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ABSTRACT Various bacterial pathogens can deliver their secreted effectors to host cells via type IV
secretion system (T4SS) and cause host diseases. Since T4SS secreted effectors (T4SEs) play important
roles in the interaction between pathogens and host, identifying T4SEs is crucial to understanding of the
pathogenic mechanism of T4SS. We established an effective predictor called SMOPredT4SE to identify
T4SEs from protein sequences. SMOPredT4SE employed combination features of series correlation pseudo
amino acid composition and position-specific scoring matrix to present protein sequences, and employed
support vector machines (SVM) training with sequential minimal optimization (SMO) arithmetic to train
the prediction model (To distinguish it from the traditional SVM, we will abbreviate it as SMO later). In the
5-fold cross-validation test, SMOPredT4SE’s overall accuracy was 95.6%. Experiments on comparison with
other feature, classifiers, and existing methods are conducted. Experimental results show the effectiveness
of SMOPredT4SE in predicting T4SEs.

INDEX TERMS Machine learning, protein classification, sequential minimal optimization, type IV secreted

effector.

I. INTRODUCTION

Gram-negative bacteria are generally classified as bacteria
that become red with gram staining, many of which are
common bacteria that cause hospital infections. For example,
Escherichia coli, Proteusbacillus vulgaris, Bordetella per-
tussis, Acinetobacter baumannii, Serratia, Enterobacter, and
Pseudomonas all fall into this category [1], [2]. 100 years
after the discovery of a bacterial ‘endotoxin’, 50 years after
the introduction of antibiotics, and 25 years after the rou-
tine use of intensive care units to support septic shock
patients, gram-negative infections continue to account for
significant morbidity and mortality [3]. According to their
outer membrane secretion mechanisms, gram-negative bac-
teria have been identified into eight different secretion sys-
tems (type I to type VIII) [4], all of which show differences
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in evolution and function. Of the eight secretion systems,
secretion pathways of type IV secretion systems (T4SSs)
ancestrally related to bacterial conjugation systems [5] and
they are widely distributed in a variety of bacteria, such as B.
pertussis, Helicobacter pylori, and Legionella pneumophila
[6]-[9]. Such pathogens use T4SSs to translocate macro-
molecular substrates directly into bacterial, plant, or human
target cells [10]. T4SSs are medically important, contribut-
ing to virulence-gene spread, genome plasticity, and the
alteration of host cellular processes during infection [10].
Contact-dependent translocation of effector proteins via the
T4SSs allows pathogens to secrete type IV secreted effectors
(T4SEs) across both bacterial membranes [11]. Accurate and
reliable identification of T4SEs is an important step to under-
stand the pathogenesis of gram-negative bacteria. Due to the
importance of T4SEs in biology, many experimental meth-
ods have been developed to identify them, such as genetic
complementation, reporter protein fusion, and secretion
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apparatus or chaperone interactions [12]-[15]. However,
these biological experimental approaches are time and
resource consuming. Prediction methods based on machine
learning (ML) algorithm shows high efficiency and can be
targeted at large-scale data.

