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ABSTRACT To improve the ability of the sine cosine algorithm (SCA) in the exploitation process,
an improved symmetric SCA with adaptive probability selection (SSCA-APS), is proposed. The search
process of this algorithm is divided into early and late stages. In the early stage, the operators of the traditional
SCA algorithm continue to be used. In the late stage, three improvements were applied. Firstly, the symmetric
sine and cosine operators are proposed. The adaptive probability selection strategy is adopted to integrate
original sine and cosine operators and symmetric sine and cosine operators for dynamically adjusting the
step size of the search range. Furthermore, to prevent the population from falling into local optimization,
Gaussian perturbation is used tomutate the globally optimal individuals of the current generation. In addition,
the information of two randomly selected individuals and the globally optimal individual is integrated by
quadratic interpolation to maintain population diversity and produce a new individual. 23 test functions
were used to verify the performance of the proposed algorithm. The simulation results indicate that the
performance of the SSCA-APS algorithm has competitiveness when it is compared with classical SCA and
some state-of-the-art SCA variants.

INDEX TERMS Symmetric sine cosine, quadratic interpolation, Gauss perturbation, adaptive probability
selection.

I. INTRODUCTION
For numerical optimization problems, researchers have cre-
ated various solutions, some of which present pioneering
algorithms, such as SCA [1], which is the first algorithm
to explore the optimal solution in the search space by using
standard sine and cosine function.

To improve the performance of the SCA algorithm,
some existing algorithms are integrated into SCA. For
example, Nenavath and Jatoth proposed the hybrid algo-
rithm SCA-DE [2], which mixed SCA with Differential
Evolution, and experiments on unimodal, multimodal and
fixed-dimensional multimodal functions showed a compet-
itive performance. Singh and Singh proposed the hybrid
GWOSCA [3] as a combination of GreyWolf Optimizer used
for exploitation and SCA used for exploration, and experi-
mental results proved that this hybrid variant can highly be
effective in solving constrained or unconstrained problems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huaqing Li.

Elaziz et al. presented an improved SCA (named opposition
based SCA, for short OBSCA [4]) that considered opposition
based learning as a mechanism for a better exploration of the
search space to generate more accurate solutions. Meshkat
and Parhizgar, in their algorithm calledWUPMSCA [5], used
a weighted update position mechanism instead of the position
update method of SCA to obtain better solution. Zamli et al.
proposed a hybrid Q-learning sine cosine based strategy,
called the Q-learning sine-cosine (QLSCA [6]) algorithm,
which eliminate the switching probability, and dynamically
identified the best operation during runtime. And they inte-
grated Levy flight motion and crossover into the QLSCA to
enhance the solution diversity.

There are also some improved SCA. ISCA [7] changed the
position update equation by introducing an inertia weight to
avoid falling into local optima and added a non-linear con-
version parameter decreasing strategy based on the Gaussian
function to solve the curse of dimensionality and to accelerate
convergence. Meshkat and Parhizgar used the sine function
to update the position of each individual based on the current
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best or a random individual’s position in an algorithm called
SOA [8], which outperformed SCA in terms of accuracy
and convergence speed. Chiwen Qu at el., in their algorithm
MSCA [9], adopted the method of exponential decreasing
conversion parameter and linear decreasing inertia weight
to balance the exploration and exploitation, and used the
greedy Levy mutation strategy and the random individuals
near the optimal individual to replace the optimal individ-
ual. Gholizadeh and Sojoudizadeh introduced a modified
SCA (MSCA [10]) for discrete sized optimization of truss
structures, by replacing some of the worst individuals with
variants of the current global best solution. Gupta and Deepan
attempted to jump out from the local optima by proposing
a modified version of SCA named as modified Sine Cosine
Algorithm (m-SCA [11]), in which used opposite numbers
based on perturbation rate to generate the opposite popula-
tion. Then they introduced an improved version of sine cosine
algorithm was named as ISCA [12], which hybridization of
exploitation skills of crossover with optimal solutions and
global search mechanisms and integration of self-learning.
Dunia and Ramzy proposed methods of chaotic sine cosine
algorithm (CSCAs [13]) that included replaced random
parameters with the chaotic sequences, and implemented five
one dimensional various chaotic maps. The improvement of
the above algorithm focuses on the population level. The
sine cosine algorithm and its variants have been widely
used in many aspects, such as the wing design of aircraft
problem [14], Levy flight problem [15], and optimal reactive
power allocation (ORPD [16]) problems.

