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ABSTRACT The breakdown performance is a critical metric for power device design. This paper explores
the feasibility of efficiently predicting the breakdown performance of silicon on insulator (SOI) lateral
power device using multi-layer neural networks as an alternative to expensive technology computer-aided
design (TCAD) simulation. In this work, we propose the first breakdown performance prediction framework,
PowerNet, for SOI lateral power devices, based on deep learning methods. The framework can provide
breakdown location prediction and breakdown voltage (BV) prediction by utilizing a two-stage machine
learning method. In addition, it demonstrates 97.67% accuracy on breakdown location prediction and less
than 4% average error on the BV prediction compared with TCAD simulation. The proposed method can
be used to measure changes in performance caused by random variability in structural parameters during
manufacturing process, allowing designers to avoid unstable structural parameters and enhance design
robustness. More importantly, it can significantly reduce the computational cost when compared with the
TCAD simulation.We believe the proposed machine learning technique can significantly speedup the design
space exploration for power devices, eventually reducing the overall product-to-market time.

INDEX TERMS Breakdown location, breakdown voltage, deep neural networks (DNN), Gaussian process
regression (GPR), SOI lateral power device.

I. INTRODUCTIONS
Silicon on insulator (SOI) lateral power devices have been
widely adopted in power integrated circuits due to their high
breakdown voltage (BV), excellent isolation, and low power
consumption [1]–[3]. Analysis of breakdown performance
has always been a hot issue for researchers [4]–[7]. During
themanufacturing process, random deviations in the expected
structural parameters may result in drastic changes in break-
down performance. Thus, the early prediction of a device
breakdown performance stands out as prominent ramification
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in the device design closure. In literature, many approaches
have been proposed to assess the breakdown performance.

The conventional approach relies on device simulation
using tools such as Medici [4], Silvaco [5], Sentaurus [6]
and so on. Chen et al. [4] measured and improved the
breakdown performance of a lateral double-diffusion metal-
oxide-semiconductor field-effect transistor (MOSFET) with
n+ floating island by using Medici. Zeng et al. [5] adopted
Silvaco to obtain the breakdown voltage of lateral MOSFET.
These simulation tools acquire the breakdown performance
by solving the physical equations such as Poisson equation
and the current continuity of electrons and holes at the
set mesh point. When it comes to high breakdown voltage,
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FIGURE 1. The variation of breakdown voltage with drift region doping
concentration, (a) when the breakdown location changes from N+N−
junction to P+N− junction with drift region doping concentration, it will
also occur in the body of device, i.e. location 3. (b) the breakdown
location only occurs at the N+N− junction and P+N− junction [10], [22],
[23].

these methods suffer from exorbitant computational
overhead. Moreover, the numerical convergence of these
physical functions is sensitive to mesh settings, resulting in
long simulation time.

Meanwhile, models based on analytical derivations
[8]–[12] are proposed for power devices by solving the
Poisson equation with boundary conditions. However, these
models are ill-equipped to handle complicated cases with
a large number of structural parameters. Jun et al. [10]
proposed a novel one-dimensional breakdown voltage model
of SOI lateral power device. Later, Yao et al. [9] presented a
3D analyticalmodel for SOI lateral power device.While these
models are computationally efficient, they only consider a
small number of the structural parameters in the analysis of
breakdown performance.

Recently, machine learning techniques have been widely
adopted for different applications in the field of electronic
design automation [13]–[18]. It has been widely used for
its capability in learning hidden correlations between the
electronic parameters and the electric performance with high
accuracy and efficiency [19]–[21]. This capability is very
promising for early-stage design space exploration to deter-
mine a robust device structure in a short design period. In
literature, Zeng et al. [19] presented an insulated-gate bipolar
transistor (IGBT) current measuring method by using artifi-
cial neural network and K-means clustering, they achieved
3% average error in the prediction of IGBT current. Carrillo-
Nuñez et al. [21] proposed the prediction of the effect
of statistical variability in Si junctionless nanowire transis-
tors using a multi-layer neural network (NN), which can
greatly save computational cost. These results have demon-
strated the potential of machine learning approaches in device
performance predictions.