At the beginning of the 21st century, the success of the
international Human Genome Project (HGP) resulted in rapid
growth of biological information, causing researchers to
consider using mathematical calculation methods to reveal
the hidden laws in various biological data, and to predict
the structure and function of unknown proteins [16], [17].
In recent years, some prediction methods for T4SEs
based on ML algorithms have gradually developed [18].
Burstein e al. [19] first measured sequence similarity to
known effector proteins and eukaryotic proteomes, taxo-
nomic distribution among bacteria and metazoa, genome
organization, G+C content, C-terminal signal, and regula-
tory elements as the input features. And then they used
naive Bayes, Bayesian networks, support vector machines
(SVM), sequential minimal optimization (SMO), neural net-
works (multilayer perceptron) [20], [21], and a Voting algo-
rithm [22], [23] based on these algorithms to predict T4SEs.
By combining gene screening and bioinformatics analy-
ses, Chen et al. [24] obtained a large number of candi-
date protein substrates for Coxiella burnetii Dot/Icm T4SEs.
Lifshitz er al. [6] implemented a hidden semi-Markov model
(HSMM) to characterize the amino acid composition (AAC)
of the input signal to identify T4SEs in L. pneumophila,
Legionella longbeachae, and C. burnetii. Zou et al. [25] cal-
culated four types of distinctive features, namely AAC, dipep-
tide composition, position-specific scoring matrix (PSSM)
composition, and auto covariance transformation of PSSM
from primary sequences. And they developed a classifier,
T4EffPred, using the SVM with these features and their dif-
ferent combinations for T4SEs prediction. Wang et al. [26]
compared C-terminal sequence and position-specific amino
acid compositions, possible motifs, and structural features
of T4SEs from different bacteria. Then presented the inter-
species prediction tool package, T4SEpre, to help find new
pathogenic T4SEs efficiently in a variety of pathogenic
bacteria. In an effort to improve predictive performance,
An et al. [27] constructed three ensemble models based
on ML algorithms by integrating the output of all indi-
vidual predictors reviewed. Wang et al. [28] suggested it
would be incomplete to use only the features of C-terminal
residues for prediction, targeting information can also be
encoded in the N-terminal region of at least some T4SEs.
Therefore, they integrated 50 N-terminal and 100 C-terminal
residues, and calculated their AAC composition, transition,
distribution, and PSSM. Then, ranked the importance of
150 residues to T4SE based on the information gain, and
selected 125 residues at different positions as the prediction
model of SVM. Recently, Xiong et al. [29] proposed an
ensemble classification method based on stack generalization
to further improve the predictive performance. They used
the same datasets as in the study by Wang et al. and took
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PSSM-composition as the input features. And then, they used
eight ML algorithms to build the base-classifier, and used
the output of the optimal combination as input to the meta-
classifier. In this way, they got better prediction results.

As is evident, there are currently many different feature
representation methods and ML algorithms to predict T4SEs
using bioinformatics experiments. However, TASEs are an
extremely small fraction of the total cellular proteins, and
as the number continues to grow, it will be necessary to
develop a classifier with higher specificity and performance.
In this study, we used a combination of series correlation
pseudo amino acid composition (SC-PseAAC) and PSSM-
composition, which shows great specificity in the classifi-
cation task. The SVM training with SMO algorithm, which
is faster in operation and more suitable for processing large-
scale data, was selected as the classifier to build the rep-
resentative model. Our new method is more efficient and
concise, and achieves better results than previously published
methods.

Il. MATERIALS AND METHODS

A. DATASET

In this study, we used the benchmark dataset collected and
collated by Wang et al. [28]. T4SEs in the dataset all came
from the effector dataset in the SecRet4 database and other
studies. Non-effectors were randomly selected from the same
strains where the positive training sequences originated, fol-
lowed by removal of known effectors and their homologs.
The dataset contained 1,765 protein sequences, 380 of
which were T4SEs and 1,385 were non-T4SEs. All protein
sequences were divided into two groups: 915 sequences as
a set of 5-fold cross-validation and 850 sequences as a set
of independent-validation. The training dataset (Train-915)
composed of 305 T4SEs and 610 non-T4SEs, all randomly
selected from the set of positive and negative sequences,
respectively. They were then further randomly divided into
five sets for the input of 5-fold cross-validation. The inde-
pendent testing dataset (Test-850) contained 75 positive and
775 negative sequences.

B. FEATURE EXTRACTION

Feature extraction is an important step in building a pro-
tein sequence training model [30]-[39]. A feature with good
specificity and high identification can greatly improve the
prediction performance of the model. In this study, we tried
five features and different combinations of them. Finally,
the best feature or combination of features was selected
according to the experimental results.