Nevertheless, these algorithms do not consider the essential
characteristics of sine and cosine functions. In the sine and
cosine function curves, the probability density function and
probability distribution function of the random mutation are
constant regardless of the early stage or the late stage. In other
words, the probability that the value of the mutation function
is greater than the intermediate value (as in Figure 1 and
Figure 2, functions ‘‘Y1’’ and ‘‘Y2’’ take the intermediate
value 0.5) is greater than the probability that it is less than the
intermediate value, which may affect the convergence speed
of the algorithm. Detailed explanation and proof will be given
later part III. Therefore, neither the original SCA algorithm
nor other improved algorithms have the symmetric sine and
cosine operators (see Figure 7 and Figure 8) proposed in this
paper.

As we all know, there is no free lunch, and no algorithm
can solve all problems. Therefore, researchers have made
efforts on balancing algorithms exploitation and exploration
capabilities. In recent years, many theoretical studies have
been carried out to enhance the performance of the SCA
further. Thus, the main goal of this paper is to accelerate the
convergence speed of the algorithm further and avoid falling
into local optima. The work of this paper is to dig out the
characteristics of sine and cosine operators as far as possible
and to accelerate the convergence speed of the algorithm. This
algorithm uses a set of symmetric sine and cosine functions
by flipping the original sine cosine curve in accordance with

FIGURE 1. Probability density diagram of sine function.

FIGURE 2. Probability density diagram of cosine function.

lines parallel to the X axis (abscissa axis). In the meantime,
it uses adaptive probability selection [17], [18], mechanism
to select appropriate operators, which makes the selection of
strategies more diverse. Besides, in order to further improve
the exploitation ability of the algorithm, the idea of quadratic
interpolation [19]was also incorporated to update the position
of poor individuals. A set of test functions was used to eval-
uate the proposed algorithm and compare it with the original
SCA algorithm and some improved versions.

To sum up, the specific work of this article is as follows:
1) Due to the limitations of original sine and cosine opera-

tors, symmetric sine and cosine operators are proposed
to enhance the search performance of the algorithm.

VOLUME 8, 2020 25273



B. Wang et al.: Symmetric Sine Cosine Algorithm With Adaptive Probability Selection

2) Adaptive probability selection was used to integrate
original operators and the proposed operators.

3) Aiming at the problem of SCA falling into prema-
ture convergence, Gaussian perturbation is introduced,
which may make the search jump out of the local
optima, and therefore, increase the accuracy of the
search.

4) The quadratic interpolation strategy is introduced to
promote convergence while maintaining the diversity
of the population.

5) Experiments were conducted to verify the performance
of the algorithm.

The rest of this paper is organized as follows: Part II
reviews the SCA algorithm. Part III, according to the charac-
teristics of the SCA algorithm, explains themotivation behind
the SSCA-APS algorithm and its details. Part IV describes the
setup and the results of the conducted experiments. Part V is
the conclusion of this paper. Putting forward the future work
is in Part VI.

