IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 9, 2019, accepted January 21, 2020, date of publication February 3, 2020, date of current version February 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971064

A Hybrid CNN-LSTM Network for the
Classification of Human Activities
Based on Micro-Doppler Radar

JIANPING ZHU', HAIQUAN CHENZ2, AND WENBIN YE"“', (Member, IEEE)

! College of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China
2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

Corresponding author: Wenbin Ye (yewenbin @szu.edu.cn)

This work was supported in part by the Kongque Technology Innovation Foundation of Shenzhen under Grant
KQJSCX20180328093500762.

ABSTRACT Many deep learning (DL) models have shown exceptional promise in radar-based human
activity recognition (HAR) area. For radar-based HAR, the raw data is generally converted into a 2-D
spectrogram by using short-time Fourier transform (STFT). All the existing DL methods treat the spec-
trogram as an optical image, and thus the corresponding architectures such as 2-D convolutional neural
networks (2D-CNNs) are adopted in those methods. These 2-D methods that ignore temporal characteristics
ordinarily lead to a complex network with a huge amount of parameters but limited recognition accuracy.
In this paper, for the first time, the radar spectrogram is treated as a time sequence with multiple channels.
Hence, we propose a DL model composed of 1-D convolutional neural networks (1D-CNN5s) and long short-
term memory (LSTM). The experiments results show that the proposed model can extract spatio-temporal
characteristics of the radar data and thus achieves the best recognition accuracy and relatively low complexity

compared to the existing 2D-CNN methods.

INDEX TERMS
recurrent neural network, deep learning.

I. INTRODUCTION

Human activity recognition (HAR) provides excellent
potential for various applications, including personal health
systems (PHS), human-computer interaction (HCI), and anti-
terrorism monitoring [1]-[3]. There are generally two types
of HAR: video-based HAR and sensor-based HAR [4].
Video-based HAR takes advantages of the videos or images
from optical cameras to resolve human motion, whereas
sensor-based HAR relies on the data from smart sensors
such as a gyroscope, accelerometer, and radars. Given pro-
tecting individual privacy, sensor-based HAR is becoming
more popular and extensively used. Among various moni-
toring sensors, radar-based devices offer unique advantages,
such as penetrating opaque objects, adapting to any lighting
conditions, and working around the clock [5]. Hence, radar-
based HAR methods are attracting growing interests.
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The activity recognition using a radar depends typically
on the micro-Doppler effect caused by the vibration or rota-
tion of an object, which contains the information of its
range, velocity, and other properties [6]. Since the echo
based on Doppler radar contains the time-varying kine-
matic information of human motion, they can be used
for activity recognition. Most methods currently use time-
frequency analysis to obtain the time-Doppler map. Micro-
Doppler signatures (also called time-Doppler map) can be
regarded as a statistical pattern. Therefore, how to extract
useful features from micro-Doppler signatures becomes a
crucial factor for recognition or identification. Conventional
approaches [7]-[10] adopted machine learning algorithms in
classification, such as multilayer perceptron, principal com-
ponent analysis (PCA), support vector machine (SVM) and
linear discriminant analysis. In these methods, manual fea-
tures extracted from micro-Doppler signatures are typically
used as input to the classifier. However, the efficiency of these
features is limited by prior knowledge and the complexity
of classification problems [11]. Due to those limitations,
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FIGURE 1. This is the overall architecture of the proposed method.

conventional approaches cannot afford most daily HAR
tasks.

In recent years, HAR has made remarkable advance by
applying deep learning (DL) algorithms [12]-[18] to micro-
Doppler signatures. Instead of handcrafted feature selec-
tion, DL makes it possible to extract features automatically.
Compared to traditional ML methods, feature extraction and
classification processes are usually performed simultane-
ously in DL models. For instance, [12], [13] proposed similar
deep convolutional neural networks (DCNNGs) to classify dif-
ferent groups of physical activities and achieved satisfying
results. Nevertheless, these DCNN methods still suffer for
the small amount of data available, which limits the depth
of CNNs and the generalization ability, leading to weak-
ened performance. A feasible solution to insufficient sample
support is to use sparsely connected layers. Convolutional
autoencoders (CAEs) [14] has been proposed that uses unsu-
pervised pretraining to alleviate the demand for training data.
Despite this, another study [15] showed that transfer learn-
ing [16]-[18] was superior to CAEs when less than
550 samples were acquirable.