Despite the importance of breakdown performance evalua-
tion for power device, the breakdown performance prediction
has not yet been tackled using machine learning techniques.
In this paper, we propose PowerNet, as the first efficient
design methodology for power devices with a machine learn-
ing based breakdown performance prediction framework. By
observing that the breakdown voltage changes rapidly with
the structural parameters [10], [22], [23], such as drift region
doping concentration Nd as shown in Fig. 1, it is hard to

capture the trend with a single model like previous works
[19], [20].We also observe in the figure that the rapid changes
of the breakdown voltage come together with the switch
of breakdown locations, e.g., from location 1 to location
2, or from location 3 to location 2. Therefore, we propose
a novel two-stage modeling technique for PowerNet.
In the first stage, the breakdown location is predicted by a

two hidden layer neural network. Then, the breakdown volt-
age is predicted using a deeper location-specific predictive
neural network. With this approach, the models in the second
stage are location-specific, and hence, are more accurate than
a single generalized model for all locations.

The main contributions are summarized as follows.
• We propose PowerNet as a novel breakdown perfor-
mance prediction framework, for the first time, using
a two-stage modeling technique, which can achieve a
fast prediction and overcome the convergence problem
compared with tool simulation.

• We propose a first stage classification model to
predict the breakdown location followed by a second
stage location-specific regression to predict breakdown
voltage for SOI lateral power device.

• The experimental results show that the accuracy of
breakdown location prediction is about 97.67% and the
average error of breakdown voltage prediction is less
than 4% compared with the results from technology
computer-aided design (TCAD) simulator [24].

The rest of the paper is organized as follows. Section II
reviews the basic background for breakdown performance of
SOI lateral power device and introduces the problem formula-
tion. Section III describes detailed algorithms of the proposed
method, including first stage deep neural networks (DNN)
for the breakdown location prediction and second stage
DNN or Gaussian process regression (GPR) for the BV pre-
diction. Then, Section IV validates our proposed methods
with experimental results. Finally, Section V concludes the
whole study.

II. PRELIMINARIES
In this section, we first introduce the SOI lateral power device
structure we adopt and the factors which have an influence on
the breakdown performance. Then, the background about the
breakdown performance is analyzed. Next, we give the prob-
lem formulation for the breakdown performance measuring.

A. LATERAL POWER DEVICE STRUCTURE
There are many types of SOI lateral power devices such as
lateral power diodes, laterally diffused MOSFET (LDMOS),
IGBT, etc. However, the basic structure of the breakdown
of all lateral power devices is a diode. Therefore, we use a
lateral power diode structure as an example. Fig. 2a shows the
schematic diagram of the SOI lateral power diode structure.
The BV can be obtained by applying a voltage to the cathode
(N+) until the device breaks down while the anode (P+)
is grounded. In the breakdown process, a set of structural
parameters of the drift region has a significant influence on
the breakdown performance. These parameters, summarized
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FIGURE 2. Breakdown review of an SOI lateral power device, (a) device
structure; (b) electric field distribution with the breakdown location.

TABLE 1. Structural parameters in the drift region.

in Table 1, are used for predicting the BV in our proposed
PowerNet approach.

B. BREAKDOWN ANALYSIS
With the change in the structural parameters, the breakdown
location and BV change correspondingly. Fig. 2b shows the
breakdown location corresponding to Fig. 1. With the change
of structural parameters, the breakdown voltage will change
correspondingly. As the breakdown location moves, the trend
of the magnitude of the BV also changes. Primarily, it should
be noticed that when the breakdown location is shifted from
location 1 or location 3 to location 2, the BV will decrease
dramatically. Hence, it is of importance to account for such
correlation between the breakdown location and the BV trend
when modeling the breakdown behavior. With this in mind,
our proposed PowerNet comprises two stages where the loca-
tion of the breakdown is first predicted in stage 1, then a
model trained exclusively to estimate BV at the predicted
location is used.

C. PROBLEM FORMULATION
The breakdown performance prediction problem can be
defined as follows:
Problem 1 (Breakdown Performance Prediction Problem):

The goal is to train learning models using training data
labeled with specific breakdown information so that the
correct breakdown performance can be given using the model
when applying another testing data.

