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ABSTRACT In various applications such as trajectory tracking in mobile social networks and online recom-
mendation systems, the massive raw data are often incomplete due to various unpredictable or unavoidable
reasons. Matrix completion algorithms are effective for reconstructing two-dimensional data, but sending
raw data containing personal, sensitive information to cloud computing nodes for matrix completion may
lead to privacy exposure issue. The homomorphic matrix completion is a promising approach to perform
matrix completion while preserving privacy. However, CPU-based homomorphic matrix completion has
low performance, making it impractical to process multiple or large-scale data completion tasks in real-
time. In this paper, we propose a high-performance homomorphic matrix completion scheme by exploiting
commodity GPUs (Graphics Processing Units) that are widely available in HPC servers and cloud computing
nodes. First, we design and implement a baseline GPU-based homomorphic matrix completion, and propose
techniques to optimize memory accesses, GPU utilization, and communications. Second, we propose a shard
mode for large-scale matrices exceeding GPU memory capacity. Third, we propose a multi-GPU mode to
fully utilize multiple GPUs in computing nodes. Experiment results show that the proposed scheme is both
fast and accurate. On matrices of varying sizes, the proposed scheme running on a single Tesla V100 GPU
achieves up to 116.23× speedups over the CPU MATLAB implementation running on dual Xeon CPUs.
The multi-GPU mode achieves up to 1.84× speedups on two GPUs versus on a single GPU. For large-scale
matrices, the shard mode achieves up to 174.92× speedups on a single GPU over the CPU MATLAB
implementation on two CPUs, and further achieves up to 1.35× speedups when running on two GPUs using
the multi-GPU mode.

INDEX TERMS GPU, homomorphic matrix completion, least squares minimization.

I. INTRODUCTION
In many applications such as video and image process-
ing [2], out-door and in-door localization [3], [4], and
recommendation systems [5], the massive data are often
incomplete owing to various reasons in data acquisition and
transmission [6]. For instance, the UC Berkeley INTEL
project [7], [8] reported 40% data missings and 8% data
errors. Many scientific researches such as geoexploration [9]
depend on complete data to draw accurate conclusion, since
data analysis on incomplete data leads to inaccurate and
even wrong conclusions. Therefore, various data comple-
tion methods [8], [10], [11] have been designed to recover
the incomplete data. For two-dimensional data (i.e., matrix),
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matrix completion approaches [8] [11] [12] [13] were pro-
posed to recover the missing elements by exploiting the
latent low-rank property of matrices. Alternating minimiza-
tion [7] [11] [14] is an effective algorithm to address the
matrix completion problem. Matrix completion approaches
have been widely adopted in diverse applications including
link prediction in social networks [15], image recovery [16],
image classification [17], and action detection [18].

Existing matrix completion approaches have limitations
in the cloud computing paradigm. Plain-data (i.e., not
encrypted) based matrix completion on cloud computing
nodes may have privacy issues. In cloud computing, users
send requests with plain data from their mobile devices to
cloud computing nodes, then cloud computing nodes execute
the matrix completion algorithms, and finally responses are
sent back from cloud computing nodes to users [4] [19].
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FIGURE 1. Overview of the homomorphic matrix completion on GPU.

In this process, users’ sensitive information may be exposed
to cloud computing nodes, such as locations and trajecto-
ries, preferences, and website navigation histories. Privacy
exposure may lead to economic losses and even lawsuits.
For example, the recommendation contest Netflix prize was
canceled after the privacy lawsuit [20]. To address the privacy
issue, the homomorphic matrix completion approach [19]
was proposed to perform matrix completion while preserv-
ing privacy. Homomorphic matrix completion [19] adopts
a three-step procedure and conduct matrix completion on
encrypted data instead of plain data to preserve privacy.
However, the major computation of the homomorphic matrix
completion is tens of iterative least square minimizations,
whose running time grows rapidly with the matrix size. As a
result, it is impractical for a cloud computing node to process
multiple or large-scale homomorphicmatrix completion tasks
in real-time.

In this paper, we propose high-performance and large-scale
homomorphic matrix completion on GPU, as shown in Fig. 1.
We design, implement, and optimize fast and accurate homo-
morphic matrix completion on single and multiple GPUs.
First, we design and implement a baseline homomorphic
matrix completion scheme on GPU. This baseline scheme is
full functional, but its performance is unoptimized. We then
investigate the bottlenecks of the baseline scheme, and opti-
mize the memory accesses, GPU utilizations, and CPU-GPU
communications to obtain an optimized scheme. Second,
we design a multi-GPU mode to distribute the computations
among multiple GPUs on a computing node. Third, we pro-
pose a shardmode to complete large-scalematrices exceeding
the GPU memory capacity.

Our contributions are summarized as follows.
• We design, implement and optimize a GPU-based
homomorphic matrix completion scheme to achieve
high performance and accuracy. We propose techniques
to optimize memory accesses, GPU utilizations, and
CPU-GPU communications. These optimization tech-
niques improve performance significantly.

• We propose a multi-GPU mode to fully utilize multiple
GPUs in cloud computing nodes. This mode achieves up
to 1.84× speedups on twoGPUs versus on a single GPU.