However, all of the methods [12]-[16], [18] mentioned
above ignored the fact that the raw signals received by radars
are complex time-series data, whose amplitude and phase
could be connected with the kinematics of the observed
target [5]. In general, the raw data is preprocessed by a
short-time Fourier transform (STFT) to obtain spectrograms.
Then, the state-of-art 2D-CNN networks in computer vision
are used to classify the time-Doppler maps. Although spec-
trograms can be treated like optical images, each pixel is
time and frequency samples. Compared to the image, which
is spatially related, the spectrogram has a strong temporal
correlation. Hence, conventional 2-D methods can mainly
learn spatial features, resulting in a complex network with a
huge amount of parameters but limited recognition accuracy.
In this paper, we take into consideration of the temporal
characteristics of radar signals and propose a DL architec-
ture that combines 1D-CNNs and recurrent neural network
(RNNs). More detailed, a ID-CNN is firstly employed to
extracting spatial features from the spectrograms and the long
short-term memory (LSTM) is then introduced to learn global
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time-dependent information. Our work is one of the first
efforts that the time-Doppler map is treated as a time-
sequential vector, and thus 1D-CNN and LSTM are used in
HAR to extract spatio-temporal features of radar data. The
proposed network is trained and tested on a seven-class HAR
data set. It can achieve the best accuracy and relatively low
complexity compared to other networks.

The rest of this paper is organized as follows. The design
of the proposed network architecture is described in details in
Section II. The experiment results is presented in Section III.
Finally, Section IV gives the conclusions of this paper.

Il. PROPOSED METHOD

Fig. 1 shows the overall network architecture for HAR tasks,
which consists of an STFT for data preprocessing, 1D-CNNs
for local feature learning, an LSTM layer for global temporal
information extraction, and a fully connected layer for clas-
sification. First of all, we perform the N points STFT on the
raw data to obtain a spectrogram. Next, the spectrogram is
treated as a 1-D time series with multiple channels and is
fed to a neural network composed of CNNs and RNNs. The
CNN part has two 1-D convolution layer and the first one
is followed by a max pooling layer for downsampling. The
1D-CNN is performed in the time dimension, which extracts
features of adjacent time frames and can preserve the tempo-
ral information of the spectrogram. After processed by STFT
and 1D-CNNs, the feature map can also be seen as a 1-D
time series with multiple channels, which retains unbroken
temporal characteristics. Therefore, we use an LSTM layer
to handle the global temporal information. Finally, the LSTM
layer is connected to a softmax layer to get prediction results.

A. STFT

The raw data is a series of 1-D time-varying signals, including
I/Q channels in our case. Most studies in HAR utilize a time-
frequency (TF) transform to obtain suitable input for DNNs.
The STFT is an efficient linear TF algorithm that transforms
time-dependent signals into the time-frequency domain dur-
ing each short-time section. Although some DCNN methods
can abandon the STFT to implement an end-to-end network,
we believe that adopting STFT is beneficial to improve the

VOLUME 8, 2020



J. Zhu et al.: Hybrid CNN-LSTM Network for the Classification of Human Activities Based on Micro-Doppler Radar

IEEE Access

expression ability of the model with low sample support of
radar data.

As early as 1946, Gabor [19] proposed STFT (also called
Gabor transform), which adds a Gauss window to the tradi-
tional Fourier transform. In 1992, Mann [20] applied STFT
to the radar signal processing, and since then, STFT has
been widely used in this field. In practice, the STFT is first
to split a long-term signal x[n] into M segments through
a time window with length L and overlap K. Then the N
points fast Fourier transform (FFT) is performed on each
segment. A series of FFT results are obtained by sliding the
window function, and the results are arranged to get a two-
dimensional (2-D) representation Xjs «n, Which is referred to
as the spectrogram (i.e. the energy spectral density).