Considering the sudden change of breakdown voltage with
the change of breakdown position, the learning model is
mainly composed of two parts: one is breakdown location
prediction, and the other is BV prediction.

Since the breakdown only occurs at the three locations as
described in Section II-B, the breakdown location prediction
can be analogous to a three-classification problemwhere each
breakdown position corresponds to a category. Therefore,
the problem can be defined as follows:
Subproblem 1 (Breakdown Location Prediction Problem):

The goal is to train a model using training data labeled with
specific locations 1, 2 and 3 so that the correct breakdown
locations can be given using themodel when applying another
testing data.

Besides, since the BV prediction is a regression problem,
it can be defined as follows:
Subproblem 2 (Breakdown Voltage Prediction Problem):

The goal is to train three models using the three kinds of data
labeled with specific breakdown voltage to achieve accurate
prediction of the breakdown voltage using the data with
known breakdown location.

III. ALGORITHM FOR BREAKDOWN
PERFORMANCE MEASURING
In this section, we introduce the detailed components of the
proposed PowerNet including the DNNmodel for breakdown
location prediction, followed by the BV prediction step where
two models with different features, namely DNN and GPR,
are presented.

A. OVERALL FLOW FOR POWERNET
In some scenarios, the breakdown voltage changes drastically
even with the slightest change in the structural parameters.
In other words, the relation between the breakdown voltage
and the structural parameters is ‘‘ill-conditioned’’. Hence,
it is evidently impossible for a single model to globally
capture the breakdown behavior; a fact that necessities adopt-
ing a local modeling scheme where different BV trends are
captured by different models. An important observation to
build upon here is that the irregular changes in the BV are
usually associated with a switch in the breakdown location.
In other words, the BV trend is highly dependent on the
breakdown location and can vary significantly when the
location changes. Hence, we propose PowerNet as a two-
stage BV modeling scheme, where the first stage predicts the
breakdown location and location-specific models are trained
to predict BV at each breakdown location in the second stage.

Fig. 3 shows the overall flow of the two-stage
PowerNet for breakdown performance evaluation. It com-
prises two main steps in each of the training and usage
phases. At the first step in the training phase, a classifier
is trained to predict the breakdown location using the entire
training dataset. Next, three regression models are trained to
predict the BV at three different locations. For a model at
a particular location, only the samples in the training dataset
that correspond to that location are used in the training. At the
end of the training phase, a two-stage prediction scheme with
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FIGURE 3. The overall flow of the two-stage PowerNet for breakdown performance
evaluation, in which the DNN is used for classification of breakdown location prediction,
and the DNN/GPR is employed for regression of BV prediction.

a global classifier and location-specific regression models are
available.

In the usage phase, the process flows in a similar fashion.
For each sample in the testing dataset, the classifier is first
used to predict the breakdown location. Then, based on
the predicted location, the corresponding regression model
is used to predict the BV. In PowerNet, we propose using
DNN as the classification model, whereas for the regression,
we present two regression alternatives: (i) DNN and (ii) GPR.
Further details about these models will be presented in the
following Sections.

B. DEEP NEURAL NETWORK FOR BREAKDOWN
LOCATION PREDICTION
ADNN can be utilized to approximate a mathematical model
with complex functions by mimicking the biological neu-
ronal system composed of neurons and synapses [25], [26].
Practically, a DNN model is trained using a set of labeled
instances to learn a prediction task.

In general, the network architecture is dependent on the
number of features and the complexity of the problem at
hand. Fig. 4 shows the DNN architecture used for breakdown
location prediction of SOI lateral power device (i.e., the clas-
sification model). Its structure is based on three connected
components: an input layer, a set of two hidden layers and an
output layer.

The key idea of the DNN mainly consists of two prop-
agation paths, the information forward and error backward.
The forward propagation of information is used to calculate
the prediction result by using the weights and bias terms
of the inter-layer connections. Then these weights and bias
terms are updated based on the error between the prediction
result and the actual result in a backward propagation scheme.
Backpropagation is the standard algorithm used to train the
DNN models [27], by updating the parameters of the net-
work to reduce the loss function. During training, the process
of alternating propagation between information forward and
error backward is repeated until convergence.