We further propose a shardmode to complete large-scale
matrices exceeding the GPU memory capacity.

• We perform extensive experiments to evaluate the
performance of the GPU-based homomorphic matrix
completion. For small- or medium-sized matrices,
the proposed scheme running on a Tesla V100 GPU
achieves up to 116.23× speedup versus the CPU
MATLAB implementation [19] running on dual Xeon
CPUs. With the multi-GPU mode, the proposed scheme
achieves up to 1.84× speedups on two GPUs versus
on a single GPU. With the shard mode, the proposed
scheme achieves up to 174.92× speedups on a Tesla
V100 GPU versus the CPU MATLAB implementa-
tion [19] running on dual Xeon CPUs for large matrices,
and further achieves up to 1.35× speedupswhen running
on two GPUs using the multi-GPU mode. The proposed
scheme achieves similar recovery error with the CPU
MATLAB implementation [19]. The project is available
at: https://github.com/hust512/Homomorphic_Matrix
_Completion_Multiple_GPU.

The remainder of this paper is organized as follows.
In Section II, we describe the notations and the homo-
morphic matrix completion algorithm [19]. Section III
presents the design, implementation and optimization of
the GPU-based homomorphic matrix completion scheme.
Section IV presents the shard mode and the multi-GPUmode.
In Section V, we evaluate the performance of the proposed
scheme. Section VI discusses the related works. The conclu-
sions are drawn in Section VII.

II. THE HOMOMORPHIC MATRIX COMPLETION
ALGORITHM
We introduce the notations, summarize the homomorphic
matrix completion algorithm [19], and provide parallel accel-
eration analysis for this algorithm.

A. NOTATIONS
We use lowercase and uppercase boldface letters to denote
vectors (e.g., x ∈ RI ) and matrices (e.g., X ∈ RI×J ),
respectively. We use i, j to index the rows and columns of a
matrix, respectively.We use [I ] to denote the set {1, 2, . . . , I }.
For a matrix X ∈ RI×J , X j or X(:, j) denotes the j-th column
ofX , the (i, j)-th element isX(i, j) or simplyX ij, where i ∈ [I ]
and j ∈ [J ]. The transposed matrix of X is denoted as XT .
We use X i to denote the i-th matrix in a series of matrices.

1) FROBENIUS NORM OF A MATRIX
The Frobenius norm of a matrix X is ‖X‖F =√∑I

i=1
∑J

j=1 |X ij|
2.

2) INDEX MATRIX
The index matrix 8 indicates whether an element X ij ∈ X is
missing. It is defined as follows:

8ij =

{
0, if X ij is missing,
1, otherwise.
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FIGURE 2. Overview of the homomorphic matrix completion algorithm [19].

Algorithm 1 Homomorphic Matrix Completion Algo-
rithm on User Devices j, for j ∈ [J ]

Input: The raw vectorM j ∈ RI , index vector 8j ∈ RI .
1: Initialize: Randomly generate ψ0, ψ1, . . . , ψK ∈ [0, 1]

and
∑K

i=0 ψi = 1,
2: Receive public matrix P from the cloud server (line 2 in

Alg. 2),
3: EncryptM j toM j throughM j = (ψ0M j+ψ1P1+ · · ·+

ψKPK ) ◦8j,
4: Upload the encrypted vectorM j to the cloud server,
5: Receive the recovered vector M̂ j from the cloud server

(line 8 in Alg. 2),
6: Decrypt M̂ j to obtain D̂j through D̂j = (M̂ j − ψ1P1 −

· · · − ψKPK )/ψ0,
Output: D̂j.

3) HADAMARD PRODUCT (ELEMENT-WISE PRODUCT)
The Hadamard product Z of X ∈ RI×J and Y ∈ RI×J is
Z = X ◦ Y , where Zij = X ijY ij.

4) RAW MATRIX
The raw (incomplete) matrix M can be represented as
the Hadamard product of the true (complete) matrix
D ∈ RI×J and the index matrix 8 ∈ RI×J , i.e.,
M = D ◦8 ∈ RI×J .

B. OVERVIEW OF THE HOMOMORPHIC MATRIX
COMPLETION ALGORITHM
The homomorphic matrix completion algorithm [19] consists
of three steps, as shown in Fig. 2:

1) Encryption of raw data on user devices as in Fig. 2(a):
each user uses the public matrix P ∈ RI×K from
cloud computing nodes to encrypt her data vector on
user devices such as mobile phones. These encrypted
vectors are sent to a cloud computing node and form
an encrypted matrix.

2) Matrix completion on cloud computing nodes as
in Fig. 2(b): the encrypted matrix is recovered targeting
a low rank R using the matrix completion algorithm on
the cloud computing node.

3) Decryption of reconstructed data on user devices as
in Fig. 2(c): the reconstructed matrix M̂ is returned
to users. Each user obtains her own reconstructed data
vector by decrypting her column in the reconstructed
matrix using her private keys on a user device.