II. SCA ALGORITHM
Sine cosine algorithm (SCA) is a population-based opti-
mization technology. Through iteration, the position of indi-
viduals in the population is updated continuously to obtain
the optimal solution. The position update equation is the
following (1):

x t+1i =

{
x ti + r1 sin(r2)

∣∣r3Pbest ti − x ti ∣∣ , if r4 < 0.5
x ti + r1 cos(r2)

∣∣r3Pbest ti − x ti ∣∣ , if r4 ≥ 0.5
(1)

where ‘‘xti ’’ is the position of the current individual in the cur-
rent population at the generation t, ‘‘r1’’, ‘‘r2’’, and ‘‘r3’’ are
three random parameters, ‘‘r2’’ is the random value between
[0, 2π ] (for convenience, it is analyzed only between intervals
[0, π /2]), ‘‘r3’’ is the random value uniformly distributed
between [0, 2], ‘‘Pbest ti ’’ is the best optimal individual of
population in the t generation, ‘‘|A|’’ represents the absolute
value of ‘‘A’’, and ‘‘r4’’ is a random value between [0, 1]. It is
remarkable that ‘‘r1’’ decreases with the number of iterations
following the next formula (2):

r1 = a− t
a
T

(2)

where t is the number of the current iteration, T is the
maximum number of iterations, and a is a positive integer,
the value in this paper is 2, it can be known from (2) that the
value range of ‘‘r1’’ is in interval [0, 2] and its initial value
is 2. Algorithm 1 in Table 1 shows the main steps of the SCA
algorithm.

III. SSCA-APS ALGORITHM
This section describes in detail the motivation for the SSCA-
APS algorithm. Moreover, it narrates the specific implemen-
tation of its components for the overall algorithm.

TABLE 1. SCA algorithm.

A. MOTIVATION
1) PROBABILITY CALCULATION OF RANDOM MUTATION
FUNCTION
Based on literature search and research in related fields,
we found that SCA and its variants have a common limitation.
Therefore, the following is only discussed with SCA as an
example. In the original SCA algorithm, the randommutation
probability of an individual was calculated by the functions
‘‘Y1’’ and ‘‘Y2’’, as in (3):

Y1 =

{
sin(r2), 0 ≤ r2 ≤ 2π
0, otherwise

Y2 =

{
cos(r2), 0 ≤ r2 ≤ 2π
0, otherwise

(3)

where, r2 is a continuous random variable uniformly
distributed, r2 ∼ U[0, 2π ], and its probability density
function ‘‘f’’ is:

f(r2) =


1
2π
, 0 ≤ r2 ≤ 2π

0, otherwise
(4)

The probability distribution function of ‘‘Y1’’:

FY1 = P {Y1 ≤ y1}

= P {sin(r2) ≤ y1}

= P {0 ≤ r2 ≤ arcsin(y2)}

=

∫ arcsin(y1)

0

1
2π

dx (5)

The probability density of ‘‘Y1’’ is as follows:

PY1 (y1) = F ′Y1 (y1) =
[∫ arcsin(y1)

0

1
2π

dx
]′
=

1

2π
√
1−y21

(6)

The probability distribution function of ‘‘Y2’’:

FY2 = P
{
Y2 ≤ y2

}
= P {cos(r2) ≤ y2}

= P
{
arccos(y2) ≤ r2 ≤

π

2

}
=

∫ π
2

arccos(y2)

1
2π

dx (7)
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The probability density of ‘‘Y2’’ is as follows:

PY2 (y2)=F
′
Y2 (y2) =

[∫ π
2

arccos(y2)

1
2π

dx

]′
=

1

2π
√
1− y22

(8)

Without loss of generality:
When the value of the function ‘‘Y1’’ and ‘‘Y2’’ is within

the range of [−1/2, 1/2], which is considered to promote the
individuals to produce small mutations, that is, the small step.

When the value of the function ‘‘Y1’’and ‘‘Y2’’ is in the
range of [−1, −1/2] or [1/2, 1], it is considered that it causes
individuals to produce large mutations, that is, large step,
as in Figure 1 and Figure 2.

