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ABSTRACT As the number of cores equipped in a system grows, the impact of the spinlock waiting inside
the operating system (OS) kernel on the performance and energy efficiency of a systemworsens. In particular,
it deteriorates the effectiveness of simultaneous multithreading (SMT). Because spinlocks are indispensable
in OS kernels, it is necessary to suppress the spin wait overhead in the many-core systems. To address this
issue, we propose the catnap spinlock that exploits the ACPI-C state, which is named as the catnap state and
is induced by the MONITOR/MWAIT instruction pair. The catnap state releases the processor resources while
deceiving the kernel that the thread is iterating a busy-waiting loop. Because entering and exiting from the
C-state require considerable time, we applied the catnap loop only to the non-head waiters not to delay the
lock handover operation. Furthermore, we selectively applied the catnap spinlock to the lock instances for
sufficiently long critical sections based on the observation made in profiling runs. The proposed scheme was
implemented in the Linux kernel and evaluated in a many-core processor system with a few workloads from
the PARSEC and Re-aim benchmark suites. Our evaluation showed that the proposed scheme improved the
performance by up to 33.59% and reduced energy consumption by 39.11%.

INDEX TERMS Spinlocks, symmetric multithreading, energy efficiency, synchronization, many-core.

I. INTRODUCTION
Spinlocks have been widely used for decades because of
their fast handover and lightweight design, although the lock
waiters consume significant processor resources while they
are waiting. In particular, in operating system (OS) kernels,
the sleep locks, such as semaphores or mutexes, cannot be
used in the scheduling or interrupt handling routines because
the design of such locks depends on the scheduler and inter-
rupt handlers. Consequently, the use of spinlocks is frequent
and unavoidable in the kernel code.

As the number of concurrent threads in the system
increases, the synchronization cost for accessing shared
resources in the OS kernel escalates, and this leads to per-
formance degradation and limited scalability [1]. As a result,
there have been many research efforts to address the lock
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contention overhead inside the kernel since the inception of
the many-core era [2]–[4].

The inflated lock contention caused by increased paral-
lelism is also applied to spinlocks. Because a kernel spinlock
waiter disables preemption while it is waiting, the increased
contention significantly worsens the system-wide average
lock waiting time. In our experiments, we verified that up to
25% of the overall processor cycles could be wasted for spin-
lock waiting while executing an I/O-intensive workload with
252 parallel threads. The wasted processor cycles severely
compromised both performance and energy efficiency.

The number of transistors that are integrated into a chip or
in a core is continuously increasing owing to advancements in
processor manufacturing. As a means to utilize these surplus
transistors, most modern processors for servers or high-end
PCs are equipped with a simultaneous multithreading (SMT)
feature, which allows multiple logical threads to share the
resources of a single physical core.

29842 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7916-8054
https://orcid.org/0000-0001-6530-8733
https://orcid.org/0000-0002-1293-4455
https://orcid.org/0000-0003-2103-8019
https://orcid.org/0000-0001-9670-1933


Y. Woo et al.: Catnap: Backoff Scheme for Kernel Spinlocks in Many-Core Systems

The rationale behind SMT is that the core resources
yielded by the idle cores can be temporarily utilized by the
active cores. Therefore, if a logical thread continuously con-
sumes such resources for busy waiting, the amount of shared
resources that are available to the other logical threads must
be reduced, and this results in the diminished effectiveness
of SMT. As a result, the prolonged spinlock waiting time
adversely affects not only the performance of the waiting
thread but also that of the sibling threads.

To address the increased spinning overhead in the
many-core systems, this paper proposes catnap spinlock for
the OS kernel. The waiters of the catnap spinlocks wait in the
catnap state, which is a temporary core sleep state, induced
by the MONITOR/MWAIT instruction pair. The catnap state is
considered as an actively working state of the kernel while
it is, in fact, an idle state at the hardware-level. Therefore,
the catnap spinlock can be applied in any context where a
conventional spinlock is being used to improve performance
and energy efficiency.

Spinlocks are targeted for the short critical sections and
are thus expected to have quick handover delays. The
MONITOR/MWAIT instruction pair enables spinlock waiting
without resource waste, but the idling core requires notable
time to wake up from the low power state. The waiter in the
catnap state may not immediately acquire the lock when its
predecessor releases it because of the exit latency from the
idle state. Therefore, applying the catnap state may degrade
the execution time.

However, the delay can be hidden when the wake-up noti-
fication to the waiter is delivered at a proper time point in
advance, and the critical section is sufficiently long to allow
for this. To minimize the handover delay caused by the catnap
state, we apply the catnap waiting loop only to the non-head
waiters, which are expected not to acquire the lock right next
to the current holder. In addition, we analyzed the critical
section lengths of kernel spinlock instances while executing
benchmark suites. Based on the profile results, we selectively
applied the catnap spinlock to the kernel instances that have
critical sections longer than the harmless catnap threshold,
which is the minimum length of the critical section that can
hide the wake-up delay in the proposed design.

The catnap spinlock is implemented in the Linux kernel
based on qspinlock, which is the current Linux spinlock
implementation. We evaluated the proposed scheme in terms
of performance and energy efficiency using various work-
loads from the PARSEC and Re-aim benchmark suites run-
ning on an Intel Xeon Phi many-core server.

The remainder of this paper is organized as follows.
In Section II, we introduce the history and mechanisms of
the in-kernel spinlock and its performance impact in highly
paralleled multicore systems. In Section III, we propose the
design and implementation of the catnap spinlock, and in
Section IV, we present its evaluation with multiple bench-
marks. Section V introduces the related work on reducing
overhead and securing scalability for locks in many-core
systems. Finally, Section VI concludes this paper.

II. BACKGROUND AND MOTIVATION
A. ANATOMY OF MODERN SPINLOCKS
A spinlock is one of the representative synchronization primi-
tives, which is a non-sleep lock that does not require schedul-
ing intervention. Therefore, it has been popularly used on
several occasions because of its simplicity and straightfor-
ward semantics. However, threads in the spinlock discipline
waiting for lock acquisition have to iterate a busy-waiting
loop continually. This spinning loop consumes a signifi-
cant amount of processor cycles, and therefore, energy as
well. However, because both of its lock acquisition and
release operations are simple and fast, it provides effi-
cient synchronization for short critical sections under low
contention [5], [6].