1) PSEUDO AMINO ACID COMPOSITION

AAC is a powerful expression of the composition of a protein
sequence, where the 20 naturally occurring amino acids are
represented by letters A, C, D, E, F, G, H, I, K, L, M,
N, P Q R, S, T, V, W and Y [40]. AAC, however, has
a limitation. It cannot express the sequence order. Pseudo
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amino acid composition (PseAAC) is the addition of a set
of discrete sequence correlation factors based on the AAC,
forming (20 + A)-D vector discrete numbers to represent a
protein [41], [42]:

X =[x1 - %20, %2041 - - - %20421" (D
where
fi .
o ;\ (1=<i<?20)
Y fitw) bk
j=1 k=1
X = 0. ()
- “"”A (2041 <i<20+1)
Yfitw) 6
j=1 k=1

where f is the occurrence frequency of the 20 amino acids
in the protein, 6 is the sequence correlation factor, and w is
the weight factor for the sequence order effect. The first 20
components reflect the effect of the amino acid composition,
whereas components from 2041 to 20 + A reflect the effect
of sequence order [43]. SC-PseAAC is a further improvement
of PseAAC, with the following advantages: (a) It has a simple
structure and a small number of features, which can greatly
improve the operation speed for large-scale data; (b) the A
components can be defined by the user at will, introduc-
ing physical and chemical properties such as hydrophilicity,
hydrophobicity, polarity, and charge properties; and (c) since
its vectors are composed of discrete numbers, it is highly scal-
able without affecting the performance of other components.
More extensive physical and chemical properties are shown
in Figure 1.

2) POSITION-SPECIFIC SCORING MATRIX COMPOSITION

A given protein sequence S is represented as S1S2--- Sz,
where S;(1 < i < L) represents the amino acid residue
appearing in the ith position of S, and L is the length of
S [44], [45]. The so-called evolutionary profile of S is the
PSSM, which has been applied to the prediction of pro-
tein sequences in numerous previous studies, achieving good
results [28], [29], [46]-[49]. In this study, we performed
three iterative searches of the Uniref50 database using PSI-
BLAST, setting the e-value to 0.001 to generate the BLO-
SUMBG62 replacement matrix. The results are shown below:

PSSM = (51,87 - - - Sy) 3)

25572

where S;(i = 1,2---20) is the column vector of amino
acid type i in the matrix. We represented each of the column
vectors as:

T .
S; = (Sl,ja 82,y " ~SL,j) G=1,2,---20) “4)

The rows of the same amino acids in the PSSM matrix
are then added together to obtain the 20%20 feature of
PSSM-composition (400-dimensional). The specific process
is shown in figure 2.

3) 188-D FEATURE

188-D feature is a powerful representation of a protein
sequence, containing basic amino acids and a variety of
physical and chemical properties. Its reliability has also been
demonstrated in a number of applications to the modeling
of protein predictors [50], [51]. The first 20 dimensions are
the number of amino acids in the sequence and the lat-
ter dimensions include specific physicochemical properties,
such as hydrophilicity, hydrophobicity, Van der Waals forces,
polarity, and conversion frequency.

4) ADAPTIVE k-SKIP-n-GRAM FEATURES

Since the traditional n-gram feature is sparse in short amino
acid sequences, Guthrie et al. proposed an improved feature
that incorporates location information into it; the adaptive
k-skip-n-gram (400-D) feature [52]. It obtains n-gram infor-
mation by jumping a certain number of words or positions,
which solves the problem of the sparsity of feature space to
some extent [53].

C. CLASSIFICATION METHODS

Waikato Environment for Knowledge Analysis (Weka) is an
open source ML and data mining software which assembled
many ML algorithms capable of mining data [54]-[58]. Weka
is a flexible tool in which we can integrate our own algorithms
and even borrow his algorithms to implement visualization
tools. In our research, we experimented with a variety of ML
algorithms based on Weka platform such as SVM, Random
Forest (RF), Naive Bayes, k-Nearest Neighbor (kNN), Bag-
ging, Stochastic gradient descent (SGD), LibD3C. Finally,
we chose the SMO algorithm, and the results of the exper-
iment will be presented in the next section.