In the first and third steps, homomorphic encryption and
decryption are used to encrypt the raw (incomplete) data
and decrypt the reconstructed data, so as to protect data
privacy. In the second step, the alternating minimization
algorithm [7] [11] is utilized for matrix completion. The
parts of the homomorphic matrix completion algorithm on
user devices and on cloud computing nodes are described in
Algs. 1 and 2, respectively.
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Algorithm 2 Homomorphic Matrix Completion Algo-
rithm on Cloud Computing Nodes

Input: Index matrix 8 ∈ RI×J , target low rank R, number of
iterations L.
1: Initialize: Public matrix P ∈ RI×K , matrix X0

∈ RI×R,
2: Broadcast P to all J users,
3: Gather all J encrypted vectors and form the encrypted

matrixM ∈ RI×J ,
4: for ` = 1 to L do
5: Y ` = argminY`∈RR×J ‖M −8 ◦ (X`−1Y `)‖2F ,
6: X` = argminX`∈RI×R ‖M −8 ◦ (X`Y `)‖2F ,
7: end for
8: Compute the reconstructed matrix M̂ = XLYL ,
9: Broadcast the reconstructed vector M̂ j to the j-th user, for
j ∈ [J ],

Output: M̂ .

1) ENCRYPTION OF RAW DATA
The encryption of raw data on user devices is shown in lines
2–4 of Alg. 1. Each user uses the public matrix P ∈ RI×K

from a cloud computing node to encrypt her own raw data
vector M1 ∈ RI and obtain M1 ∈ RI on a user device.
Since user devices only have limited computation power,
memory capacity and power budget, the homomorphicmatrix
completion algorithm [19] utilizes a light-weight encryption
scheme as follows:

M j = (ψ0M j + ψ1P1 + · · · + ψKPK ) ◦8j ∈ RI , (1)

where ψ0, ψ1, . . . , ψK ∈ [0, 1] are private keys generated on
user devices and

∑K
i=0 ψi = 1. Each user generates her own

private keys ψ and encrypt her own data vector. Therefore,
user j encrypts a raw data vector M j ∈ RI and produces an
encrypted data vector M j ∈ RI . The encrypted data vectors
M j from J users are sent to a cloud computing node and form
an encrypted matrix M ∈ RI×J , where each encrypted data
vector becomes a column of the encrypted matrix M . Let
K denote the rank of the public matrix P, and R − K denote
the rank of the raw (incomplete) matrix before encryption,
then the rank of the encrypted matrix M is denoted by R.

2) MATRIX COMPLETION ON CLOUD COMPUTING NODES
The matrix completion on cloud computing nodes is shown
in Alg. 2. First, the cloud computing node generates a public
matrix P ∈ RI×K and an initial matrix X0

∈ RI×R (in line 1),
where R is the target rank of the encrypted matrix. The public
matrix P is constructed by selectingK public vectors from all
available public vectors or generated randomly. Public vec-
tors are subsidiary data that are complete and without encryp-
tion, which are provided by some users [19]. The initial X0 is
generated randomly for the specified size. Second, the cloud
computing node broadcasts the public matrix P to all J users,
then gathers all J encrypted vectors and form an encrypted
matrix M ∈ RI×J (in lines 2–3). Third, the cloud comput-
ing node performs the compute-intensive matrix completion
(in lines 4–8). We adopt the alternating minimization

algorithm [7] [11] [14] to solve matrix completion. In each
iteration, we fix matrix X ∈ RI×R to solve Y ∈ RR×J

using (2) and then fix Y to solve X using (3). The core
operation is least squares minimization. The reconstructed
matrix M̂ ∈ RI×J is computed as the matrix multiplication
of XL and YL (line 8).

Y = argmin
Y∈RR×J

‖M −8 ◦ (XY )‖2F , (2)

X = argmin
X∈RI×R

‖M −8 ◦ (XY )‖2F . (3)

Finally, the cloud computing node broadcast the recon-
structed vector M̂ j to the j-th user, for j ∈ [J ].

3) DECRYPTION OF RECONSTRUCTED DATA
The decryption of reconstructed data on user devices is
described in line 6 of Alg. 1. The homomorphic matrix
completion algorithm [19] utilizes a light-weight decryption
scheme as follows:

D̂j = (M̂ j − ψ1P1 − · · · − ψKPK )/ψ0 ∈ RI . (4)

Each user utilizes her own private keys ψ0, ψ1, . . . , ψK to
perform decryption on her reconstructed vector M̂ j to obtain
decrypted data column D̂j.

C. PARALLEL ACCELERATION ANALYSIS
We profiled the CPUMATLAB implementation of the homo-
morphic matrix completion algorithm [19] and found that
the second step took more than 95% of the total running
time for most matrix sizes. Therefore, the efficiency of the
algorithm can be improved by accelerating the second step.

In Alg. 2, the algorithm solvesY ` andX` alternately within
the for-loop (lines 4–7), then computes the reconstructed
matrix (line 8). This process involves intensive computations,
and we propose to offload these computations from CPU to
high-performance GPU. GPUs are effective for accelerating
massively parallel computations such as matrix operations.
The computations in lines 4–8 involve matrix Hadamard
product, matrix multiplication, matrix transpose, and least
square minimization, which can be accelerated on GPU.
Thus, we focus on the design, implementation and optimiza-
tions of the matrix completion (lines 4–8) implementation on
GPU.