For these reasons, the Linux kernel takes the spinlock as a
primary synchronization mechanism. The Linux kernel uses
spinlocks for serializing non-preemptible contexts, including
interrupt handlers and task schedulers, and for protecting
short critical sections. Furthermore, several high-level syn-
chronizationmechanisms of the Linux kernel, including read-
copy-update (RCU), mutex, semaphore, and reader-writer
lock, are implemented using the spinlock as a basic building
block.

Spinlocks in the early versions of the Linux kernel used
the simple test-and-set (TAS) spinlock [5]. The waiters of
the TAS spinlock compete with each other while spinning on
a globally shared lock variable. When the lock is released,
the ownership of the lock goes to the waiter that executes the
TAS instruction first. Consequently, some of the waiters may
starve regardless of when they have begunwaiting. To address
this unfairness, the Linux kernel adopted the ticket spin-
lock [7], which supports the first-in-first-out (FIFO) ordering,
which has been used as a replacement of the TAS spinlock
since the release of version 2.6.25.

In conventional spinlocks, including the TAS and ticket
spinlocks, every waiter repeatedly accesses one global lock
variable. This repetitive lock variable access may generate a
considerable amount of remote cache accesses in a multi-core
system that has separate caches for each processing unit to
provide cache coherence. In turn, the remote cache accesses
increase the degree of contention in the interconnect net-
works and memory buses. Consequently, the frequent use
of spinlock may damage the performance not only of the
lock-related cores but also of the overall system [5]. Because
the number of cores integrated into a system is rapidly grow-
ing, the limited scalability of the spinlock is becoming a
critical issue [2], [3].

A few queue-based spinlock structures were proposed to
divide the problematic global spinning into per-waiter local
spinning. By doing so, the waiters do not produce any remote
cache accesses while waiting. The two representative exam-
ples of this queue-based spinlock design are theMCS [8] and
CLH locks [9], [10].

The MCS lock uses a linked list for the wait queue man-
agement. Each lock waiter has a dedicated node in the wait
queue. When the lock is released, the holder hands over the
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lock ownership bywriting a non-zero value into the head node
of the queue to pass the lock ownership, and then, the waiter
watching the head node enters its critical section. The CLH
lock is similar to theMCS lock, but thewaiter of the CLH lock
spins on its predecessor node. Therefore, to release the lock,
the lock holder simply changes its node to false. Because of
this, the release of the CLH lock is faster than that of theMCS
lock. However, the CLH waiter must prepare a waiting node
for the next waiter before entering the wait loop. Therefore,
queueing the waiter and transferring the lock ownership with
the CLH lock is more complicated than with the MCS lock.
Because the waiters spin on their private lock variables, both
MCS and CLH lock structures generate a limited amount of
remote cache accesses regardless of the number of waiters or
length of the waiting time. The scalability earned from sup-
pressing the remote cache accesses makes them appropriate
for the many-core systems.

In response to the increasing number of cores, besides
replacing the classic ticket spinlock, the Linux kernel also
adopted the qspinlock [11], which is an enhanced version of
theMCS lock, since its 3.15 release. There are three main dif-
ferences between the design of the qspinlock and the original
MCS lock. First, the qspinlock has a pending state to expedite
the lock handover. Second, a qspinlock holder can quickly
release the lock by changing the global lock variable value
that reflects the lock state. Lastly, the qspinlock manages a
pre-allocated queue node pool for each logical CPU, so it does
not need memory allocation for a queue node when a new
waiter arrives. The details of the qspinlock are as follows.

FIGURE 1. Data structures for a qspinlock; global lock variable and
per-core wait queue.

The qspinlock state is represented by a 32-bit variable,
as depicted in Fig. 1. This lock variable consists of three
fields: the tail of the wait queue, the pending thread existence
bit, and the status of the lock instance. A thread first performs
the CMPXCHG atomic instruction over this variable to acquire
the lock instance. If the lock variable value is zero, it means
the lock is in a free state, and the thread immediately acquires
it. This procedure is the fast path of the qspinlock acquisition.
If the thread cannot acquire the lock through the fast path,
it will invoke the slow path to wait for the lock to be released.

If there are currently no waiters in the queue, the waiter that
arrives first starts waiting in the pending state. Because the
MCS lock has to manipulate the wait queue node, it is slower
than the ticket spinlock when the lock is not contended.

In contrast, the performance of the qspinlock is comparable
to the ticket spinlock due to the pending state even while
the degree of lock contention is low. The pending waiter of
qspinlock does not manipulate a wait queue node but waits
with spinning on the global lock variable instead after setting
the pending bit. Therefore, the pending waiter can acquire the
lock immediately when the lock is released because there are
no queue clean-up operations required.

If more than one thread starts waiting for the lock, a newly
coming waiter will create a wait queue or adds a node to the
existing queue. The waiter, by using the CMPXCHG instruc-
tion, atomically updates the tail field with the address of the
added node and saves the previous node address formerly
stored in the tail field. The tail field consists of a core id and
an index of the node in the per-core wait node pool. As the
Linux kernel does not allow context switches during spinlock
waiting, the number of cores determines the maximum num-
ber of waiters. Therefore, the qspinlock can allocate memory
space statically for per-core node pools. The node location
can be retrieved by the core index and the index in the per-core
pool, and thus, the qspinlock uses only 16 bits to keep track
of the last node position. The per-core node pool has four
nodes, considering the possibility of nesting up to four levels
of spinlocks: task, softirq, hardirq, and non-maskable
interrupt (NMI).

All waiters in the queue, except the head waiter, spin on
their own queue nodes. The head waiter has a queue node
but spins on the global lock variable like the pending waiter.
When a holder releases a lock, the head waiter can grasp the
change of in the lock value and immediately acquire it. After
that, the head waiter notifies the second waiter to become the
next head waiter. In summary, the qspinlock has three kinds
of spin-loops for the pending, head, and other waiting threads,
respectively.

In the qspinlock scheme, only up to twowaiters can spin on
the global lock variable at a particular time point, the pend-
ing thread, if it exists, and the head waiter. The pending
waiter temporarily exists only when there are no waiters
in the queue. Other than the spin-loop, the lock variable is
accessed when the lock holder releases it, or a new waiter
arrives. Therefore, the lock variable in this design will rarely
experience the remote cache accesses, and thus, the qspinlock
design significantly improves scalability.