FIGURE 4. Backpropagation DNN architecture for breakdown location
prediction. The three components of it are the input layer, two hidden
layers, and the output layer for the information forward and error
backward during the model training process.

In fact, designing the network architecture is an engineer-
ing process that entails multiple trials and adjustments. The
major decisions here are concerning the number of hidden
layers and that of the neurons in each of the hidden layers. In
our study, we build a DNN with two hidden layers to model
classification task. Note that the specific configurations of
the hidden layers and the corresponding neurons for the
breakdown location prediction model are shown in Fig. 4.
According to the DNN structure, the model can be

expressed mathematically as follows:

X = (tox ,Nd , ts,L, ln,Nn, lp,Pp, tn, tp, r),

Zj = ReLU(
∑
i

w(1)
ji Xi + bj), j = {1, 2, . . . , 32} ,

Hk = ReLU(
∑
j

w(2)
kj Zj + bk ), k = {1, 2, . . . , 16} ,

Yo =
∑
k

w(3)
ok Hk + bo, o = {1, 2, 3} .

(1)
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where X is the input vector representing the 11 features of the
drift region as shown in table 1, Zj and Hk are the neurons of
hidden layer 1 and hidden layer 2 in which {j = 1, 2, . . . , 32}
and {k = 1, 2, . . . , 16}, and Yo is the output vector where
{o = 1, 2, 3} represents the three locations as shown in Fig. 2.
w(l)
ji is the weight of the connection between neuron i from

layer l − 1 and neuron j from layer l. Note that the bias items
bj, bk and bo are omitted in Fig. 4 for better visibility. Besides,
rectified linear unit (ReLU) [28] that ranges from 0 to∞ is
used as an activation function in our DNN structure. Such
nonlinear activation provides the model with the capacity
needed to model highly sophisticated relations.

For classification tasks, cross-entropy is typically used
as the loss function during the training process [29].
Mathematically, this loss function can be expressed as below:

L(Y ,Y a) = −
1
N

N∑
i=1

(
yiln(yai )+ (1− yi)ln(1− yai )

)
(2)

where ya is the corresponding set of actual labeled locations,
y is the predicted results outputted by the neural network,
and N is the number of training samples. Moreover, Adam
optimizer, with an adaptive learning rate, is adopted for the
gradient descent optimizer for DNN model training [30],
[31]. The initial learning rate is set to 0.01, and then it is
decreased gradually by a factor of 0.7 after 1000 training
iterations so as to make the update small when approaching
the optimal solution. Algorithm 1 summarizes the whole
procedure for breakdown location prediction using DNN.

Algorithm 1 Algorithm for Breakdown Location Prediction
Using DNN
Require: Labeled pair of training data X ,Y a (Y a denotes to

the specific location).
Ensure: Breakdown Location with maximum accuracy.
1: Define wji,wkj,wok , bj, bk , bo as the weights and bias

items;
2: Define R as the maximum iterations for DNN learning;
3: Intializate wji,wkj,wok , bj, bk , bo;
4: for t = 1→ R do
5: Calculate the predicted Y according to Eq. (1);
6: Compute the error between Y and golden label Y a

according to Eq. (2);
7: Modify the weights and bias items according to the

error;
8: end for
9: return DNN model

C. DEEP NEURAL NETWORK FOR BV PREDICTION
Fig. 5 shows the DNN architecture for BV prediction of SOI
lateral power device. The architecture includes four hidden
layers where the details of these layers are shown in Fig. 5.
The principle of its implementation is similar to that of
the DNN classification model presented in III-B. It estab-
lishes a regression model by updating the weights between

FIGURE 5. Backpropagation DNN architecture for BV prediction.

neurons through information forward propagation and error
backpropagation. However, the output of the network should
be continuous; hence, a single neuron is used at the output
layer containing the predicted BV value.Moreover, unlike the
classificationmodel, square loss is used to train the regression
model as it is more suitable for this task.

D. GAUSSIAN PROCESS REGRESSION
FOR BV PREDICTION
Most of the machine learning models that are widely adopted
fall under the title of parametric model; i.e., the objective is
to solve for a set of parameters that define a model which can
be used for a regression or a classification task. One example
of such models is DNN where the model is defined by the
set of weights and bias terms. Despite the fact that these
models have achieved successful results in many domains,
the parametric nature of these models limits the complexity
of the function to be modeled. In fact, with more complicated
function, one would resort to a larger set of parameters to
better address the task at hand. However, Gaussian process
regression falls under the category of non-parametric models
with no predefined model template [32]–[34].