III. EFFICIENT HOMOMORPHIC MATRIX COMPLETION
ON GPU
We parallelize the homomorphic matrix completion algo-
rithm [19] in Alg. 2 on GPU. Then we propose techniques to
optimize memory accesses, GPU utilizations and CPU-GPU
communications.

A. DESIGN AND IMPLEMENTATION OF THE BASELINE
GPU HOMOMORPHIC MATRIX COMPLETION
1) DATA STORAGE
We store the data in the column-major format because of two
reasons. First, the homomorphicmatrix completion algorithm
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FIGURE 3. The three-step baseline of homomorphic matrix completion on
GPU.

in Alg. 2 always accesses each column of matrices, therefore
the column-major storage guarantees continuous memory
accesses. Second, the GPU-based homomorphic matrix com-
pletion utilizes some routines in the CUDA libraries that use
the column-major format.

2) PARALLELIZATION OF THE HOMOMORPHIC MATRIX
COMPLETION
In Alg. 2, the major computations are the for-loop in lines
4–7 for alternate least square minimizations and the matrix
multiplications in line 8. Lines 5 and 6 inside the for-loop
perform the least squaresminimizations in (2) and (3), respec-
tively. Since the processes to obtain Y (line 5) and X (line
6) are quite similar, we only discuss the process to obtain Y in
the following sections for conciseness. We use the following
equation to solve the least squares minimization in (2) and get
a column Y j of Y :

Y j = argmin
Y j∈RR

‖M j −H jY j‖2F , (5)

where H j
∈ RI×R is the j-th matrix in a series of coefficient

matrices and R is the target rank of the encrypted matrix. H j

is calculated as the Hadamard product of8j and each column
of matrix X as follows:

H j(i, r) = 8(i, j) ◦ X(i, r). (6)

We compute lines 4–8 in Alg. 2 on GPU in the following
three steps, as shown in Fig. 3:

1) Computing coefficient matrices H j: Compute J coef-
ficient matrices H1,H2, · · · ,HJ using (6). In the
baseline GPU implementation, we compute these
J coefficient matrices in parallel on GPU. We allocate
multiple GPU threads and use one GPU thread to cal-
culate each H j

∈ RI×R.
2) Using (5) to solve the least squares minimizations in

lines 5–6 of Alg. 2. We perform QR factorization on
each H j to obtain an orthogonal matrix and an upper
triangular matrix. Therefore, a single least squares min-
imization is solved and a column Y j of Y is obtained.
For an encrypted matrix M ∈ RI×J , the algorithm
computes J least squares minimizations for Y and J

least squares minimizations for X in each iteration.
Therefore, the algorithm perform (I+J )L least squares
minimizations for L iterations.

3) Performing matrix multiplication ofXL and YL (in line
8 of of Alg. 2) to obtain the reconstructed matrix M̂ .
We utilize the high-performance matrix multiplication
routine in the cuBLAS library [21].

B. OPTIMIZATIONS
We performed preliminary experiments to evaluate the base-
line GPU homomorphic matrix completion scheme, and
found that it achieved merely similar performance with the
CPU MATLAB implementation. We profiled the baseline
scheme using the profiler in CUDA and observed three major
bottlenecks: low memory access efficiency and big mem-
ory footprint, low utilization of GPU compute units, and
high communication cost between CPU and GPU. Therefore,
we optimize the baseline scheme on these aspects.

1) OPTIMIZING MEMORY ACCESSES
We optimize the memory access efficiency in GPU-based
computation. The first step of lines 4–8 in Alg. 2 is to
compute a series of coefficient matrices H j using (6). In the
baseline GPU implementation, 8 and X are stored in the
GPU global memory which has the largest capacity on GPU.
During the computing, each column of 8 in the GPU global
memory is accessed J times. However, the access latency
of the GPU global memory is high and introduce high time
cost. To improve memory access efficiency, we store 8 into
low-latency, small shared memory inside each GPU stream-
ing multiprocessor (SM). To compute J coefficient matrices,
we launch J thread blocks and copy 8j from the GPU global
memory to the shared memory on j-th block. In this way,
the algorithm accesses the shared memory J times to calcu-
late H j, which is much faster than accessing the GPU global
memory.

We reduce the memory footprint in GPU computation.
The matrix form of (5) is H jY j = M j, where H j

∈ RI×R

and M j ∈ RI×1. To solve all J columns of Y , the space
complexity is O(IRJ ), which increases rapidly as the grow of
encrypted matrix size I × J and imposes pressure on limited
GPU memory capacity. We multiply the transposed matrix
(H j)T to the matrix form of (5) and derive the following
equation:

H jY j = M j ⇒ (H j)TH jY j = (H j)TM j. (7)

In (7), (H j)TH j is R×R and (H j)TM j is R×1, so the space
complexity becomesO(R2J ) for all J columns of Y . Since the
encrypted matrix M holds the low-rank property, the target
rank R is much smaller than I and J . Therefore, the memory
consumption is significantly reduced. Since we store (H j) in
the column major format, we can obtain (H j)T through fetch
the elements of (H j) without explicit matrix transpose.