B. PERFORMANCE EFFECT DUE TO SPIN WAITING
The performance degradation due to spinlock contention is
caused by both handover delay, which is the time interval
from the end of a critical section to the beginning of the next
critical section, and resource utilization by spinning waiters.
As previously stated, the qspinlock resolved the increased
handover delay in many-core systems by reducing the remote
cache accesses. However, the resource waste from spin wait-
ing, which is an inherent problem of spinlocks [12], remains
the same in the qspinlock design.

As the number of cores is continuously growing in the
multi-core era, the resource waste from spinlock contention is
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FIGURE 2. Quadratic increase in the busy waiting due to spinlock
contention in a multicore system.

rapidly increasing. For example, as shown in Fig. 2, suppose
that four threads request a lock instance at the same time
and each thread holds the lock for time tcrit after it acquires
the lock. When thread A acquires the lock, thread B needs
to wait in the spin-loop for tspin(B) = tcrit where tcrit is the
length of the critical section. However, threads C and D have
to wait for up to tspin(C) = 2 tcrit + thand and tspin(D) =
3 tcrit+2 thand , respectively, where thand is the hand over delay
of the spinlock. Therefore, the total wait time with spinning
will be tspin(B) + tspin(C) + tspin(D) = 6 tcrit + 3 thand .
If N threads are attempting to acquire the lock instance at the
same time, the expected total waiting time will be

∑
tspin =

N (N−1)
2 tcrit +

(N−1)(N−2)
2 thand in the worst case.

As mentioned above, OS kernels frequently use spinlocks.
Therefore, in many-core systems, spinlock waiting in the
kernel context, such as memory management, file system,
and I/O operations, may significantly contribute to the pro-
cessor utilization. To quantitatively analyze processor uti-
lization caused by spinlocks in the kernel, we performed an
experiment using the Re-aim benchmark suites and vips from
the PARSEC benchmark executed in a many-core system
providing 256 hardware threads of which configurations are
described in Table 4.

FIGURE 3. CPU time share of the wait function of the qspinlock.

Fig. 3 shows the ratio of processor cycles consumed by
spinlock waiting to the all the execution cycles, including
the idle and stall cycles, while each benchmark runs with
a varying number of threads. The wasted processing time
for the shared workload worsened by 56 times when using
256 threads in comparison to the case using 64 threads. This
tendency could be observed from the other workloads used
in the experiment, as well. This shows that the processor

resource waste by spinlock waiting is critically determined
by the degree of parallelism.

As stated earlier, the processor cycles consumed in spin
waiting may negatively affect the efficiency of the SMT
feature, which is pervasive in modern server processors [13].
SMT allows multiple logical cores to share core resources in
one physical core and run multiple threads simultaneously to
improve the utilization of core resources. By doing so, SMT
can improve not only performance but also energy efficiency
by up to 30 % [14], [15].

In the SMT architecture, each logical core has a
complete set of independent architectural states, such
as general-purpose registers, control registers, advanced
programmable interrupt controller (APIC) registers, and
machine status registers. However, they share the remaining
resources, such as cache memory, execution units, branch
predictors, control logic, and buses [14]. For instance, Intel
Xeon Phi Knights Landing (KNL) processors simultaneously
execute four logical threads with one physical core through
their SMT technology named Hyper-threading. A physical
core can decode up to two instructions at a single cycle.
Moreover, the allocation unit, which manages the pipeline
for executingµ-operations in an out-of-order manner, and the
memory execution unit can execute up to two instructions in
a single cycle. Therefore, if two logical cores are inactive,
the instructions of sibling logical cores can be executed every
cycle [16].

Therefore, the efficiency of SMT is determined by the
behaviors of logical cores sharing a physical core [17]. If one
of the logical cores continually dominates resources in a
physical core to acquire a spinlock, the performance of sibling
logical cores will significantly deteriorate [18], [19].

The energy efficiency of data centers and server systems is
becoming increasingly critical these days [20]. It is evident
that the wasted processor cycles by spinlocks will lead to
reduced energy efficiency.

To summarize, the growing number of cores has resulted
in quadratic increase in the waiting time of kernel spinlocks.
This, in turn, degrades the effectiveness of the SMT feature
and worsens the energy efficiency of the overall system.

Therefore, the spinlock waiting loop should minimize its
resource usage so that the yielded resources can be used for
other productive jobs. For this, the spin-loops usually use a
backoff mechanism, which slows down the spinning speed
after unsuccessful probes of the lock variable. Several back-
off mechanisms have been proposed to relax the adversary
effects of the spin-loops to the shared resources and power
consumption [5], [8], [21].

Backoffs are normally implemented by adding delay
instructions, which insert some stall cycles in the spin-
loop. For example, the x86 architecture provides the PAUSE
instruction for hinting execution of a spin-loop to the proces-
sor [22], [23]. Furthermore, PAUSE is strongly recommended
to avoid the branch misprediction that occurs when the waiter
is exiting from a tight spin-loop [24]. PAUSE has an identical
opcode (F390) to REP;NOP, repetition of NOP, in the old
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microarchitectures before Intel Pentium 4. The behavior of
the PAUSE instruction is the same as the repetition of the NOP
instructions. However, the difference is that the processor
automatically adds a decent number of stall cycles tomaintain
the memory order.

Currently, the qspinlock in the Linux kernel uses the
PAUSE instruction for backing off its spin-loop. However,
the spinlock waiters still read the lock variable at a rapid
rate, and this causes the side effects mentioned above. There-
fore, a new backoff mechanism is necessary to mitigate the
performance and energy loss from spinlock contention in
many-core systems.

III. OUR APPROACH
A. CATNAP SPINLOCK
Relaxing spinning is effective only when the lock acquisi-
tion is highly congested. However, if the backoff mechanism
delays the lock handover operation, the overall performance
will degrade regardless of the degree of lock contention
because lock handover would occur in the critical paths.

Spinning in a core consumes only a small fraction of
the dynamic power. However, all active cores in a system
continuously consume static power, therefore contributing a
significant to overall power consumption unless they are not
in a deep idle state. Therefore, although a backoff mecha-
nism may reduce the power consumption of a waiting core,
the overall energy consumption will increase if the total
execution time is extended owing to the prolonged handover
operation.

Consequently, it is more important not to degrade the
performance than to mitigate the spinning overhead. In other
words, a desirable backoff mechanism should slow down
or relax only spinning without delaying the lock handover
operation.