B. 1D-CNN

Convolutional neural networks, one of the most popular
DL algorithms, have been successfully introduced into time
series processing like HAR. Instead of learning only shallow
features in a heuristic or handcrafted way, DL can extract
high-level features automatically and be more capable of
some complex tasks [21]. Compared to other models, CNNs
offer the advantage of local dependency [4]. It means the
adjacent points on the feature map are tend to be correlated,
which coincides with the radar signal.

Since the spectrogram obtained by STFT can be seen as a
2-D virtual image, most approaches build models with three
convolutional layers connected by two fully connected (FC)
layers. In this paper, the spectrogram is treated as a 1-D
(time dimension) signal with multiple channels (frequency
dimension), where 1D-CNN is applied to. Thus, the temporal
characteristics of the spectrogram could be better preserved
and exploited later in LSTM. Furthermore, 1D-CNN offers
lower computational complexity. As shown in Fig. 1(b),
the proposed network contains two 1-D convolutional layers.
Both layers use ReLU functions as the nonlinear activation
functions. The first convolutional layer is followed by a max
pooling layer with a size of 2. According to the design rules
in [22], the number of filters in the second convolutional
layer is twice that of the first layer due to the downsampling
caused by the pooling layer. In the proposed architecture,
satisfactory results can be obtained in HAR tasks by applying
shallow one-dimensional convolution. Beside the depth, other
network parameters are further optimized, such as the number
of filters and the kernel size.

C. LSTM

Recurrent neural networks, especially LSTM, play an essen-
tial role in natural language processing. Different from feed-
forward networks, RNNs contain feedback loops and are
capable of handling tasks based on the temporal sequence.
To solve the issue of gradient vanishing or explosion that
may occur in training traditional RNNs, researchers proposed
the LSTM as shown in Fig. 2, which commonly includes a
cell, a forget gate, an input gate, and an output gate. In some
radar-based dynamic recognition problems, LSTM was
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FIGURE 3. The setup for data collection of seven human activities.
(a) running (b) walking (c) walking while holding a stick (d) crawling
(e) boxing while moving forward (f) boxing while standing in place
(g) sitting still.

utilized to model dynamic processes with the unsegmented
data flow.

Our study reveals that feature extractors and classifiers
combined with 1D-CNNs and LSTM outperform DCNN
based ones. In addition, adopting LSTM makes it possible to
build a much shallower network, which provides outstanding
performance while claims fewer parameters. Since the output
of ID-CNNs can be regarded as feature vectors arranged
in the time dimension, we feed these time-dependent fea-
ture vectors into the LSTM units to learn contextual time
information.

Ill. RESULTS

In this section, the details of data collection and system
implementation is introduced first. Then, the performance
of the proposed method with different network parameters
is discussed. Finally, we give the comparison between our
method and the existing state-of-art models.

A. DATA COLLECTION AND SYSTEM

IMPLEMENTATION DETAILS

Fig. 3 displays the setup for human activity measurements.
The original data for HAR is measured by an Infineon’s
Sense2GoL Doppler radar operating from 24.05 GHz to
24.25 GHz in free space. The —3dB beamwidth of the radar
is 20 degrees in the vertical direction and 42 degrees in
the horizontal direction. The measurement range is between
0.5 m and 5 m. There are seven types of human activities
designed the same as [8]: (a) running, (b) walking, (c) walking
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TABLE 1. The action type and the number of groups.

Action Type Number of Groups
(a)running 2075
(b)walking 2367
(c)walking while holding a stick 2064
(d)crawling 1972
(e)boxing while moving forward 1967
(f)boxing while standing in place 2429
(g)sitting still 2049
Total 14923

TABLE 2. The initial architecture of the network.

layers output shape

Input 6000x2
STFT L=51, overlap=12, pad_to=150 153x150
1D-Convl L x C, ReLU, 1D-MaxPool 2 716 xC
1D-Conv2 L x 2C, ReLU 76x2C
LSTM N3 N3
FC-softmax 7 7

while holding a stick, (d) crawling, () boxing while moving
forward, (f) boxing while standing in place, and (g) sitting
still. The data are collected by seven subjects, including five
males and two females. Note that all data was collected in a
restricted environment. The data collection details are listed
in Table 1. Each acquisition process lasts for three seconds,
with a sampling rate of 2 kHz.