2) IMPROVING GPU UTILIZATION
In (7), there are two matrix multiplications to calculate
(H j)TH j and (H j)TM j, and a least square minimization.
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FIGURE 4. The performance of a single least squares minimization on
two CPUs and the Tesla V100 GPU, respectively.

So there are 2J matrix multiplications and J least square
minimizations to calculate all J columns of Y . Similarly,
there are multiple matrix multiplications and least square
minimizations to obtain X . In regular GPU implementation,
these matrix multiplications or least square minimizations are
computed one by one on GPU. However, since GPUs have
thousands of cores, a single matrix multiplication or least
squares minimization is often inadequate to fully utilize all
GPU cores.We performed preliminary experiment to evaluate
the performance of a single least squares minimization in (5).
The performance under varying matrix size of I × R on two
Xeon CPUs or a Tesla V100 GPU is shown in Fig. 4. The
least squares minimization on the Tesla V100 GPU poorly
achieved an average of 0.75× and up to 1.37× speedups
versus two Xeon CPUs, due to the fact that a single least
squares minimization is inadequate to fully utilize all GPU
resources.

We improve GPU utilization by organizing and batch-
ing multiple matrix computation or the least squares min-
imizations to run parallelly on GPU. Since there are no
dependency between these computations, we organize and
compute multiple matrix computation or the least squares
minimizations in batches. We compute (H j)TH j, j ∈ [J ]
in a batch and (H j)TM j, j ∈ [J ] in another batch by
exploiting the batched matrix multiplication routine in the
cuBLAS library [21]. After these batched matrix multiplica-
tions, we obtain J pairs of data from

[
(H1)TH1, (H1)TM1

]
to
[
(HJ )THJ , (HJ )TMJ

]
. Each pair of data is used for solv-

ing a single least squares minimization in (7). We organize
and solve these J least squares minimizations parallelly in a
batched by exploiting the batched Lower-Upper (LU) decom-
position routine in the MAGMA library [22], as illustrated
in Fig. 5.

The pseudo code of the optimized GPU matrix completion
algorithm is described in Alg. 3. The most outer for-loop in
lines 2–15 executes the matrix completion for L iterations.
There are two parfor-loop in lines 3–6 and 8–11, in which
the computations are in parallel (i.e., batched). The function
getCoefMatrix(·) in lines 4 and 9 calculates a coefficient

FIGURE 5. Batched least squares minimizations.

Algorithm 3 Pseudo code of the optimized GPU matrix
completion

Input: Encrypted matrix M ∈ RI×J , target rank R, index
matrix 8 ∈ RI×J , maximum iterations L.
1: Initialize: Matrix X0

∈ RI×R,
2: for ` = 1 to L do
3: parfor j = 1 to J do
4: H j

= getCoefMatrix(X`−1,8j),
5: Y `j ← LSM( (H j)TH jY `j = (H j)TM j),
6: end parfor
7: (Y `)T = Transpose(Y `),
8: parfor i = 1 to I do
9: U i

= getCoefMatrix((Y `)T ,8T
i ),

10: (X`)Ti ← LSM( (U i)TU i(X`)Ti = (U i)TM
T
i ),

11: end parfor
12: X` = Transpose((X`)T ),
13: end for
14: M̂ = XLYL ,
Output: M̂ .

matrix H j, and all J coefficient matrices are calculated par-
allelly on GPU. The function LSM(·) in lines 5 and 10 is the
least squares minimization function. The transpose(·) func-
tion in lines 7 and 12 performs matrix transposition.

3) REDUCING COMMUNICATIONS
The profiling result on the baseline GPU implementation
showed a high communication cost between CPU and GPU
due to a large amount of data transfers. In the optimized GPU
matrix completion implementation in Alg. 3, the communica-
tion could be a bottleneck if not optimized. We reduce com-
munication cost by eliminating data transfers of intermediate
results. We transfer X0,8 andM from CPUmemory to GPU
memory and continuously calculate lines 4–6 of Alg. 3 on
the GPU without transferring intermediate results back to the
CPU memory. Similar method is applied to lines 10–12.

IV. LARGE-SCALE AND MULTI-GPU HOMOMORPHIC
MATRIX COMPLETION
A. LARGE-SCALE HOMOMORPHIC MATRIX COMPLETION
ON A SINGLE GPU
Although external GPUs have much higher computation
capability than integrated GPUs, their GPU memory capac-
ity is limited. For large matrices, the memory required for
matrix completion exceeds GPU memory capacity, limiting
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FIGURE 6. Shard mode for large-scale homomorphic matrix completion.

the applicability of external GPUs to small- or medium-sized
matrices. By exploiting the separability of the matrix com-
pletion algorithm, we design a shard mode to perform
large-scale homomorphic matrix completion on a single
GPU.

1) SHARDS
As shown in Alg. 3, the parfor-loop in lines 3–6 to solve all
columns of Y ` and the parfor-loop in lines 8–11 to solve all
columns of (X`)T consume most of the GPU global memory
during computing. TakeY ` as example, J coefficient matrices
H j
∈ RI×R are computed parallelly (in line 4). Then there are

two batched multiplications to compute J parallel (H j)TH j

and (H j)TM j, and a batched least squares minimization to
obtain all columns of Y ` (in line 5). Since the computa-
tions to obtain different column of Y ` are independent of
each other (i.e., computing Y `i is independent of computing
Y `j , for i 6= j). Therefore, we split the computations and
data into shards (i.e., partitions) and each partition computes
several columns of Y ` or (X`)T . The shards to compute
columns of Y ` are called Y ` shards while those to compute
columns of X` are called X` shards. Fig. 6 shows example
Y ` shards.