At its core, GPR uses the correlation between the test
sample and the data in the training set to make the prediction.
Hence, the regression model can handle cases with any level
of complexity. Moreover, another distinguishing feature for
GPR is that it is a probabilistic predictor as opposed to
models with point estimates only. In other words, instead of
providing a single value as the prediction, GPR provides a
distribution as its prediction. This, in fact, can be used to
provide a confidence level for the predictions, which has been
adopted in other fields like lithography hotspot detection for
semiconductor manufacturing [14].

In this section, we briefly review the GPR which consists
of model training and prediction in the BV prediction.

1) PREDICTION
Regarding a regression problem y = f (x) + ξ using GPR
method, the latent function f (x) is presumed to have a
Gaussian process distribution N (0, k), and ξ is Gaussian
noise which has an independent normal distribution with
0 mean and variance σ 2

N . Given a training set with N points,
X = {xi, . . . , xN }T , where xi ∈ R11 is the input vector
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with 11 feature, and their corresponding labeled values y =
{yi, . . . , yN }T , where yi is the corresponding BV. The set of
generating function collection {f (x1) , . . . , f (xN )} follows a
multivariate normal distribution [35]:

{f (x1) , . . . , f (xN )}T ∼ N (0,K ) (3)

where K is the N × N covariance matrix with the (i, j)-th
component Kij = k

(
xi, xj

)
which is used to measure the

correlation between structural parameters xi and xj.
In order to get the prediction of BV y∗ = {y∗1, . . . , y∗M }T

using the given drift region feature vectors X∗ =

{x∗1, . . . , x∗M }T , the joint distribution of our prior over obser-
vation y and targets y∗ is Gaussian as well and can be
described as:

P
([

y
y∗

])
= N

([
0
0

]
,

[
K (X ,X)+ σ 2

N IN K (X ,X∗)
K (X∗,X) K (X∗,X∗)

])
(4)

where K (X ,X) = K , K (X∗,X∗) is the M × M covariance
function of testing dataset, and K (X ,X∗) and K (X∗,X) are
theN×M andM×N covariance functions between the input
of testing and training structural parameters, respectively.
Thus, according to the discussion above, to calculate

the predictive posterior of the testing data, the conditional
distribution p (y∗|y,X ,X∗) can be expressed as [32]:

p (y∗|y,X ,X∗) ∼ N (µ∗, 6∗) (5)

The mean and variance of Eq. (5) are shown as follows,

µ∗ = K (X∗,X)Ay (6)

6∗ = K (X∗,X∗)− K (X∗,X)AK (X ,X∗) (7)

where A =
(
K (X ,X)+ σ 2

N IN
)−1

, µ∗ denotes the mean
prediction of BV and 6∗ represents the variance of the
predictions. It is interesting to notice that 6∗ indicates the
confidence level of the prediction. For each sample, the value
of the variance reflects a level of confidence of the model
about the prediction.

2) TRAINING
GPR can choose different covariance functions. The covari-
ance functionK (X∗,X ) denotes the correlation of output atX∗
and X that the intuition indicates that the predicted output is
more susceptible to the output of nearby inputs in the training
data. In our study, the Radial Basis Function (RBF) kernel
[36] with variance parameter is employed for GPR, which can
be expressed as:

k
(
xi, xj

)
= σ 2exp

−
‖xi−xj‖

2

2σ2∗ (8)

where σ is the variance parameter which controls the
smoothness of the function, σ∗ is a bandwidth that controls
the radial range of action. The parameter set θ = {σ, σ∗, σN }
contains the hyperparameters, which are generally obtained
by the maximum likelihood function: argmaxθPr(y/X , θ).