For function ‘‘Y1’’:
When r2 ∈ [0, π /2], the probability of ‘‘Y1’’ falling within

the interval [0, 1/2] is:

P11(
1
2
) =

∫ 1
2

0
PY1 (

1
2
)dx =

1
2π

(arcsin(
1
2
)− arcsin(0))=

1
12
(9)

When r2 ∈ [π /2, π ], the probability of ‘‘Y1’’ falling within
the interval [0, 1/2] is:

P12(
1
2
) =

1
12

(10)

When r2 ∈ [π , 3π /2], the probability of ‘‘Y1’’ falling
within the interval [−1/2, 0] is:

P13(−
1
2
) =

1
12

(11)

When r2 ∈ [3π /2, 2π], the probability of ‘‘Y1’’ falling
within the interval [−1/2, 0] is:

P14(−
1
2
) =

1
12

(12)

The total probability of the function ‘‘Y1’’ falling within
the range of the small step is:

Psmaller (Y1) = P11 + P12 + P13 + P14 =
1
3

(13)

The total probability of the function ‘‘Y1’’ falling within
the range of large step is:

Pl arg er (Y1) = 1− Psmaller (Y1) =
2
3

(14)

By the same token:
The total probability of the function ‘‘Y2’’ falling within

the range of the small step is:

Psmaller (Y2) =
1
3

(15)

The total probability of the function ‘‘Y2’’ falling within
the range of large step is:

Pl arg er (Y2) =
2
3

(16)

Generally, in functions ‘‘Y1’’ and ‘‘Y2’’, the mutating
probability of the small step is less than the mutating prob-
ability of the large step.

2) REASONABILITY OF MUTATION STEP SIZE OF SCA
In the SCA algorithm, the actual mutation steps are
‘‘r1 sin(r2)’’ and ‘‘r1 cos(r2)’’. Initial value of ‘‘r1’’ is set to
2 and it gradually reduce with the increase of iterations.
In the early stage of evolution, when r1 = 2, the corre-

sponding Figure 3 and Figure 4 as follows:
Observation Can Find That:

1) At the beginning, because B1+B2 > A1+A2+A3+A4
in figure 3 and B1+B2+B3 > A1+A2+A3+A4
in figure 4, probability of the | r1 sin(r2) | and |

FIGURE 3. The probability density diagram of the sine function in the
early stage.

FIGURE 4. The probability density diagram of the cosine function in the
early stage.
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r1 cos(r2) | greater than 1 is larger, which can increase
the step length of mutation. It improves the explo-
ration competence of the algorithm and avoids the phe-
nomenon of prematurity.

2) With the iterative generation increasing, r1 gets smaller
and smaller.

3) Then probability of | r1 sin(r2) | and | r1 cos(r2) | less
than 1 is getting larger and larger, which causes the pos-
sibility of mutation step length to decrease. It improves
the exploitation and gradually enhances convergence
ability.

In the late stage of evolution, when r1 = 1, as the corre-
sponding Figure 5 and Figure 6.

FIGURE 5. The probability density diagram of the sine function in the late
stage.

Observation Can Find That:
1) | r1 sin(r2) | and | r1 cos(r2) | are always less than 1,

and the search is into the exploitation process. It can
enhance the ability of convergence.

2) As the iterative generation increases, r1 gets smaller,
and local search capabilities is constantly enhanced

General, the original SCA emphasizes exploration ability
in the early stage of evolution and focuses on exploitation
ability in the late stage of evolution, which is reasonable.

In the late stage of evolution, however, the algorithm has
the following problems:

1) Since the shape of sine and cosine function decides that
probability of lager step is greater than the small step,
it is not conducive to smoothly improve the precision
of the local search and convergence of the algorithm.

2) The division between exploration and exploitation pro-
cess is fixed, and there is no adaptive mechanism.

3) Once the solutions falling into local optimum, it is
difficult to get out.

FIGURE 6. The probability density diagram of the cosine function in the
late stage.