Since SVMs were first proposed by Vladimir Vap-
nik [59], they have become very popular binary classifi-
cation algorithms and have achieved good results in many
classification tasks and regression problems, such as image
recognition, text classification, and protein sequence classi-
fication [60]-[70]. SVM is a generalized linear classifier for
binary classification of data by supervised learning, which is
founded based on the statistical learning theory and structural
risk minimization, its decision boundary is the maximum
margin hyperplane to solve the learning sample. The clas-
sification problem is transformed into a convex quadratic
programming problem to solve. Since the basic concept of
classification learning is to find a partition hyperplane in the
sample space to separate the samples of different categories,
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FIGURE 2. The process from protein sequence to PSSM-composition.

the goal of SVM is to find a hyperplane so that there can be a
larger interval between the outlier points that are close to the
hyperplane. In other words, it is not necessary to consider all
sample points, but only to maximize the interval between the
points that are close to the hyperplane. In the sample space,
the partition hyperplane can be described by the following
linear equation:

Wix+b=0 (5)

where W is the normal vector, which determines the direction
of the hyperplane, and b is the displacement, which deter-
mines the distance between the hyperplane and the origin.
If the hyperplane satisfies the following formula for the train-
ing sample (x;, y;):

yi=+1

S ©)

Wlixi+b>+1
Wixi+b<—1

this formula is called the maximum interval hypothesis, with
vi = +1 indicating that the sample is positive and y; = —1
indicating that the sample is negative. The sample points
closest to the hyperplane that satisfy y; (W x; + b) = 1 are
called support vectors. The basic model of SVM is a convex
quadratic programming problem, which can be solved by
Lagrange multiplier method:

Lovbia)= 3 1wl + 3 e (1 =yt 5 +0) - )
i=1

After the training is completed, most of the samples need not
be retained, and the final model is only related to the support
vector. Based on these strengths, SVM is a sparse and robust
classifier which can be used for nonlinear classification by
kernel method.

However, because the scale of the quadratic program-
ming (QP) optimization problem SVM had to solve was
enormous, it will be slow when processing large-scale data.
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SMO has a great advantage in solving the QP problem; by
breaking the large QP problem into a number of smaller
QP problems [71], [72]. Despite an increase in the number
of problems, the computing speed of each small problem is
greatly improved. Thus, avoiding the QP optimization prob-
lem as an internal cycle, greatly reducing processing time and
improving computation speed [73]-[76]. The SMO algorithm
requires the following steps in the calculation process. Firstly,
SMO had to solve for the two Lagrange multipliers, compute
the constraints for the two multipliers, and solve for the
minimum constraint. Then, in order to speed convergence,
SMO uses heuristics to choose which two Lagrange mul-
tipliers to jointly optimize [71]. Due to these advantages,
the SVM training with SMO is chosen as the main classifica-
tion method in this paper.

D. PERFORMANCE EVALUATION

To demonstrate the performance of our model, we introduced
five evaluation indicators commonly used in bioinformat-
ics [77]-[95]: accuracy (ACC), sensitivity (SE), speci-
ficity (SP), Matthew’s correlation coefficient (MCC), and
F-measure. These metrics are defined as follows:

TP + TN
ACC = ®)
TP + TN + FP + FN
TP
= TP N ®
+ FN
TN
SP=—— (10
TN + FP
MCC — TP x TN — FP x FN
~ J(TP+FN)x(TP+FP)x(IN+FP)x(IN +FN)
(11)
P
R= — (12)
TP + FP
F — measure
2 x SE x PR
= (13)
SE + PR
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where TP (true position) is the number of correctly predicted
T4SEs, FP (false position) is the number of wrongly pre-
dicted T4SEs as non-T4SEs, TN (true negation) is the number
of correctly predicted non-T4SEs, and FN (false negation)
is the number of wrongly predicted non-T4SEs as T4SEs.
Figure 3 shows the entire process, including the detailed pro-
cess of feature selection, modeling, and prediction