Suppose the GPU has S bytes of available memory and the
required memory for computing Y ` or (X`)T on an I × J
encrypted matrix is a function of I and J denoted by f(I , J ),
then the number of Y ` shards or X` shards B is determined
as B = f(I , J )/S.

2) LARGE-SCALE HOMOMORPHIC MATRIX COMPUTING
WITH THE SHARD MODE
We propose a shard mode to perform large-scale homomor-
phic matrix completion exceeding the GPUmemory capacity.
Using this mode, we perform the computation in the `-th
iteration (in lines 2–13 of Alg.3) as follows:
• Computing Y ` shards one by one on the GPU to obtain
Y `, as shown in Fig. 6;

• Transposing Y ` to obtain (Y `)T ;
• Computing X` shards one by one on the GPU to obtain
(X`)T ;

• Transposing (X`)T to obtain X`;

FIGURE 7. Multi-GPU scheme for homomorphic matrix completion.

B. MULTI-GPU HOMOMORPHIC MATRIX COMPLETION
Cloud computing nodes are often equipped with multiple
GPUs, therefore we design a multi-GPU scheme to fully
utilize multiple GPUs in a node for homomorphic matrix
completion, as illustrated in Fig. 7. Since the computing
of columns of Y ` or (X`)T is independent of each other,
we can distributed the computation among multiple GPUs
to compute in parallel. Assuming there are n GPUs, denoted
by GPU1, ..., GPUn, in a computing node and the size of the
encrypted matrix is I × J , we perform the computation in the
`-th iteration (in lines 2–13 of Alg. 3) as follows:

• GPUj computes Cj continuous columns of Y `, where
Cj is proportional to the performance of the GPU (e.g.,
GFLOPs when performing matrix multiplication) and∑n

j=1 Cj = J , where n is the number of GPUs. GPU1
sends the data for computing to other GPUs using direct
GPU to GPU communication. Each GPU computes its
assigned columns of Y ` using batched matrix multipli-
cations and batched least square minimization. Upon
completion, all other GPUs send their results to GPU1
using direct GPU to GPU communication to form Y `;

• GPU1 performs matrix transpose on Y ` to obtain (Y `)T ;
• GPUi computes Ci continuous columns of (X`)T , where
Ci is proportional to the performance of the GPU (eg.,
GFLOPs when performing matrix multiplication) and∑n

i=1 Ci = I , where n is the number of GPUs. GPU1
sends the data for computing to other GPUs using direct
GPU to GPU communication. Each GPU computes its
assigned columns of (X`)T using batched matrix multi-
plications and batched least square minimization. Upon
completion, all other GPUs send their results to GPU1
using direct GPU toGPU communication to form (X`)T ;

• GPU1 performs matrix transpose on (X`)T to
obtain X`.

In this scheme, the direct GPU to GPU communication is
implemented by exploiting the asynchronous, GPU to GPU
memory copying routine in the CUDA library [21], which
supports the communication between two and more GPUs.
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FIGURE 8. Large-scale homomorphic matrix completion on multiple GPUs.

C. LARGE-SCALE HOMOMORPHIC MATRIX COMPLETION
ON MULTIPLE GPUs
We further design a scheme to perform large-scale homo-
morphicmatrix completion exceedingGPUmemory capacity
on Multiple GPUs, as illustrated in Fig. 8. The basic idea
is to exploit large CPU memory to store all the data, then
distribute shards among multiple GPUs, and utilize GPU
synchronization to ensure correct algorithm flow. Assuming
there are n GPUs, denoted by GPU1, ..., GPUn, in a comput-
ing node, we perform the computation in the `-th iteration
(in lines 2–13 of Alg. 3) as follows:
• Each GPU fetches a Y ` shard from CPU memory, com-
putes it and stores results (i.e., columns of Y `) into
CPU memory. Then the GPU that finishes computing
continues to fetch the next shard if there are remaining
Y ` shards;

• Performing GPU synchronization across all GPUs to
ensure the computing of all Y ` shards are completed;

• GPU1 fetches Y ` from CPU, performs matrix transpose
on Y ` to obtain (Y `)T , and store (Y `)T back to CPU;

• Each GPU fetches a X` shard from CPU memory, com-
pute it and store results (i.e., columns of (X`)T ) into
CPU memory. Then the GPU that finishes computing
continues to fetch the next shard if there are remaining
X` shards;

• Performing GPU synchronization across all GPUs to
ensure the computing of all X` shards are completed;

• GPU1 fetches (X`)T from CPU, performs matrix trans-
pose on (X`)T to obtain X`, and store X` back to
CPU.