By deriving the hyperparameters θ , then using the conju-
gate gradient method, Newton method, or other optimization
methods to minimize the partial derivative, the optimal solu-
tion of the hyperparameters can be obtained. Here, the loga-
rithmic likelihood function and its partial derivative formwith
respect to hyperparameters are as follows:

∂L
∂θi
=

1
2
trC−1

∂C
∂θi
−

1
2
yTC−1

∂C
∂θi

C−1y (9)

where C = K (X ,X) + σ 2
N IN , tr(•) is the trace of a matrix.

Using the optimal solution of those hyperparameters trained
by training data, the BV can be obtained according to Eq. (6).
Algorithm 2 summarizes the complete procedure for BV
prediction using GPR.

Algorithm 2 Algorithm for BV Prediction Using GPR

Require: ith (i= 1,2,3) group training data X ,ywith specific
breakdown location.

Ensure: ith (i= 1,2,3) model with optimal hyperparameters,
i.e. σ ,σ∗, σN .

1: Initialize ith group hyperparameters (σ ,σ∗, σN );
2: while likelihood < threshold do
3: Update σ , σ∗ and σN using the optimization methods

and Eq. (9);
4: end while
5: return GPR model

IV. EXPERIMENTAL RESULTS
In this section, the efficiency of the proposed two-stage
PowerNet BV prediction framework is validated with experi-
mental results. First, the training and testing data from TCAD
simulator are shown. Second, the data preprocessing tech-
nique is presented. Then, the breakdown location predic-
tion accuracy using DNN which comprises the first stage
in PowerNet is shown, and the accuracy is compared with
different classification algorithms. Next, the behavior of the
model by examining the training and testing error during
the training process is presented. Then, the comparison of
the results on BV prediction with different setups, including
using single-stage regression or various regression algorithms
as the second stage alongwith the advantage of usingGPR are
presented. Finally, PowerNet is compared to the conventional
flow with device simulation in terms of both runtime and
the convergence. Our proposed model is implemented in
Python on a Linux server with 8-core 3.4 GHz CPU. We use
tensorflow library [37] for the DNN model and scikit-learn
library [38] for the GPR model.

A. BENCHMARK INFORMATION
The dataset we employed is derived from the commercial
device simulator Medici [24]. The feature vector contains
11 structural parameters of the drift region as presented in
table 1 and the label contains the BV and the breakdown loca-
tion. Also, the data for each parameter is sampled from the
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TABLE 2. Training and testing dataset from Medici simulator.

corresponding ranges shown in table 1. A total of 1510 sam-
ples is obtained by tool simulation and divided into 6:4,
of which 60% is used as a training set and 40% is used as
a testing set. We divide the 60% data into three categories
in terms of its breakdown location. Note that the breakdown
voltages obtained ranged from 20V to 650V. For conven-
tional SOI structures, due to the limitation of vertical voltage
withstand, the voltage withstand of SOI high-voltage devices
which have really entered the practical stage has not exceeded
600V. Table 2 lists the details of training and testing datasets.
The training dataset consists of 3 sets of data labeled with
specific breakdown location. The testing dataset is composed
of an entire dataset with unknown breakdown location.

B. DATA PREPROCESSING
Different input indicators often have different ranges and
dimensional units. For example, the thickness is a few
microns, and the concentration can reach 1020. Such situ-
ations will affect the results of data analysis. To eliminate
the influence of different ranges between indicators, it’s
imperative to do some data preprocessing before the learning
process. Among those data preprocessing methods, the most
typical is the data normalization, whose purpose is to limit
the data to a specific range, such as [0, 1]. Moreover, this kind
of operation brings two advantages, one of which speeds up
the gradient descent method to attain the optimal solution,
and the other is that normalization can help in improving the
prediction accuracy.

C. RESULTS ON BREAKDOWN LOCATION PREDICTION
Fig. 6 shows the number of correctly predicted locations
with different algorithms. The blue line is the actual samples
count, and the different color blocks show the total number
of correctly predicted locations. A simple logistic regres-
sion (LR) and support vector classification (SVC) are tried
for the breakdown location prediction. Apparently, the red
blocks are generally more close to the baseline, which shows
that the results of LR and SVC of each location prediction
are inferior to that of the DNNmethods. Moreover, the use of
DNN allows the accuracy of breakdown location prediction
to be as high as 97.67%.