Themost straightforwardway for backing off a spin-loop is
executing a few NOP instructions in every iteration. Slowing
down the spin wait with multiple NOP instructions alleviates
the spinning overhead. It reduces the frequency of memory
references and branch instructions, and thus, it can lessen
the shared resource contention when the spinlock contention
is severe. Moreover, the repetition of NOP instructions can
be applied to most of the processors without specialized
hardware support.

However, the delayed inspection of the lock state due to
the prolonged spin-loop exit can increase the lock handover
latency in the queue-based spinlock design. Moreover, it is
challenging to find an appropriate number of repetitions of
the NOP, as it varies depending on the processor architecture
and the degree of the lock contention. Determining the num-
ber of NOP instructions per a spin-loop iteration on the fly is
also difficult because it requires access to global variables for
status monitoring, and additional branch instructions in the
spinlock code, and thus, it would significantly deteriorate the
performance and scalability of the spinlock.

Other instructions that suspend the processor operation,
such as HLT or MWAIT of the x86-64 instruction set, can be

used for backing off the spin-loops. The HLT instruction sus-
pends the execution and puts the core in an idle state. These
instructions are being used to implement the energy-efficient
idle loop by a few OSs, and other ISAs also provide similar
instructions.

Both instructions, as mentioned earlier, enforce the core to
spend time in the low-power core idle state. However, theHLT
instruction is not appropriate for use as a backoff instruction
because a core suspended by the HLT instruction can be
reactivated only through receiving an interrupt. If the lock
waiter suspends its core in the spin wait loop using the HLT
instruction, and then the lock holder sends the inter-processor
interrupt (IPI) to the first waiter to wake the core up, the num-
ber of iterations in the spin-loop can be remarkably reduced.
However, the performance of the spinlock will be signifi-
cantly degraded because sending IPI causes a lock handover
delay for a few thousands of clock cycles for the initiation,
delivery, and reception of the interrupt.
MWAIT instruction also suspends the core activity. How-

ever, the wake-up mechanism of MWAIT works differently.
A logical core should execute a MONITOR instruction before
it uses MWAIT. MONITOR specifies a range of address space
to be monitored by the processor for the forthcoming store
instructions over that range. When a logical core executes
a MWAIT instruction, the logical core stops operation and
enters into an idle state. After that, when another logical
core issues a store instruction onto the monitored address
range, the suspended logical core is woken up and resumes
its execution [25]. By doing so, the MONITOR/MWAIT
pair allows resuming the execution without an addi-
tional memory read or branch operation. Therefore,
we concluded that the MONITOR/MWAIT pair have the
traits required for the backoff instruction of the kernel
spinlock.

When the spinlock suspends the core with a backoff
instruction, the waiter must not sleep from the perspective
of the task scheduler. However, the activity and power con-
sumption of the core should be suppressed to the level of the
idle state. Therefore, a spinlock with a backoff mechanism
is different from the sleep locks or the blocking locks that
the waiter releases the core to the scheduler to enter into
the sleep state. Therefore, we define the backoff-induced
temporary sleep state as the catnap state to distinguish it
from the sleeping wait state of the sleep locks. In addition,
we propose the catnap spinlock, of which waiters wait in the
catnap state.

The catnap spinlock is based on the qspinlock design.
However, in certain conditions, waiters will enter into the
catnap state using the MONITOR and MWAIT pair. The logical
core that is executing a waiter in the catnap state does not
execute any instructions and remains idle in an advanced
configuration and power interface (ACPI) C-state, if possible,
while the OS kernel regards it as actively running. Therefore,
the catnap spinlock can simply replace the existing spin-
locks, and it can mitigate the resource waste problem of spin
waiting.
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The pseudo-code of the catnap waiting loop is shown
in Fig. 4.

FIGURE 4. Spinlock_contended_wait.

When the waiting loop begins, at lines 2 to 3, the logi-
cal core sets the per-core lock variable of qspinlock, which
is illustrated in Fig. 1, as the monitoring target with the
MONITOR instruction.

After that, the waiter checks the status of the per-core
variable at line 4. If the lock field in the variable is set, then
the waiter will exit from the wait loop because it means that
the waiter just became the head waiter, which is the first
waiter to acquire the lock. Because the headwaiter is expected
to acquire the lock soon and entering into and exiting from
the sleep state take considerable time, the head waiter of the
catnap spinlock iterates the conventional spinning wait loop
for the performance. The details of this issue will be covered
in Section III-B.
MWAIT requires two operands; the desired C-state level

and the wake-up events. The catnap loop sets both operands
before executing the MWAIT instruction.

The deeper the C-states a core stays in, the less power it will
consume. However, the exit latency from the idle state will
increase as the level of the C-state deepens. The prolonged
exit latency can delay lock acquisition. Moreover, because
of the power consumption during the state transition, as the
level of the C-state deepens, the target residency, which is the
shortest time interval needed to achieve energy savings from
staying in a C-state, will increase [26]. Therefore, the desired
C-state level hint, which will be given to the MWAIT instruc-
tion, should be carefully chosen so that it does not affect the
lock handover delay.

Table 1 presents the exit latency and the target residency
of each C-state of the Intel KNL and Skylake processors,
respectively. These are defined in the intel_idle driver
of the Linux kernel. We could not find any publicly available
numbers for the state transition latency, or entry latency, to the
deeper C-states.

TABLE 1. Exit latency and target residency of Core C-states.

The SMT feature prevents a physical core from entering
into the desired C-state of its logical core because other
logical cores that share the physical core may actively execute
instructions. The designated depth can be reached only when
the degree of the lock contention is high or when the system
load is low. Therefore, the C-state hint can be considered to
be the maximum allowable depth that does not prolong the
handover delay.

The target residency of the C6 state of the KNL processor
is 500 µs. However, according to our observations, which
are presented in detail in Section III-B, only two spinlock
instances showed an average waiting time longer than 500 µs
during the execution of benchmark applications. In addition,
the exit latency from the C6 state, which affects the handover
delay, is 120 µs while the average holding times of lock
instances are around 1 µs. Considering these circumstances,
the catnap waiting loop uses the C1 state as the designated
idle level, and delivers the hint to the MWAIT instruction at
line 7.

Because the MONITOR instruction monitors write access
to a target address in the cache line granularity, writing to
the area around the lock variable can wake up the catnap
state. In addition, NMIs may disturb the catnap as well.
Therefore, even if the monitor was set for the per-node lock
variable, after waking up, the waiter must check whether the
cause of awakening was a change to the lock variable or not,
as illustrated at line 11.