Ill. RESULTS AND DISCUSSION

A. CROSS-VALIDATION RESULTS OF TRAIN-915

In many experiments, we tried a variety of methods to extract
highly recognizable features from protein sequences in the
training set, and used several algorithms to train the model
to achieve optimal accuracy. The experimental comparison
results are as follows:

1) PERFORMANCE OF DIFFERENT FEATURES ON
CROSS-VALIDATION

Using the SMO algorithm, we first tried the above-mentioned
PSSM-composition, SC-PseAAC, 188-D, and 488-D fea-
tures, and their combinations. Parameter ¢ was set to 0.2.
Table 1 lists the performance of the four single features and
several combinations of features with good performance in
5-fold cross-validation. The results show that the combina-
tion of SC-Pse AAC and PSSM-composition performed better
than the other features and combinations. We also tried a
combination of three or more features, with no significant
improvement.

2) PERFORMANCE OF DIFFERENT CLASSIFIERS ON
CROSS-VALIDATION

We compared SMO with SVM, RF, which performed well in
previous studies, and algorithms that are suitable for binary
classification problems. As shown in table 2, the SMO algo-
rithm we chose was superior to the other classifiers in every
index.
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TABLE 1. The result of different features on Train-915.

Feature ACC (%) MCC SE SP F-Measure
SC-PseAAC 83.5 0.618 0.659 0.921 0.831
400-D 83.8 0.629 0.708 0.903 0.836
188-D 85.4 0.661 0.672 0.944 0.848
PSSM 90.3 0.778 0.822 0.943 0.902
400-D+PSSM 91.6 0.808 0.819 0.964 0914
188-D+SC- 91.9 0.815 0.836 0.961 0918
PseAAC+PSSM
188-D+PSSM 92.6 0.831 0.839 0.969 0.925
SC-PseAAC 92.6 0.831 0.842 0.967 0.925
+PSSM
TABLE 2. The result of different classifiers on Train-915.
Classifier ACC(%) MCC SE SP F-Measure
Naive Bayes 72.1 0.472 0.839 0.662 0.729
kNN (k=1) 84.9 0.694 0.908 0.820 0.853
Bagging 87.0 0.700 0.707 0.951 0.866
SGD 88.3 0.739 0.845 0.902 0.884
SVM 88.4 0.734 0.750 0.951 0.881
LibD3C 88.6 0.739 0.750 0.954 0.883
RF 89.2 0.753 0.730 0.972 0.888
SMO 92.6 0.831 0.842 0.967 0.925

B. INDEPENDENT-VALIDATION RESULTS OF TEST-850

We used the model built with selected algorithms for
independent validation on the Test-850 dataset to test its
generalization performance. As shown in table 3 and 4,
the combination of SC-PseAAC and PSSM-composition and
SMO algorithm performed best. Although the combination
of 188-D and PSSM performed as well as SC-PseAAC and
PSSM-composition in cross-validation, it performed signifi-
cantly worse in independent-validation. Therefore, the com-
bination of SC-PseAAC and PSSM-composition with SMO
algorithm was determined to have the highest specificity and
best stability.

C. COMPARISON WITH OTHER PREDICTORS
Since the same data set as Wang et al. and Xiong et al. was
used in our study, the results of our 5-fold cross-verification
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TABLE 3. The result of different features on Test-850.

Feature ACC(%)  MCC SE SP F-Measure
400-D 87.5 0.481 0.767 0.888 0.892
SC-PseAAC 88.6 0.503 0.767 0.899 0.900
188-D 90.4 0.513 0.680 0.825 0.911
PSSM 93.3 0.676 0.867 0.939 0.939
188-D+PSSM 94.6 0.715 0.853 0.955 0.949
400-D+PSSM 94.6 0.732 0.880 0.951 0.950
188-D+SC- 94.8 0.728 0.893 0.950 0.951

PseAAC+PSSM
SC-PseAAC 95.6 0.771 0.907 0.961 0.959
+PSSM
TABLE 4. The result of different classifiers on Test-850.