In this experiment, all models are implemented on a server
equipped with 64G memory, a 2.5GHz Intel(R) Xeon(R)
E5-2678 v3 CPU, and an NVIDIA GeForce GTX1080Ti
graphics card. Each model is trained in Python using Keras
based on the backend of Tensorflow. We use Adaptive
moment estimation as the optimizer for back propagation
with a batch size of 32. The learning rate is set to 0.0001 and
will be reduced by half if there is no improvement of the test
accuracy for 20 epochs. The early stop mechanism is adopted
to stop training smartly. We use the 5-fold cross-validation to
test the performance of all the architectures mentioned in this
section. The whole data set is divided into five subsets without
intersections. Each time, one of the five parts is used as the
validation set and the remaining parts as the training set. The
average accuracy of five folds is accepted as the final result.
By the way, in order to reduce the impact of the individual
collector, each category of the data collected by every subject
is also split into five folds correspondingly. The spectrograms
of seven actions are illustrated in Fig. 4.

B. OPTIMIZATION OF THE NETWORK PARAMETERS

The initial architecture of the network is described in Table 2.
As a complex time series, the input data has two channels,
each with 6000 samples. First of all, a 150 points STFT
is performed on the raw data. The time window length is
set to 25.5 ms, corresponding to 51 samples calculated by
the sampling rate of 2 kHz. To retain more original infor-
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FIGURE 4. The spectrograms of seven actions.

mation, we adopt an overlap of 6 ms and obtain the output
spectrogram with 153 time pixels and 150 frequency pix-
els. Then, the spectrogram is fed to two 1-D convolutional
layers. The first layer has C filters with the length of L,
while the second one has 2C filters with the length of L.
Only the first layer is connected to a max-pooling layer with
the length of 2. Both 1-D convolutional layers use ReLU as
the activation function and set padding to the same. Finally,
we use the LSTM layer with N3 units to learn global time
features and a seven-class softmax layer as a classifier.

Since the shallow initial network structure has been able
to give satisfactory performance, we first fix the network
depth to reduce the scope of the searching space and seek
the optimal kernel length (L1, L,), width (C) and the number
of LSTM units (N3). After that, to explore the impact of the
number of 1-D convolutional layers, we also test the accuracy
of the models with different depths. The influence of network
parameters on test accuracy is summarized in Table 3 and
Table 4.

1) IMPACT OF THE NETWORK WIDTH AND LSTM NUITS
Base on the initial network structure, we first fix the
kernel lengths of the two 1-D convolutional layers at
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TABLE 3. Comparison results of the proposed network with different
widths and kernel sizes. Bold rows indicate the model with the highest
recognition accuracy under certain conditions.

Kernel size Width
Acc.(%) | Parameters
(L1 — Lg) | (C—2C — N3)

16-32-32 95.23 22k

16-32-64 96.78 38k

32-64-32 96.42 42K

32-64-64 97.42 63k

5-3 64-128-64 97.95 122k
64-128-128 98.28 205k

128-256-128 98.41 392k
128-256-256 98.51 721k
256-512-256 98.65 1.37M

5-3 97.42 63k
7-3 97.45 73k
7-5 30-64-64 97.54 77k
9-3 97.30 82k
9-5 97.69 87k

9-7 97.41 91k
5-3 98.28 205k
7-3 97.92 122k
7-5 64-128-128 98.26 240k
9-3 98.20 243k
9-5 98.14 260k
9-7 98.10 276k

TABLE 4. Comparison results of the proposed network with different
depths.

Depth of CNN ‘Width Acc.(%) | Parameters
16-32-64-64 97.48 53k
32-64-128-64 97.80 104k
3 32-64-128-128 98.22 187k
64-128-256-128 98.40 369k
64-128-256-256 98.48 698k
6 k=32 98.13 369k
k=64 98.49 1.4M