B. IDEAS TO IMPROVE SCA
1) SYMMETRIC SINE AND COSINE FUNCTIONS
In order to improve the convergence speed and accuracy of the
algorithm, sine and cosine functions are flipped horizontally
by y = 0.5 and y = −0.5, and the symmetric sine and cosine
functions ‘‘Y3’’ and ‘‘Y4’’ will be obtained.

Y3 =


− sin(r2)+ 1, 0 ≤ r 2 ≤ π
− sin(r2)− 1, π < r2 ≤ 2π
0, otherwise

Y4 =


− cos(r2)+ 1, 0 ≤ r2 <

π

2
,
π

2
< r2 ≤ 2π

− cos(r2)− 1,
π

2
≤ r 2 ≤

3π
2

0, otherwise
(17)

The probability distribution function of ‘‘Y3’’:

FY3 = P{Y3 ≤ y3}

= P{− sin(r2)+ 1 ≤ y3}

= P{arcsin(1− y3) ≤ r2 ≤
π

2
}

=

∫ π
2

arcsin(1−y3)

1
2π

dx (18)

The probability density of ‘‘Y3’’ is as follows:

Py3 (y3) = F ′y3 (y3)

[∫ π
2

arcsin(1−3)

1
2π

dx

]′
=

1

2π
√
1− (1− y3)2

(19)
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FIGURE 7. The probability density diagram of the symmetrical sine
function in the late stage.

The probability distribution function of ‘‘Y4’’:

FY4 = P {Y4 ≤ y4}

= P {− cos(r2)+ 1 ≤ y4}

= P {0 ≤ r2 ≤ arccos(1− y4)}

=

∫ arccos(1−y4)

0

1
2π

dx (20)

The probability density of ‘‘Y4’’ is as follows:

Py4 (y4) = F ′y4 (y4)

[∫ arccos(1−y4)

0

1
2π

]′
=

1

2π
√
1− (1− y4)2

(21)

The total probability of the function ‘‘Y3’’ falling within
the range of the smaller step is:

Psmaller(Y3) =
2
3

(22)

The total probability of the function ‘‘Y3’’ falling within
the range of larger step is:

Pl arg er (Y3) =
1
3

(23)

The total probability of the function ‘‘Y4’’ falling within
the range of the small step is:

Psmaller (Y4) =
2
3

(24)

The total probability of the function ‘‘Y4’’ falling within
the range of large step is:

Pl arg er (Y4) =
1
3

(25)

FIGURE 8. The probability density diagram of the symmetrical cosine
function in the late stage.

In summary, in functions ‘‘Y3’’ and ‘‘Y4’’, the probability
of mutating the large step is less than the probability of
mutating the small step.

In the late stage of evolution, the symmetric sine and cosine
functions can improve the precision of local search.

2) ADAPTIVE STRATEGY SELECTION
In the late stage of evolution, the method of calculating the
success rate of updating is adopted to select the original sine
and cosine functions and the symmetric sine and cosine func-
tion adaptively. The operation of exploration and exploitation
can be adjusted reasonably, which is beneficial to improve the
speed and accuracy of convergence.

3) OTHERS
The quadratic interpolation method is introduced to improve
the accuracy of the solution and Gaussian mutation will be
useful to jump out of the local optimal.

C. SYMMETRIC SINE AND COSINE OPERATOR
Based on the motivation above, this part proposes a new
search operator based on symmetric sine and cosine function.

The properties of the symmetric sine cosine operator are
opposite to the original. Two sets of piecewise functions as
shown in (26) and (27). The following two sets of formulas
have the same probability of being chosen and are considered
as new symmetric sine and cosine operator.

x t+1i =


x ti + r1(− sin(r2)+ 1)

∣∣r3Pti − x ti ∣∣ ,
if 0 < r2 ≤ π
x ti + r1(− sin(r2)− 1)