As described in Section II-A, the current qspinlock has
three different waiting states: pending, head, and queue. The
catnap is applied only to the queue waiters, who arrived
after the pending and head waiters, among the three waiting
states. The pending and head waiters, which spin over the
global lock variable, should quickly react, or acquire the lock
when the global lock variable changes to the released state
because the response time to the lock variable change directly
affects the handover delay. In addition, if the pending and
head waiters wait in the catnap state, they will frequently and
repetitively enter into and exit from the catnap state under
highly contended conditions because the waiting queue tail
field of the global variable changes every time a new waiter is
inserted into the waiting queue. These frequent state changes
drive the core to stay in the idle state for a period shorter than
its target residency. Therefore, for the sake of performance
and energy efficiency, the catnap spinlock lets the leading two
spinners wait in the conventional PAUSE spin-loop.
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FIGURE 5. Lock hand-over timing depending on spinning scheme when
the critical section is short.

The proposed catnap spinlock enables a logical core run-
ning a spinning thread to yield physical core resources while
waiting. Therefore, it is expected to improve energy effi-
ciency and the effectiveness of the SMT. However, it may
adversely affect the handover delay when the critical section
lengths are not sufficiently long to offset the transition
overhead.

B. EXIT LATENCY OPTIMIZATION
As previously mentioned, the catnap spinlock imposes the
catnap state only upon the waiters that have the head node
in the waiting queue to prevent possible handover delay.
However, when the critical section of a spinlock instance is
shorter than the state transition latency, the handover delay
can still occur in the proposed design, and the use of the
catnap, in such cases, will negatively affect the performance.

The exit from the catnap state of the second waiter begins
when the head waiter modifies the per-core queue node of
the second waiter, which is being monitored. The wake-up
delay allowable for the second waiter is determined by the
critical section length of the head waiter, as shown in Fig. 5
and Fig. 6.

Fig. 5 illustrates the case where the catnap spinlock pro-
longs the handover operation because the critical section
length is not sufficiently long to offset the transition delay.
Let us assume that four threads, A, B, C, and D, are sharing
a spinlock instance, and A initially holds the lock. When A
releases the lock, B, which is iterating the PAUSE spin-loop,
notifies C of its promotion to the head node and acquires
the lock. The time interval between A’s release and B’s
acquisition is thandover for both the qspinlock and catnap
spinlock schemes. However, when B releases the lock shortly
after its acquisition, in the catnap spinlock scheme, the time
interval betweenB’s release andC’s acquisition is extended to
t ′handover because C is still in the middle of the state transition
when B releases the lock.

FIGURE 6. Lock hand-over timing depending on spinning scheme when
the critical section is long.

On the contrary, if the critical section is sufficiently long,
as shown in Fig. 6, C will become ready before B finishes
its critical section. In such cases, the handover delay of a
catnap spinlock between B and C will be the same as that
of the qspinlock. To summarize, to completely offset the exit
latency of the second waiter, which waits in the catnap state,
the critical section of the current lock holder has to be longer
than the state transition time.

To determine the critical section length that does not pro-
long the handover delay, we measured the lock performance
using the locktorture [27], [28] test kernel module by varying
the length of the critical section and the number of concurrent
threads. The configuration of the many-core server used for
this experiment was described in Table 4. The number of
cycles for each thread needed to obtain the lock instance was
measured to compare the performance of the qspinlock and
catnap spinlock.

Each pixel in Fig. 7 shows the relative lock acquisitions
per unit time of the catnap spinlock normalized to the con-
ventional qspinlock for each combination of the number of
threads and the critical section length. The exit latency from
the C1 state of the processor used in the experiment is approx-
imately 1 µs.

The catnap spinlock being contended by four threads per-
formed slower than the qspinlock even when the critical
section was longer than the exit latency. This is because,
as shown in Fig. 8, the waiter, C, received a notification right
after it started the state transition to the catnap state. A state
transition operation cannot be aborted. Therefore, thread C
had to exit after it reached the catnap state immediately.When
only two threads are waiting in the queue, this situation occurs
every time as long as the critical section length does not
exceed the sum of the entry latency and the exit latency.

The results in Fig. 7 show that the catnap spinlock retards
the lock handover time when the critical section length was
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TABLE 2. Top 20 spinlock instances having the longest average waiting time.

FIGURE 7. Number of lock acquisitions per unit time of catnap spinlock
normalized to that of qspinlock under various combinations of thread
numbers and critical section lengths.

FIGURE 8. Worst case scenario in which the state transition delays the
handover operation.

shorter than a certain threshold, and the threshold changes
depending on the number of competing threads. We name
this threshold the harmless catnap threshold and use it as a
judgmental criterion to selectively apply the catnap spinlock
only to the spinlock instances, as the performance will not be
degraded by applying it.

As stated, the harmless catnap threshold depends on two
factors: the critical section length and number of competing
threads. The critical section length is a static parameter, while
the number of contending threads is determined dynamically.
Because the spinlock code should be fast and short, it cannot
allow for the dynamic determination of the harmless catnap
threshold. Therefore, as a conservative approach, assuming
few concurrent threads, we settle on a value, 1.4 µs, for the
threshold, based on the observation made in Fig. 7. However,
the value of the harmless catnap threshold may differ depend-
ing on the microarchitecture of the target processor.

As stated earlier, the execution time may be slowed down
by applying the catnap spinlock to the lock instances whose
holding times are shorter than the threshold. Consequently,
the selective application of the catnap spinlock only to the
lock instances that have sufficiently long holding times is
expected to confer benefits mentioned above while minimiz-
ing negative effects. However, the dynamic or runtime selec-
tion of the waiting loop is technically challenging because it
additionally requires access to global lock usage statistics and
conditional branches in the lock acquisition path. The former
threatens the scalability, and the latter causes the pipeline
stalls.

We used the lockstat profiler to observe the dynamic char-
acteristics of the kernel lock instances while executing the
workloads listed in Table 5. The holding time of a lock
instance significantly varies because a single lock instance
may protect multiple critical sections, and the execution time
of a critical section depends on the input and other circum-
stances. Therefore, we used the average holding time of a
lock instance as the judging criterion to determine whether
we should apply the catnap spinlock to the instance.

The 84 lock instances were observed to be contended at
least once during the execution of the workloads. Among
them, 61 lock instances had an average holding time longer
than the harmless catnap threshold. Table 2 lists the top
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TABLE 3. Top 20 spinlock instances having the shortest average holding time.

