m×N
q and

4

u ← ZNq at random and sets the
challenge ciphertext

C∗0 =


4

A id∗

VTS2 + E2
4

uT

+ µ ·G.
In Game 4′, Âid∗ and ûT are uniformly random in Z2m×N

q
and Z1×N

q , respectively; hence, Âid∗ + WTS3 + E3 and
ûT + vTid∗S2 + eT2 + wT

id∗S3 + eT3 are also uniformly random
in Z2m×N

q and Z1×N
q , respectively. Therefore,∣∣Pr[Y ′4]− Pr

[
Y ′5
]∣∣ = negl(λ).

Game 6′. In this game, we change the way in which the
challenge ciphertext C∗0 is generated. The challenger selects
V̂← Zm×Nq at random and sets the challenge ciphertex

C∗0 =


4

A id∗

V̂
4

uT

+ µ ·G.
Suppose AI has a non-negligible advantage in distin-

guishing Game 5′ from Game 6′. We use AI to construct
an algorithm B4 to solve a DLWEn,q,χ problem instance
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(F,P) ∈ Zn×mq × Zm×Nq . B4 simulates the challenger for AI
as follows: B4 sets V = F and sets the challenge ciphertext

C∗0 =


4

A id∗

P
4

uT

+ µ ·G.
Clearly, the advantage of B4 in solving the given DLWE
problem instance is the same as that of AI in distinguishing
Game 5′ from Game 6′. Therefore,∣∣Pr[Y ′5]− Pr

[
Y ′6
]∣∣ ≤ AdvDLWE,B4 (λ).

Game 7′. In this game, we change the way in which the
challenge ciphertext C∗0 is created. The challenger selects the
challenge ciphertexC∗← Z(3m+1)×N

q at random. In Game 6′, 4

A id∗

V̂
4

uT

 is a random element in Z(3m+1)×N
q ; thus,

 4

A id∗

V̂
4

uT

+
µ ·G is also a random element in Z(3m+1)×N

q . Therefore,∣∣Pr[Y ′6]− Pr
[
Y ′7
]∣∣ = negl(λ).

In Game 7′, ∣∣∣Pr[Y ′7]− 1
2

∣∣∣ = 0.

To sum up, we obtain that

AdvINDr−sID−CPACLFHE,AI
(λ) =

∣∣∣Pr[Y0]− 1
2

∣∣∣
= 2 ·

∣∣∣Pr[Y1]− 1
2

∣∣∣
≤

∣∣∣Pr[Y1|h = 0
]
−

1
2

∣∣∣+ ∣∣∣Pr[Y1|h = 1
]
−

1
2

∣∣∣
=

∣∣∣Pr[Y2]− 1
2

∣∣∣+ ∣∣∣Pr[Y ′2]− 1
2

∣∣∣+ negl(λ)

≤ AdvDLWE,B1 (λ)+ AdvDLWE,B2 (λ)

+AdvDLWE,B3 (λ)+ AdvDLWE,B4 (λ)+ negl(λ)

≤ 4 · AdvDLWE(λ)+ negl(λ),

where AdvDLWE(λ) = max
{
AdvDLWE,Bi (λ)

}
i∈[4].

�
Theorem 4: The CLFHE scheme in Section V-A is

INDr-sID-CPA secure against Type II attacks if the
DLWEn,q,χ assumption holds. In particular, suppose there
exists an attacker AII that wins the INDr-sID-CPA game
defined in Section III-C with an advantage AdvINDr−sID−CPACLFHE,AII
(λ), then there exists an algorithm that solves the DLWEn,q,χ
problem with an advantage AdvDLWE(λ) such that

AdvINDr−sID−CPACLFHE,AII
(λ) ≤ 2 · AdvDLWE(λ)+ negl(λ).

The proof of Theorem 4 is similar to that of Theorem 3 in
the case of the guess h = 0. Thus, we omit the detailed proof
of Theorem 4 here.

VI. CONCLUSION AND FUTURE WORK
Based on the LWE problem, we constructed two leveled
CLFHE schemes, one in the random oracle model and the
other in the standard model. Our future work includes the
following:

1) The ring-LWE problem [35] is an algebraic variant of
the LWE problem. In general, CLFHE schemes based
on the ring-LWE problem have much better perfor-
mance than schemes based on the LWE problem. Thus,
we will construct leveled CLFHE schemes based on the
ring-LWE problem.

2) Several chosen-ciphertext secure FHE sche-
mes [36]–[38] have been proposed. An otherwise
secure CLFHE scheme may be defeated under a
chosen-ciphertext attack. Therefore, we will construct
chosen-ciphertext secure leveled CLFHE schemes
based on the LWE problem.

3) Multi-key FHE [39] allows homomorphic computation
on data encrypted under different keys. Multi-key FHE
schemes [40]–[42] and multi-key identity-based FHE
schemes [43], [44] have been proposed. We will design
multi-key certificateless FHE schemes.

4) Proxy re-encryption (PRE) [45] is an extension
of public-key encryption. Homomorphic proxy
re-encryption (HPRE) schemes [46], [47] and
identity-based HPRE schemes [48] have been pro-
posed. We will design certificateless HPRE schemes.
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