∣∣r3Pti − x ti ∣∣ ,
if π < r2 ≤ 2π

(26)
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x t+1i =



x ti + r1(− cos(r2)+ 1)
∣∣r3Pti − x ti ∣∣ ,

if r2 <
π

2
or r2 >

3π
2

x ti + r1(− cos(r2)− 1)
∣∣r3Pti − x ti ∣∣ ,

if
π

2
≤ r2 ≤

3π
2

(27)

Among them, ‘‘r1, r2, and r3’’ have the same meaning as
‘‘r1, r2, and r3’’ in SCA.
To combine the new symmetric sine cosine operator with

the original sine cosine operator, there are two solutions: the
first one is that the probability of choosing the new operator
and the original operator is fixed. In order to be fair, the prob-
ability of selecting each strategy is set to 0.5. The other is to
select strategies adaptively of according to the success rate
of offspring. The latter method is used in the paper, and part
D below gives the specific steps of the adaptive probabilistic
selection mechanism.

D. ADAPTIVE PROBABILISTIC SELECTION MECHANISM
To better select appropriate mutation operator for population,
an adaptive probabilistic selection mechanism is introduced
to select appropriate strategies. This adaptive selection strat-
egy has been used in many papers [20], [21], and has been
proved effective.

pt+1 = φ · pt + (1− φ)sr t (28)

The experimental results, ‘‘ϕ’’ with a value of 0.95, showed
in [20] are directly used in this paper. For the sake of fairness,
the initial selection probability is set to p0= 0.5, which means
the probability of using the original SCA operator is the same
as that of the new operator with the added symmetric piece-
wise function. ‘‘srt’’ represents the probability of successfully
updating the offspring of the new operator, which is given by
equation (29).

sr t =
S−newt−1

(S−newt−1 + 2× S−old t−1)
(29)

‘‘S_newt−1’’ and ‘‘S_oldt−1’’ represent the number of
children successfully updated by the new operator and the
original operator respectively. To balance the selection prob-
ability, the number of new strategies is twice as many as the
number of original strategies, so ‘‘S_oldt-1’’ is multiplied
by 2. In this way, In this way, the selected strategy is not
limited to the new strategy, but also has the probability to
select the original strategy. The adaptive probabilistic selec-
tion framework is given by Algorithm 2.

E. BOUNDARY HANDLING MECHANISM
After some empirical tests, it was found that the convergence
speed of the operator is too slow in the process of implemen-
tation.

This phenomenon may occur due to the problem that the
generated new solution may exceed the pre-defined boundary
constraints. Therefore, some measures must be applied to
the generated new solution to bring it back into the search

TABLE 2. Adaptive strategy selection framework.

space. Moreover, the boundary processing mechanism [22]
proposed by other researchers, is added here to deal with the
transboundary problem of a position simply and efficiently.
The mathematical expression is as follows:

x t+1(i,j) =


min(lu(2, j), 2lu(1, j)− x t+1(i,j) ),

if x t+1(i,j) < lu(1, j)

max(lu(1, j), 2lu(2, j)− x t+1(i,j) ),

if x t+1(i,j) < lu(2, j)

(30)

where ‘‘lu(1, j)’’ and ‘‘lu(2, j)’’ represents the lower and upper
bounds of functions, respectively. By using this transbound-
ary processing mechanism, the search range of the solution
can be effectively limited to the pre-defined search space, and
the convergence efficiency can be improved.

F. QUADRATIC INTERPOLATION OPERATOR
Empirical evidence also showed that although the proposed
operator based on sine and cosine is improved, the accuracy
of the algorithm is still insufficient.

In order to improve the overall quality of individuals in the
population and exploitation ability of operators, the quadratic
interpolation method [23] is introduced. Researchers have
proved that some algorithms [24]–[26] which used quadratic
interpolation can further improve the population quality and
increase the convergence speed.