20 spinlock instances that have long average waiting times.
They are expected to benefit from the catnap spinlock while
the spinlock instances, shown in Table 3, which are the top
20 instances with short average holding times, are likely to be
penalized. The second column is the ratio of the acquisitions
of the instance to the total lock acquisitions that occurred in
the system during the execution. The fifth column is the ratio
of the occurrences of the waiting threads to all acquisition
threads to the lock instance. The average waiting time shows
the sum of waiting time divided by the number of waiting
thread occurrences. Therefore, even when the number of
contentions is extremely low, the average waiting time can
be substantial.

A lock instance with a short average holding time, listed
in Table 3, generally exhibits short average waiting times
because the short holding time lowered the degree of the
contention, and thus the length of its waiting queue could
not be extended further. Therefore, the expected benefit of
applying the catnap spinlock to such instances is minimal,
while its handover operation could be significantly delayed.

As the average waiting time of an instance gets longer,
the expected benefit from using the catnap spinlock increases.
Table 2 shows that most heavily contended instances fall in
the range of the catnap spinlock application. The 14th and
19th instances were two of the few exceptions. However, their
busy waiting loop will barely affect the system performance
and energy efficiency because the occurrences of waiting
threads for such instances are infrequent.

The shortest average holding time was 1.44 µs among the
instances of which 80 percentile waiting times were longer
than the target residency. It is longer than the harmless catnap
threshold. Therefore, we can conclude that if we apply the
catnap spinlock only to the lock instances that have an aver-
age holding time longer than the threshold, the performance
damage from the state transition will be negligible, while
the benefit earned from using the catnap spinlock will be
maximized.

In order to selectively apply the catnap spinlock, we added
the catnap counterparts of the spinlock functions to the Linux
kernel source code. If spinlock functions are invoked with
the _catnap postfix, the catnap spinlock will be used
instead of the conventional qspinlock.

IV. EVALUATION
A. EVALUATION ENVIRONMENT
To assess its performance and energy efficiency benefit,
we evaluated the proposed spinlock scheme using amanycore
server system described in Table 4. We disabled the lockstat
feature of the kernel to remove the probing effect. The proces-
sor used in our evaluation has 64 physical cores, and each core
can simultaneously execute up to four logical threads through
its SMT feature, called Hyper-threading. Therefore, a total
of 256 threads can concurrently run in the processor. This
provides sufficient parallelism to reproduce the contended
situation of the kernel spinlocks.

In the multi-socket non-uniform memory access (NUMA)
multiprocessor systems, the lock handover delay may be
significantly affected by the topology or distance between the
involved cores. However, such handover jitters do not exist in
our evaluation system, which has only one processor. In addi-
tion, its SMT configuration shows a high logical-thread-to-
physical-core ratio in comparison to the other processors
being sold in the market today. Therefore, we believe that
it can clearly show the effectiveness of the catnap spinlock,
i.e., whether it is an adversary or favorable.

The energy consumption was measured using the 32-bit
energy status counter provided with the Intel processor run-
ning average power limit (RAPL) feature. The energy status
counter is designed to overflow every 1 s when the degree
of power consumption is high. Therefore, when using RAPL
to measure energy consumption, the monitor program must
read the counter at least once per second, which can affect
other threads sharing the core. Therefore, the energy mea-
surement monitor uses one dedicated core so that it does not
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TABLE 4. System configurations used for evaluation.

interfere with other threads running simultaneously. Through
the taskset feature, therefore, the benchmark is assigned to
the remaining cores where the measurement monitor is not
running. The measured energy consumption includes both
static and dynamic energy that was consumed while each
target workload was being executed.

The remainder of this chapter introduces the methods and
results of evaluation experiments. Two methods were used to
evaluate the catnap spinlock and a system applying it. First,
we investigate the impacts of the backoff of the spin-loop for
queue waiters on the performance and power consumption
of the SMT through a test benchmark, locktorture. The other
method measures the overall performance and energy con-
sumption of well-known benchmarks and is used to compare
the catnap spinlock and selective catnap approach with the
qspinlock of vanilla Linux kernel. Each experiment was per-
formed ten times.

B. EVALUATION OF BACKOFF MECHANISMS
The catnap spinlock changed the backoff instruction of
the spin wait loop from the PAUSE instruction to the
MONITOR/MWAIT instruction pair. We analyzed the per-
formance and energy consumption characteristics of the
MONITOR/MWAIT pair in comparison to the PAUSE and
MFENCE instructions, respectively.

The MFENCE instruction provides a memory barrier and
is one of the instructions that prevent speculative execution
through branch prediction. Therefore, it is known to improve
energy efficiency when it is used as a spinning backoff
instruction instead of PAUSE [20]. In addition, we also con-
ducted experiments in triplicate for a spinning loop of the
PAUSE instruction to further prolong the backoff duration.
locktorture was used for these experiments. locktorture is

a performance test tool for kernel lock primitives in which a
varying number of threads repeats the acquisition-and-release
loop and counts the number of acquisitions as its performance
metric. The lock holding time of the original locktorture was
randomly determined. Therefore, we modified it to adjust the
holding time by changing the number of loop iteration in the

critical section. Each test thread was pinned to each logical
core.

FIGURE 9. Lock performance change depending on the backoff
instruction.

FIGURE 10. Power consumption change depending on the
backoff instruction.

Fig. 9(a) and Fig. 10(a) show the performance and aver-
age power consumption while varying the backoff instruc-
tion when the lock holding time was set to 1200 cycles
(0.92µs), which is shorter than the harmless catnap threshold.
The results were normalized to that of the qspinlock kernel.
When the number of concurrent threads was smaller than
64, MONITOR/MWAIT performed poorer by up to 10% than
the other backoff instructions in terms of execution time.
However, even in such cases, the average power consumption
was decreased owing to catnap waiting. When the number
of threads was larger than 64, its performance and energy
efficiency improved because the waiters yielded processor
resources to the sibling threads, including the lock holder,
in the same core.

Fig. 9(b) and Fig. 10(b) show the results when the lock
holding time was set to 2400 cycles (1.85 µs), which
is longer than the threshold. When the holding time was
longer than the threshold, the MONITOR/MWAIT pair did not
worsen the performance in any cases, as expected. Further-
more, the degree of the performance and power consumption
improvement were significantly improved compared with the
case with short holding time as the number of concurrent
threads increased. Regardless of the duration of lock holding
time, the performance and power consumption dramatically
decreased when the number of threads exceeded the number
of available physical cores because the MWAIT-induced sleep
state significantly lessened the resource competition among
logical threads sharing a physical core.
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Both MFENCE and PAUSE×3 reduced the power con-
sumption by approximately 2–3%. However, their benefits
did not increase proportionally with the number of threads.