V. PERFORMANCE EVALUATION
A. EVALUATION SETTINGS
The experiment platform has two Intel Xeon E5-2640V4
CPUs, an NVIDIA Tesla V100 GPU (Volta architecture),
a Quadro RTX6000 GPU (Turin architecture), and 80 GB
DDR memory. Each E5-2640V4 CPU has 10 cores that
support 20 threads with hyperthreading technology. The
V100 GPU has 5120 CUDA cores with 32 GB DDR mem-
ory, achieving 14 TFLOPs single-precision performance and
900 GB/s memory bandwidth. The RTX6000 GPU has
4608 CUDA cores with 24 GB DDR memory, achieving
16.3 TFLOPs single-precision performance and 672 GB/s
memory bandwidth. The two GPUs are running on driver
430.40. The operating system is Ubuntu 18.04 64bit. The
GPU implementation and the CPU implementation are exe-
cuted on CUDA 10.1 and MATLAB 2017b, respectively.
We generate low-rank matrices of varying size (I × J )

for performance evaluation. The rank of matrices R is set to
0.01 × min(I , J ). The data missing rate of matrices is set to
50%. For single GPU performance, we run experiments on
the Tesla V100 GPU. For multi-GPU performance, we run
experiments on Tesla V100 and Quadro RTX6000 parallelly.
Both CPU and GPU implementations executes the homo-
morphic matrix completion algorithm for L = 10 iterations.
All experiment are executed for five times and we report the
average results.
We adopt two metrics for performance evaluation: running

time and recovery error. We compare the running time of
the CPU MATLAB implementation and the GPU implemen-
tation on varying matrix sizes, and calculate speedups as
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FIGURE 9. Running time and speedups of the homomorphic matrix
completion algorithm on the Tesla V100 GPU and two Xeon CPUs for
small- or medium-scale matrices.

FIGURE 10. Recovery error of the homomorphic matrix completion
algorithm on the Tesla V100 GPU and two Xeon CPUs, respectively.

(longer running time / shorter running time). The recovery
error is defined as RSE = ‖D−D̂‖F/‖D‖F , where D̂ is given
in (4).

B. BASIC PERFORMANCE OF THE GPU HOMOMORPHIC
MATRIX COMPLETION
Fig. 9 shows the performance of the baseline
(i.e., unoptimized) and the optimized GPU homomorphic
matrix completion running on the Tesla V100 GPU and the
CPUMATLAB implementation running on two Xeon CPUs,
respectively. The optimized GPU homomorphic matrix com-
pletion achieved up to 116.23× speedups versus two Xeon
CPUs. In contrast, the baseline GPU homomorphic matrix
completion achieved up to 2.98× speedups versus two Xeon
CPUs. The baseline GPU implementation adopts none of the
optimization techniques in Section III-B. As a result, it has
poor resource utilization and high CPU-GPU communication
cost. The optimized GPU homomorphic matrix completion
achieved higher speedups on bigger matrix sizes. However,

FIGURE 11. Running time and speedups of the large-scale GPU
homomorphic matrix completion on a single GPU.

it supports up to 4, 500 × 4, 500 matrix due to limited GPU
memory capacity.

Fig. 10 shows the recovery error of the optimized GPU
homomorphic matrix completion on the Tesla V100 GPU
and the CPU MATLAB implementation on two Xeon GPUs,
respectively. The matrix is 1, 000 × 1, 000 with a 50% data
missing rate. Both GPU and CPUMATLAB implementations
used double precision float. The GPU and CPU implementa-
tion achieved similar recovery errors under different number
of iterations. The recovery error keep decreasing with the
number of iterations till 10e−15 which is the limit of double
precision float in MATLAB.

C. PERFORMANCE OF THE LARGE-SCALE AND
MULTI-GPU HOMOMORPHIC MATRIX COMPLETION
Fig. 11 shows the performance on large-scale matrices using
the shard mode. Due to the long running time of the CPU
MATLAB implementation for comparison, we tested matrix
sizes up to 16, 384× 16, 384. The memory requirements for
performing homomorphic matrix completion on two largest
matrices 8, 192 × 8, 192 and 16, 384 × 16, 384 exceed the
memory capacity of Tesla V100 GPU, therefore they are
split into 7 and 49 shards for computing, respectively. On all
matrix sizes, the optimized homomorphic matrix completion
achieved up to 174.92× speedups versus the CPU MATLAB
implementation. In contrast, the unoptimized GPU imple-
mentation poorly achieved up to 9.03× speedups over the
CPU MATLAB implementation.

Fig. 12 shows the performance of the multi-GPU GPU
homomorphic matrix completion. There are three running
time curves to contrast the performance on single Tesla
V100 GPU, single Quadro RTX6000 GPU, and two GPUs
parallelly. In the two-GPU experiment, we set V100 as
GPU1 and RTX6000 as GPU2, and the multi-GPU homo-
morphic matrix completion distributed the computation
onto two GPUs and computed parallelly. On matrices
of 1, 000 × 1, 000 or bigger, the GPU implementation
running on RTX6000 was on average 1.13× faster than
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FIGURE 12. Running time and speedups of the multi-GPU homomorphic
matrix completion.