Quadratic interpolation is used to produce a new individ-
ual based on three different individuals, the best individual
‘‘pbestt’’ and two randomly chosen members of the current
population, respectively, as ‘‘xt(id1,j)’’ and ‘‘xt(id2,j)’’, with
t being the current generation number. The mathematical
expression of the overall generation rule is as follows:

w1 =
(
pbest t − x t(id2,j)

)2
f
(
x tid1

)
(31)

w2 =
(
x t(id1,j) − pbest

t
)2
f
(
x tid2

)
(32)

w3 =
(
x t(id2,j) − x

t
(id1,j)

)2
f
(
pbest t

)
(33)

u1 =
(
pbest t − x t(id2,j)

)
f
(
x tid1

)
(34)
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u2 =
(
x t(id1,j) − pbest

t
)
f
(
x tid2

)
(35)

u3 =
(
x t(id2,j) − x

t
(id1,j)

)
f
(
pbest t

)
(36)

x t(qi,j) =
w1+ w2+ w3
u1+ u2+ u3

(37)

where ‘‘f(xid1)’’, ‘‘f(xid2)’’, and ‘‘f(pbest)’’ are the objective
function values of ‘‘xid1’’, ‘‘xid2’’, and ‘‘pbest’’, respectively.
‘‘xt(qi,j)’’ is the position of the individual in the t generation
and j dimension obtained by using the quadratic interpolation
operator.

It is easy to see that a new individual can be gener-
ated from (37). According to the objective function value,
the newly generated individual is compared with the worst
individual in the population, and the best one between the
two survives is retained for the next generation. In this
way, the diversity of the population can be preserved, and
the quality of the individuals in the population can be
improved, which is an excellent way to balance diversity and
convergence.

The pseudo-code of quadratic interpolation is as Table 3:

TABLE 3. Quadratic interpolation pseudo-code.

G. GUSSIAN PERTURBATION
The common characteristic of the population-based algo-
rithm is easy to get into local optimization. As a population
optimization algorithm, SCA naturally has the same problem.

It is known through analysis that the optimal global indi-
vidual obtained at present may fall into local optimization.
Therefore, the Gaussian perturbation [27] operator is used to
mutate the optimal global individual to increase the chance
of jumping out of local optima, and to increase the accuracy
of the algorithm. When the threshold value set is reached
(the threshold value set is 5 here), the global optimal position
‘‘pbest’’ is not updated, indicating that it may fall into local
optimization. At this time, formula (38) is executed, as shown
below.

pbest = pbest + Guassian() (38)

where pbest is the location of the globally optimal individual,
that is, a d-dimensional vector, and Gaussian () is the random
vector generated by Gaussian distribution [28], [29].

H. FRAMEWORK OF SSCA-APS
The overall framework of the symmetric sine cosine
algorithm for adaptive probability selection (SSCA-APS),

is described in Algorithm 4. The proposed algorithm divides
the evolution process into early stage and late stage and
selects SCA or symmetric SCA strategy in the late stage by
means of adaptive probabilistic selection. And Gaussian per-
turbation, quadratic interpolation and boundary processing
are used to improve the performance of the algorithm.

TABLE 4. SSCA-APS pseudo-code.
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Algorithm 4 shows the pseudo-code for SSCA-APS, start-
ing with the size of the population N , the dimension D of
the decision variable, the boundary lu of the problem, and
the maximum number of fitness evaluations FESMAX. In this
paper, the objective function value is used as the criterion of
fitness evaluation. First, it initializes the population and other
parameters and evaluate the population and find the best and
worst fitness individuals in the population. Then, the main
loop is then divided into two stages. In the early stage, the sine
and cosine operators in the original SCA are used, and an
individual is detected every five generations for successful
update. If not, Gaussian perturbation is performed on the
globally optimal individual. In the late stage, each generation
refreshes two counters: they are used to detect whether the
SCA operator (i.e. S_oldt ) and the symmetric operator (i.e.
S_newt ) can contribute to the population renewal. If not,
it still perturbs the globally optimal individual pbest. Finally,
the obtained solution is output as the optimal solution.