On the contrary, the performance of MFENCE, along with
its power consumption, was linearly worsened because the
memory barrier operation adversely impacted the operation
of the other logical threads when the number of concurrent
threads exceeded 128. The effectiveness of both PAUSE and
PAUSE×3 did not show a meaningful relationship with the
degree of SMT.

C. APPLICATION BENCHMARKS
Applications running in user mode do not directly use the
kernel spinlock. The kernel spinlocks are used when appli-
cations perform memory management operations, I/O or file
system operations, and other kernel-related activities through
system calls or other kernel interfaces. Therefore, to assess
the performance and energy efficiency effectiveness of the
catnap spinlock, we picked five application workloads that
cause severe kernel spinlock contention from the Re-aim [29]
and PARSEC [30] benchmark suites. Re-aim is a benchmark
that simulates various real workloads by combining test units,
and PARSEC is a benchmark suite consisting of diverse mul-
tithreaded programs that represent shared-memory programs
for chip multiprocessor systems. The descriptions of the
select applications are listed in Table 5.

TABLE 5. Descriptions of workloads used in evaluation.

The threads in the all Re-aim workloads are independent
and thus do not explicitly synchronize with each other while
the threads of vips and raytrace explicitly synchronize with
each other for concurrent processing.We set up an in-memory
file system, tmpfs, as storage space for the applications to
remove the disk I/O waiting time from the measured exe-
cution time. We measured their execution time and energy
consumption while varying their configurations.

All the workloads of PARSEC other than vips and ray-
trace were excluded in our evaluation because we could not
find any noticeable changes in their performance and energy
consumption depending on the spinlock mechanism due to
their low spinlock contention. raytrace was one of the work-
loads that do not produce any significant spinlock waiting.

However, it was included to evaluate the proposed scheme
under such a low contention environment.

Each workload was executed with the all-catnap spin-
lock kernel, selective-catnap spinlock kernel, and unmodified
vanilla kernel. The results, which are shown in Fig. 11, are
normalized to that from the vanilla kernel. The graph also
shows the confidence interval for each result.

As shown in Fig. 11(f), raytrace showed negligible
changes in execution time and energy consumption. The dif-
ference between the results under the proposed scheme and
the vanilla kernel wasmostly due to the performance variation
caused by the uncontrollable factors, such as interrupts, I/O
jitters, and so on. The other workloads of PARSEC showed
the similar behavior to raytrace. From this point on, we will
analyze the results obtained from only the five workloads that
produced heavy spinlock contention.

When running with 64 threads or less, each thread was
mapped to a physical core. Because the threads did not share
the physical cores, no noteworthy performance gain with
the improvement of the SMT effectiveness was observed.
In addition, the energy consumption was barely improved in
such cases because the spinlock waiting contributed to the
processor utilization by merely up to 1.5% when the number
of running threads was 63, as depicted in Fig. 3. However,
the energy consumption for vips, as shown in Fig. 11(e),
was reduced by 11.51% even when running with 64 threads,
although the performance gain was only 5.09%. This is
because vips showed exceptionally higher processor utiliza-
tion for spin waiting than the other workloads under low
numbers of running threads.

As the number of running threads grew to 128, 192, and
255, the processor utilization caused by spinlock waiting
also increased. Because the number of logical threads that
shared the same physical core increased to 2, 3, and 4,
there would have been more chances to yield core resources
to the productive threads when using the catnap spinlock.
Consequently, the execution time was reduced by 7.59%,
15.70% and 19.86% on average when running with 128,
192, and 255 threads, respectively. The execution time reduc-
tion was super-linearly increased as the number of running
threads grew. The average energy consumption reductions
were 10.87%, 20.71% and 25.39%, respectively. The propor-
tion of energy consumption reduction was larger than that
of execution time reduction because it was contributed by
both reduced power consumption of the waiting loop and
shortened execution time from increased SMT efficiency.

Although most workloads used in our evaluation produced
severe kernel spinlock contention, the set of highly con-
tended spinlock instances differed depending on the work-
load. In addition, we observed that, for every workload, only
a few spinlock instances dominated the entire lock waiting
time.

Each workload showed different spinlock usage patterns,
and thus the spinlock instances that impacted performance
and energy consumption differed fromworkload to workload.
The catnap spinlock was most effective for fserver when
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FIGURE 11. Normalized execution time and energy consumption of each workload.

running with 255 threads. The catnap spinlock reduced its
execution time by 26.41%. Most of its contended waiting
time, which took 24.69% of its total execution time, was
caused by the lru_lock in the struct pglist_data
used in virtual memory management. This lock had an aver-
age holding time of 14.3 µs, and its contention was so severe
that the average waiting time was 2339.9 µs. A few spinlock
instances impacted the execution time of vips, while a sin-
gle spinlock instance dominated the total busy waiting time of
fserver. The largest spinning waste of vips was caused
by the i_page lock in the struct address_space,
which is used for writing back the page cache. Its average
holding time was 1.8 µs, and average waiting time was
280.5 µs.
The selective catnap approach showed further performance

and energy efficiency improvement for a part of the work-
load set. For example, the selective kernel improved the
execution time of fserver further by 9.90% when running
with 128 threads. The third and forth highly contended lock
instances while executing fserver were d_lockref of
the directory entry cache and sb_lock used for the file
system super block management, respectively. The average
holding times of these two instances were 1.0 µs and 1.1 µs,
respectively, and these are shorter than the harmless cat-
nap threshold. Therefore, their average waiting times were
1.6 µs and 1.1 µs, respectively, even though their contention
ratios were quite high at 1.1% and 2.3%, respectively. These
average waiting times are shorter than the target residency.
Their short average waiting times, combined with their high

contention ratios, made the catnap spinlock inappropriate for
these instances. Consequently, the selective catnap kernel
could improve the performance and energy efficiency gain
by using the qspinlock for these two.