Classifier ACC (%) MCC SE SP F-Measure
Naive Bayes 66.7 0.305 0.880 0.646 0.739
kNN (k=1) 86.6 0.558 0.947 0.858 0.889
SGD 91.5 0.631 0.880 0.919 0.925
SVM 92.7 0.632 0.800 0.939 0.933
Bagging 93.1 0.633 0.773 0.946 0.935
LibD3C 93.5 0.678 0.853 0.943 0.940
RF 94.0 0.685 0.827 0.951 0.944
SMO 95.6 0.771 0.907 0.961 0.959

TABLE 5. Comparison betweenSMOPredT4SE and other method on

improve predictive performance. This increased the difficulty
of use and reduced the efficiency of operation to some extent.
In comparison, our modeling method is simple, feasible, and
highly efficient. This also improves predictive performance
in another way.

IV. CONCLUSION

In this work, we propose a simple, efficient, and reliable
experimental method for predicting gram-negative bacteria
T4SEs based on machine learning algorithms. After com-
parative analysis of several experiments, we selected the
combination of SC-PseAAC and PSSM-composition, which
showed high specificity and good stability. We then used
SMO algorithms to build prediction models, obtaining excel-
lent results in both training and test datasets. In terms of
important indicators, our model yielded ACC of 92.6%, MCC
of 0.831, and F-measure of 0.925 in 5-fold cross-validation
based on the Train-915 dataset, and ACC of 95.6%, MCC
of 0.771, and F-measure of 0.959 in independent-validation
based on the Test-850 dataset. In conclusion, we believe that
our new model provides a reliable and effective means of
screening T4SEs from the huge number of protein sequences.
In the future, we will pay more attentions on the deep learning
classifiers [96]-[105] and evolutionary strategy [106]-[108].

Train-915.
Method ACC (%) MCC SE SP F-Measure
Wang Y. et 87.8 0.727 0.814 0912 0.795
al.’s
PredT4SE- 90.6 0.787 0.803 0.957 0.849
Stack(SVM)
PredT4SE- 90.9 0.795 0.823 0.952 0.857
Stack (NB)
PredT4SE- 91.0 0.797 0.820 0.956 0.857
Stack (KNN)
PredT4SE- 91.1 0.800 0.810 0.962 0.858
Stack (LR)
SMO 92.6 0.831 0.842 0.967 0.925

TABLE 6. Comparison betweenSMOPredT4SE and other method on
Test-850.

Method ACC MCC SE Sp F-
(%) Measure
Wang Y. et al.’s 85.3 0.518 0.907 0.848 0.521
PredT4SE- 87.5 0.556 0.907  0.872 0.562
Stack(SVM,0.23)
PredT4SE-Stack 88.7 0.579 0.907  0.885 0.586
(LR,0.11)
PredT4SE-Stack 94.4 0.715 0.880  0.950 0.733
(LR,0.50)
PredT4SE-Stack 94.5 0.715 0.867  0.952 0.734
(SVM,0.50)
SMOPredT4SE 95.6 0.771 0.907  0.961 0.959

and independent-verification results could be compared with
these studies. To illustrate the differences between these
methods by a more intuitive means, results comparing these
methods are shown in table 5 and 6.

The results show that the new modeling method proposed
in this paper is superior to the methods in the five aspects
of ACC, SE, SP, MCC, and F-measure. In particular, there
was a significant improvement in F-measure (from 0.734 to
0.959). Since F-measure is the weighted harmonic average
of precision and recall, this suggests that the experimental
method presented here is highly optimal. In a recent study
by Xiong et al., they used the stacked ensemble model to
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