5 and 3 respectively. Then, we change the widths of the net-
work (including the number of LSTM units) to see their
effects. As shown in Table 3, the number of filters (C) is
doubled every time from 16 to 256. The number of LSTM
units (N3) is usually half or the same as the kernel width
of the previous layer (2C). From the table, we can find that
an obvious improvement in the performance of the model
can be seen by increasing the number of filters and LSTM
units. A similar conclusion that wider networks show more
powerful performance is also made in wide residual networks
(WRN) [23] verified on computer vision data sets. Such
phenomenon demonstrates that the proposed method is well-
suited for time-dependent series like radar data. When the
number of filters, as well as the number of weight parame-
ters, increased significantly, no evidential overfitting can be
seen. This allows designers to widen the network for higher
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FIGURE 5. Architecture of 1D-CNN-LSTM with 3 convolutional layers and
6 convolutional layers.

demand for accuracy. But it does not mean that the perfor-
mance could be improved indefinitely. When the width of the
first convolutional layer is larger than 128, little improvement
can be observed. In addition, the parameter scale and compu-
tational complexity will shoot up as the number of filters and
LSTM units increase. Hence, the parameter optimization is
a trade-off between the pursuit of high performance and the
cost of model complexity.

2) IMPACT OF THE KERNEL SIZE

Currently, the optimization of kernel size is not an issue for
2D-CNN because of the technique of replacing a large 2-D
kernel with several small kernels such as 3x3 mentioned in
Inception-v3 [24]. Unfortunately, this solution is not suitable
for 1-D convolution as it soars the number of parameters.
In view of this, we also change the kernel lengths with other
network parameters fixed. More detailed, the kernel length is
set from 3 to 9, and L, always tends to be smaller than L.
As shown in Table 3, we can see the accuracy varies slightly
as the kernel size of 1D-CNN changes. It seems hard for us to
find a rule for this kind of change due to kernel size. However,
instead of the rules which are absolute, we can still find
some basic ideas. Firstly, the effect on the accuracy caused
by the kernel size is not a key factor. Secondly, the difference
between the kernel size of two adjacent layers should not
be too large. Finally, the optimal kernel size seems to be
related to other parameters of the network. For example,
a slimmer network tends to require a larger kernel, while a
wider network requires a smaller kernel.

3) IMPACT OF THE NETWORK DEPTH

To explore the effect of the number of 1-D convolutional
layers, we investigate in two cases. First, we directly convert
the original two-layer 1D-CNN into a three-layer one and
add a max-pooling layer before the last convolutional layer,
as shown in Fig. 5(a). The number of filters in the last
layer is twice that of the previous layer. We compare the
performance of the three-layer ID-CNN model with different

24717



IEEE Access

J. Zhu et al.: Hybrid CNN-LSTM Network for the Classification of Human Activities Based on Micro-Doppler Radar

widths. After that, we build a much deeper model with six
convolutional layers, which can be seen in Fig. 5(b). The
recognition accuracy of models with different depths is dis-
played in Table 4. For the three-layer model, we find some
improvements in accuracy when the network width is narrow.
However, as the width increases, the effect of depth weakens
until it disappears. Even when the convolution part of the
network is deepened to 6 layers, the accuracy improvement
of the network is not obvious. In short, although the depth of
convolutional layers have some impact on accuracy, it does
not play a decisive role. In other words, for the proposed
method, increasing the width of the convolutional layers is
more effective than make the network deeper. As mentioned
earlier, the spectrogram of the radar signal can be seen as a
multi-channel time series. More specifically, the frequency
dimension of the spectrogram used in this experiment is
150 pixels (considered as 150 channels). Due to the char-
acteristic of 1-D convolution, if the number of filters in the
first layer is too small (much less than 150), it may cause
the information loss. We think this is why the performance
is more sensitive to the network width. Meanwhile, too many
convolutional layers may destroy the time characteristics of
the input signal, which is not conducive to the learning of
LSTM. In addition, with the the network getting deeper,
the network is more likely to be overfitting, and it takes longer
to train the network.

4) ANALYSIS OF THE OPTIMIZED NETWORK

Based on the discussion about the impact of network param-
eters, we find that increasing the number of filters as well
as LSTM units (width) is the most effective way to improve
the performance of the 1D-CNN-LSTM model. But it will
also cause a surge in the amount of parameters. Balancing
the two factors, we choose a network with a kernel size of
5-3 and a width of 32-64-64 (the last bolded row in Table 3)
for subsequent discussion. The classification performance of
the selected model is evaluated in fold 1 by precision, recall
and F1-score. The results are summarized in Table 5 and the
confusion matrix is illustrated in Fig. 6. From the table and the
confusion matrix, we find that the three activities (b)walking,
(c)walking while holding a stick, and (e)boxing while moving
forward are relatively easy to be confused. Since the spec-
trograms of the three activities are similar to some extent,
we think it can be considered as a deficiency of time-Doppler
map. To further improve the accuracy, we believe that it may
be possible to change the form of input signals, such as adding
the time-range map, but this is not in the extent of this paper.