D. RESULTS ON BV PREDICTION
1) ERROR FOR MODEL TRAINING PROCESS AND TESTING
PROCESS
Fig. 7 shows the BV prediction error of the model train-
ing process and corresponding error of test dataset with
predicted location of the three location-specific neural net-
works, respectively. It is important to note that the testing
data was only evaluated during the process, and was not

FIGURE 6. The number of correctly predicted breakdown locations using
different classification algorithms.

used in any training process. The blue line denotes the BV
prediction error during the model training process and the
red line denotes the BV prediction error for the test dataset.
The error plots validate the convergence of the training pro-
cess. Besides, both training and testing errors exhibit similar
behavior which shows that the model is generalizing well
with no overfitting.

2) COMPARISON BETWEEN SINGLE-STAGE REGRESSION
AND TWO-STAGE REGRESSION
Table 3 shows the comparison of the results on BV prediction
between single-stage regression of our preliminary results
in [39] and this method. Regarding single-stage regression,
various regression algorithms are adopted to train the BV pre-
diction model, including linear regression (LinReg), support
vector regression (SVR), DNN and GPR. Note the prediction
results of single-stage regression are obtained using the entire
training dataset including samples from training class 1, 2 and
3 to train the model, and then testing is done against the entire
testing dataset to obtain the prediction error. For LinReg and
SVR, it is evident that the model fails to capture the BV
behavior, whereas the predictions from single-stage DNN and
GPR are more accurate with error values around 8.8%.

By calculating the total average error according to the
data proportion, the final average error for DNN is 3.8%
and 3.7% for GPR, which is twice as small as the best
result using single-stage regression. Hence, this proves that
it is challenging for single model to capture the correlation
between BV and structural parameters. The employment of
first stage location classification is beneficial for avoiding the
sharp change in the dataset, which is more conducive to the
breakdown prediction task. The significant improvement of
breakdown prediction can be ascribed to the employment of
first stage data classification.

3) COMPARISON BETWEEN DIFFERENT REGRESSION
ALGORITHMS
Various regression algorithms have been explored for the
second stage BV prediction under same first stage loca-
tion prediction. Fig. 8 shows the experimental results using

25378 VOLUME 8, 2020



J. Chen et al.: Powernet: SOI Lateral Power Device Breakdown Prediction With DNN

TABLE 3. Comparison between single-stage regression and our two-stage method.

FIGURE 7. BV prediction error during the model training process and
testing for the three location-specific neural network, (a) location 1;
(b) location 2; (c) location 3.

different algorithms, including LinReg, SVR, DNN, and
GPR, which mark different colors. We can observe that the
mean prediction error corresponding to LinReg and SVR are
all above 10%, especially for class 2, the error values are even
larger than 20%. The results show that SVR, with a nonlinear
RBF kernel, fails to properly capture the BV behavior. This
suggests that the response is highly complex and can not
be captured using polynomial or simple nonlinear functions.
However, the mean prediction error for each category using
DNN or GPR is less than 5%. Thus, we employ DNN or GPR
as second stage BV prediction in the PowerNet while GPR
shows advantages in providing the confidence level of pre-
diction which will be discussed in the following section.

FIGURE 8. Experimental results comparison about BV prediction on
the second stage with different regression algorithms.

TABLE 4. Runtime comparison between TCAD simulator and PowerNet.

4) ADVANTAGES ON USING GPR COMPARED WITH DNN
While the regression accuracies using DNN and GPR are
close, GPR can provide a more elaborative prediction than
DNN. As discussed in section III-D, the variance obtained
from GPR can be used to estimate a confidence interval
around the mean prediction. Fig. 9 shows 10 samples of
the BV prediction results using GPR as the second stage
where the mean prediction along with the 1-sigma confidence
interval are presented. Shown also in the figure is the golden
label (marked in red) which lies within the confidence interval
predicted by GPR for all samples.

It is important to note here two important points. The first
is that the fact that the label always lies inside the confidence
interval predicted by the model reflects the accuracy of the
probabilistic predictions provided by the GPR. Secondly,
the confidence interval itself can be used by the user as a
measure of trust on the prediction mean. In other words,
a user will have more trust in a prediction with a tight con-
fidence interval. Hence, GPR can provide more expressive
information to the user concerning the prediction.