FIGURE 13. Running time and speedups of the large-scale GPU
homomorphic matrix completion on multiple GPUs.

the GPU implementation running on V100. The multi-GPU
homomorphic matrix completion achieved up to 1.84×
speedups against the single-GPU homomorphic matrix com-
pletion running on V100. On small matrix of 500 × 500,
the multi-GPU homomorphic matrix completion is slower
than the single-GPU homomorphic matrix completion run-
ning on V100, because the running time is small and the
cost to partition computation and the communication between
multiple GPUs exceeds the performance benefit from multi-
ple GPUs. Therefore, the multi-GPU scheme is more advan-
tageous for medium and large matrices.

Fig. 13 compares the performance of the large-scale GPU
homomorphic matrix completion on multiple GPUs. Two
largest matrices 8, 192×8, 192 and 16, 384×16, 384 exceed
the memory capacity of Tesla V100 GPU, therefore they
are split into shards for computing. In the two-GPU exper-
iment, we set V100 as GPU1 and RTX6000 as GPU2, and
the large-scale, multi-GPU homomorphic matrix completion
distributed all shards onto twoGPUs and computed parallelly.
On two matrices 8, 192 × 8, 192 and 16, 384 × 16, 384,
the homomorphic matrix completion achieved 1.14× and

1.35× speedups on two GPUs versus on a single V100 GPU,
respectively. These speedups are lower than the multi-GPU
speedups in Fig. 12 because of two major reasons. First,
the large-scale, multi-GPU scheme requires two synchroniza-
tions between GPUs in each iteration to ensure the comple-
tion of computing, which introduces time overhead. Second,
there can be workload imbalance between GPUs when GPUs
process different number of shards and lead to GPU waiting
time overhead.

VI. RELATED WORKS
Homomorphic encryption [23], [24] is a form of encryp-
tion that allows computation on ciphertexts, generating an
encrypted result which, when decrypted, matches the result
of the operations as if they had been performed on the plain-
text. Homomorphic encryption approaches have been applied
to diverse fields including secure voting systems, private
information retrieval schemes, and collision-resistant hash
functions [25], [26]. Kong et al. [19] proposed a homomor-
phic encryption approach for low-rank matrices. Using this
approach, incomplete data from multiple users can be recon-
structed on cloud computing nodes while still preserving user
privacy.

Matrix completion methods are effective in reconstructing
two dimensional data. Low rank is often a necessary hypoth-
esis for multi-dimensional data completion to avoid being an
undetermined and intractable problem. Low-rank, incomplete
matrices can be reconstructed using the alternating minimiza-
tion algorithm [7] [11] [14]. Candès and Recht [13] proposed
a convex optimization method for matrix completion and
obtained the sampling lower bound. For data reconstruc-
tion of three-dimension and higher-dimension, researchers
proposed various tensor completion algorithms, including
decomposition-based algorithms, nuclear (trace) norm-based
algorithms, and other variants [27].

Data completion algorithms are compute-intensive. Many
data completion algorithms are iterative, whose computa-
tion complexity grows rapidly with the size and dimen-
sion of the data. Therefore, researchers proposed to utilize
high-performance GPUs for acceleration. Shah and Majum-
dar [28] proposed an efficient matrix completion imple-
mentation based on stochastic gradient descent (SGD) on
GPUs. Later, researchers designed parallel SGD [29] and
multi-stream SGD [30] on GPUs that can be used for
matrix factorization and completion. For the completion of
third-dimensional data, we proposed efficient GPU tensor
completion implementations [31], [32]. Different with these
works, we propose a high-performance GPU homomorphic
matrix completion based on the alternating minimization.

The GPU homomorphic matrix completion in this
paper involves matrix operations including matrix multi-
plication, matrix decomposition (for solving least squares
minimization), and matrix transpose. Because matrix
algebra is fundamental and widely used, designing
high-performancematrix routines could benefit diverse appli-
cations. Tao et al. [33] accelerated Sparse matrix-vector
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multiplication and matrix-transpose vector multiplica-
tion. Deveci et al. [34] designed efficient GPU sparse
matrix-matrix multiplication. Tomov et al. [35] accelerated
dense linear algebra on hybrid GPU systems. Our work con-
siders how to organize the computation and exploiting matrix
routines in batched, large-scale or multi-GPU conditions.

VII. CONCLUSION
In this paper, we propose a GPU-based homomorphic matrix
completion scheme for high-performance matrix comple-
tion while preserving user privacy. We optimized memory
accesses, GPU utilizations, and CPU-GPU communications.
The optimized scheme achieved up to 116.23× speedups
over the CPU MATLAB implementation running on two
Xeon CPUs. To fully utilize multiple GPUs within a com-
puting node, we designed a multi-GPU mode by exploiting
the separatability of the homomorphic matrix completion
algorithm. To compute large-scale matrices exceeding GPU
memory capacity, we designed a shard mode by exploiting
large CPU memories. The multi-GPU mode achieves up to
1.84× speedups on two GPUs versus on a single GPU. For
large-scale matrices, the shard mode achieves up to 174.92×
speedups on a single GPU over the CPU MATLAB imple-
mentation on two CPUs, and further achieves up to 1.35×
speedups when running on two GPUs using the multi-GPU
mode. The proposed scheme can be employed in diverse
applications.
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