Across all of our evaluation configurations, the perfor-
mance enhancement by the catnap spinlock was 6.44% on
average, and a maximum of 26.41%was achieved. Combined
with the relaxed spin-loop, this performance gain reduced
the energy consumption of the target workloads by 8.87%
on average and by up to 33.50%. The selective catnap
approach improved performance by 9.52% on average and
up to 33.59% and reduced energy consumption by 11.59%
on average and up to 39.11% by removing the side effects of
the catnap spinlock.

V. RELATED WORK
As previously mentioned in Section II-A, the conventional
spinlocks such as TAS spinlock may produce frequent remote
cache accesses in modern multi-socket or multi-core sys-
tems. To resolve such issues, several spinlock mechanisms
have been proposed, and they can be categorized into two
approaches; scalable lock algorithms and reducing references
on lock variables.

A few spinlock schemes, such as MCS spinlock [8], CLH
spinlock [9], [10], k42 lock [31], and C-MCS-TKT lock [32],
are built considering the underlying hardware characteristics
to obtain low-interference among cores and thus scalabil-
ity. In addition, a few backoff mechanisms [2], [21], [33]
have been proposed to reduce the number of lock variable
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references or the intensity of shared hardware resource con-
tention due to accessing global lock variables.

To deal with the problems in congested situations, sev-
eral approaches, such as the Malthusian lock [34] and
requester-based lock [4], have hybridized the busy-waiting
lock and the blocking lock. The requester-based lock, which
is based on the Linux ticket spinlock, puts the waiters to
the ACPI C-state through the MONITOR/MWAIT pair when
the number of waiters becomes larger than the predefined
threshold to resolve the scalability collapse mentioned above.
However, if the number of waiters in the queue is the only
criterion to determine the backoff mechanism, the handover
delay may get extended when the holding time or critical
section is extremely short. On the contrary, the waiters will
iterate the PAUSE spin-loop even when the critical section is
excessively long; thus, using MWAIT is beneficial. In addi-
tion, the authors did not consider the positive impact of their
backoff mechanism on SMT effectiveness. We, on the other
hand, quantitatively analyzed it in this paper.

There have been a few studies that focused on energy
consumption due to spinning waste. One spinner lock [35]
intended to resolve scalability issues and energy wastes in
OpenMP has been proposed. The MONITOR/MAIT combina-
tion was applied to the user-level spinlock mechanisms used
in the OpenMP framework to improve the energy efficiency
of theOpenMP applications. Falsfi et al. proposed a user-level
blocking lock that spins with the MFENCE instruction for a
certain amount of time and blocks [20] to improve energy
efficiency while obtaining fair performance.

In non-uniform memory access (NUMA) architecture,
the latency of internal communication in a node, and the
latency of inter-node communication are significantly differ-
ent from each other. Therefore, many modern NUMA-aware
spinlock algorithms tend to reduce inter-node communication
to improve locking performance.

The first NUMA-aware spinlock is the HBO lock [36].
The TAS spinlock uses a node ID as the value of the lock,
and thus it can be aware of the placement of a lock holder.
If the lock holder is placed on the remote node, the HBO lock
increases the backoff delay to increase the possibility of lock
acquisition by the local thread. However, the HBO lock is
based on the TAS spinlock; thus, it cannot guarantee scalabil-
ity and can experience starvation. Resolving this drawback,
a few hierarchical locks, such as the HCLH lock [37], HMCS
lock [38], AHMCS lock [39], FC-MCS lock [40], and FSL
lock [41] have been proposed to secure scalability. The hierar-
chical lock structure narrows down from the NUMA domain
to the socket and to the core to select the next holder, and each
waiter is continually checking on its local lock variable while
waiting.

The hierarchical NUMA-aware locks introduced in this
section commonly have weak fairness because they prioritize
the node that has the lock ownership. In this regard, lock
cohorting [42], a general approach to design NUMA-aware
lock with weak fairness by combining both NUMA-oblivious
and NUMA-aware approaches, has been proposed.

A compact NUMA-aware (CNA) lock is one of the
recently introduced NUMA-aware spinlocks. The CNA lock
is designed based on the qspinlock to use two queues for
waiters in the local node and waiters in the remote node,
respectively. A CNA lock requires only one word of mem-
ory, regardless of the number of sockets in the underlying
machine. The CNA lock has the single-thread performance
of the MCS but significantly outperforms the latter under
high contention, achieving a similar level of performance
when compared to the other state-of-the-art NUMA-aware
locks that require substantially more space [28]. The catnap
approach proposed in this paper can be easily ported to the
CNA lock.

VI. CONCLUSION
The spinlock is an essential component in the OS kernel that
guarantees the mutual exclusion property for critical sections
in the scheduling or interrupt handling routines, which cannot
be preempted, or for the extremely short critical sections.
However, under high contention, the increased number of
spinlock waiters in a many-core system results in poor energy
efficiency and performance degradation not only of the wait-
ing core but also of the sibling cores sharing the same physical
core in the SMT architecture.

In this study, we quantitatively analyzed the impact of the
kernel-internal spinlocks on the performance and energy effi-
ciency of an SMT-featured many-core system and proposed
the catnap spinlock to resolve it. The catnap spinlock used the
MONITOR/MWAIT instruction pair in the busy waiting loop to
put the waiting core into the idle state, which is recognized as
an active execution state by the kernel scheduler. To avoid
the extra handover delay caused by adopting the catnap state,
in the proposed scheme, only the contended waiters use
the catnap spin-loop, while the waiters that are expected to
acquire the lock instance soon use the conventional busy
waiting loop. In addition, we further reduced the possible
handover delay by selectively applying the catnap spinlock
only to the lock instances that have a sufficiently long
average holding time based on the spinlock instance usage
patterns, which were collected while executing the target
workloads.

The proposed approach was implemented in the Linux ker-
nel and evaluatedwith amany-core server that has 64 physical
cores supporting 256 logical threads. Our evaluation showed
that the selective catnap spinlock kernel reduced the execu-
tion time of the benchmark workloads by up to 33.59% and
improved the energy consumption by up to 39.11%

Our approach can be easily ported to various kinds of
locks, including the blocking locks with the spin-and-park
policy and the NUMA-aware hierarchical locks. In addition,
our analysis and approach introduced in this paper can be
applied to wherever busy waiting loops are being used, such
as the I/O polling loop for high-performance I/O operation.
Busy waiting loops are quintessential for lots of reasons, and
being used in various parts. We believe that our approach can
significantly suppress the resource and energy waste caused
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by the busy waiting loops, which is exponentially growing as
the number of cores equipped in a system increases.
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