5) RESULTS ON BV PREDICTION COMPARED
WITH TCAD SIMULATOR
Fig. 10 gives an example showing that the BV changes
sharply as the doping concentration changes between 11
×1015cm−3 to 12 ×1015cm−3, which tends to happen in
the manufacturing process. Such drastic changes are easily
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TABLE 5. Non-convergent simulation under our mesh conditions.

TABLE 6. Comparison on the results of tool simulation after mesh adjustment and our model.

FIGURE 9. Experimental results on 10 samples of BV prediction using
GPR as the second stage, where the mean prediction along with the
1-sigma confidence interval are presented.

accompanied by many parameters, such as ts, tox , etc. The
red dots are in good agreement with the TCAD simulation,
which proves the efficiency of the proposed method. In prac-
tice, our proposed approach can provide BV performance
estimation for the designer who can make adjustment to limit
the effects of variation. For example, the designer would
choose design points from regions A and B, which are more
robust than points in C. Moreover, these results are given in
extremely short period.

E. RUNTIME COMPARISON
Table 4 shows runtime for the total testing data of BV esti-
mation using both the TCAD simulator and PowerNet. The
TCAD simulation is implemented on a virtual machine with
2-core 2.4 GHz CPU. The inference time of our model pre-
diction is composed of two parts, the time of the breakdown
location prediction by the DNN and the time of the BV
prediction by the DNN or GPR. Note that the inference time
of using DNN or GPR as second stage regression are similar.
It is apparent that the BV prediction using machine learning
models can dramatically shorten the inference time. The
reason why the simulation tool takes a high computational
cost to estimate the breakdown performance is that it solves
the corresponding physical equation at the set mesh point by

FIGURE 10. Experimental results on BV prediction with various drift
region doping concentration using PowerNet compared with TCAD
simulator.

gradually increases the applied reverse voltage. The process
of steadily increasing the BV and addressing the physical
equation is time-consuming, especially when the BV is rel-
atively high. For example, simulating a structure with a BV
of 583V takes up to 438s. Instead, breakdown performance
can be efficiently predicted through the machine learning
framework based on the structural parameters.

F. CONVERGENCE ANALYSIS
Since the simulation tool computes the breakdown
performance by solving the physical function at the set
mesh point, there are cases where the calculation does not
converge. Therefore, the mesh needs to be manually adjusted
continuously until convergence is achieved. The problem can
be completely solved by our approach. Table 5 shows samples
where the simulation does not converge under the condition
of our mesh set. In such cases, the mesh needs to be redefined
before running a new simulation. Table 6 shows both the
results of the device simulation under mesh adjustment and
our model using the corresponding structural parameters in
table 5. It is evident that our model is robust and can over-
come the convergence issue faced by simulation tool. This
convergence issue is encountered in our experiments while
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using 2D simulation, however, it is much more prevalent in
the 3D simulation setup which is associated with an even
longer runtime.

V. CONCLUSION
In this paper, a novel breakdown performance prediction
framework, PowerNet, based on deep neural network,
is established. It can efficiently provide breakdown location
and BV of a device to evaluate the random variance during
the manufacturing process. It utilizes a two-stage modeling
technique; the first comprises a breakdown location predic-
tion using DNN; while the second performs the BV predic-
tion based on the classification results using DNN or GPR.
The experimental results show that the proposed approach
achieves 97.67% breakdown location prediction accuracy and
less than 4% average error on the BV prediction. Moreover,
the machine learning method significantly reduce the com-
putational cost and is capable of avoiding the convergence
problem faced by the simulation tool used for breakdown
prediction, which is more convenient for the designers.

Besides, the use of machine learning for SOI lateral power
device configurations is a promising direction to move for-
ward. In our future work, we plan to investigate developing
machine learning models that are capable of predicting the
optimal device structural parameters needed to achieve a
given performance target. While this work has introduced
machine learning techniques for the prediction of breakdown
characteristics in SOI devices, the work can be extended
to characterize other devices including bulk silicon, silicon
carbide (SiC) and Gallium nitride (GaN). In addition, our
proposed framework has great potential to address other elec-
trical performance prediction tasks such as current character-
istics, frequency characteristics, noise, and reliability.
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