C. RESULTS OF DIFFERENT MODELS

To demonstrate the superiority of this method for processing
radar data, we compared the performance of our method with
recently published ones [7], [8], [13], [15], [17]. Among
them, the first two used traditional machine learning methods,
while others adopted deep learning algorithms. In [7], a feed-
forward artificial neural network, with only one hidden layer,
was applied to classify human activities. In [8], Kim et al.
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TABLE 5. The classification report of the network with a kernel size
of 5-3 and a width of 32-64-64 (the last bolded row in Table 3).

Precision | Recall | Fl-score | Support
(a) 1.00 1.00 1.00 415
(b) 0.97 0.98 0.97 473
(© 0.97 0.96 0.96 412
() 0.99 1.00 1.00 394
(e) 0.95 0.95 0.95 393
() 1.00 0.99 1.00 485
(2) 1.00 1.00 1.00 409
Avg/Total 0.98 0.98 0.98 2981
o 415 0 0 0 0 0 0
400
o4 1
@7 ° 300
3
Jaq{ O
= I 200
@1 0
4 © k100
@1 © 0
- - - . . : Lo
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Predicted Label

FIGURE 6. The confusion matrix of the network with a kernel size
of 5-3 and a width of 32-64-64 (the last bolded row in Table 3).

TABLE 6. Comparison of the results of different models.

Model Acc.(%) | Parameters
MLP [7] 66.15 483
SVM [8] 67.67 -
CNN [13] 95.34 738k
CAE [15] 94.88 1.98M

ResNet-18 [17] 94.79 11IM
1D-CNN-LSTM 98.28 205k

used a support vector machine with the Gaussian kernel.
As early studies in the field of radar-based HAR, the main
contribution of these methods was to confirm the feasibility
of using micro-Doppler signatures. Thus, most of the fol-
lowing researches were based on micro-Doppler signatures.
In [13], a DNN with five convolutional layers was trained on
the resulting spectrograms. For a more challenging 12-class
problem, [15] employed an unsupervised pre-training method
based on a CAE with three convolutional layers and three
deconvolutional layers. In [17], a transfer-learned residual
network, composed of 18 residual blocks, was introduced to
classify a 6-class data set.

The comparison results of different models are shown
in Table 6 and the curves of test recognition accuracy varying
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FIGURE 7. Curves of test recognition accuracy varying with the number of
epochs.

with the number of epochs are illustrated in Fig. 7. Since
the spectrograms obtained by STFT are not as meaningful
and well designed as the handcrafted features mentioned
in [7], [8], the traditional methods (MLP and SVM) give
lower classification accuracy. That is to say, the traditional
methods heavily rely on manual extracted features, which
leads to poor generalization ability. When it comes to the
state-of-art DL methods, their performance is much better
with the accuracy varying from 94.79% to 95.34%. The
selected architecture of our method for comparison (with
the kernel size of 5-3 and the width of 32-64-64) offers the
accuracy of 98.28% over the 2-D methods without LSTM by
2.94% to 3.49%. Furthermore, the proposed network has only
205k parameters, which is reduced by 3.6 to 53.6 times.

IV. CONCLUSION

In this paper, we introduced a deep learning model composed
of one-dimensional CNNs and RNNs for human activity
classification. The model achieved an accuracy of 98.28%
verified on a seven-class data set pre-processed with STFT.
We optimized the network by searching for parameters such
as kernel sizes, widths, and depths. The test accuracy can
be improved by building a wider network or adjusting the
kernel size. Simultaneously, the performance of our method is
better than state-of-art networks. The results indicate that the
proposed network architecture is well-suited to extract global
temporal features in radar signals. Besides, our network is a
kind of efficient models with a small number of parameters.
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