IV. NUMERICAL EXPERIMENTS AND ANALYSIS
This part uses the form of tables and graphs to verify the algo-
rithm proposed in this paper and give a proper explanation.

A. EXPERIMENTAL SETTINGS
The 23 benchmark functions used in the experiment are
briefly described as follows: functions F1-F13 are high-
dimensional problems, among them, F1-F5 are unimodal,
F6 is the step function that has one minimum value
and is discontinuous. F7 is a noisy quartic function, and
F8-F13 are multimodal functions. Function F14-F23 are
low-dimensional and multimodal functions, and they only
have local minima. The final results of multimodal functions
are important since they affect the ability of the algorithm to
jump out of the local optimum and to be better approached
toward the global optimum.

The proposed algorithm is compared with classical SCA
and its several variants, which are SOA, ISCA, SCADE,
NMSCA. The performances of these algorithms on 23 test
functions are given in Table 5 and Table 6. Their population
sizes are uniformly set to 100 (N = 100), and the dimen-
sion D of problem are 30(F1-F13), 2(F14, F16-F18), 4(F15,
F21-F23), 3(F19), and 6(F20), respectively. The maximum
number of fitness evaluation FESMAX are setD×10000, and
the generation T = bFESMAX/Nc(bAc is the largest integer
no greater than A).

B. WILCOXON SIGN RANK TESTS
In order to prove the effectiveness of the proposed algorithm,
the experimental results of each algorithm were compared
statistically with or without significant differences. The pro-
posed SSCA-APS is validated against other SCA variants.
Wilcoxon sign rank tests was used here, and the results were
shown in Table 5.

To identify SSCA-APS with SCA and other variants algo-
rithms on 23 benchmark problems [30], similar statistical
tools are employed. Due to most values of the calculated

TABLE 5. Wilcoxon sign rank tests.

p-values is smaller than 0.05, the obtained ranks are statisti-
cally reliable while the proposed strategies are used. In other
words, there are some improvements achieved by employing
proposed techniques, the improvements are significant from
the statistical point of view. In order to more intuitively
see whether there is any difference between the compared
algorithms or not, the last column indicates ‘‘1’’ when there
is a significant difference and ‘‘0’’ otherwise. And ‘‘NaN’’
represents positive infinity.

As can be seen from the Table 5, SSCA-APS differs signif-
icantly from SOA algorithm in all benchmark functions. And
in addition to the benchmark function F1, the proposed algo-
rithm and ISCA algorithm show significant differences in the
remaining benchmark functions. Compared with NMSCA,
the proposed algorithm showed significant differences in
other test problems except F1-F4 and F11. It indicates that the
proposed algorithm has almost no difference from NMSCA
in high-dimensional and single-mode problems, that is, the
results of F1-F4 and F11 benchmark problems are not compa-
rable but can be compared for most other test problems. From
what has been discussed above, the result of rank-sum test is
that the proposed SSCA-APS is significantly different from
other SCA variants, so the proposed algorithm has passed
the validity test, and the comparative results are reliable.
Therefore, error accuracy and convergence analysis can be
carried out.

C. COMPARISON OF SSCA-APS RESULTS WITH OTHER
ALGORITHMS
In the Table 6 and Table 7, ‘‘NaN’’ represents positive infinity,
and it can be seen from Table 6 that, except for F1, F2, and
F11, the remaining 20 benchmark functions all show that
the proposed SSCA-APS algorithm has significant changes
compared with the results of SCA algorithm. 50 independent
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TABLE 6. Comparison table of experimental results.

TABLE 7. Comparison table of experimental results.

runs were conducted respectively, and the mean error and
standard deviation are shown in Table 6 and Table 7. The
‘‘+’’ means that the result is better than the proposed
SSCA-APS algorithm, ‘‘−’’ means that the result is worse,
and ‘‘∼’’ means that the result is relatively close. The high-
lighted sections in bold black represent the best performing
algorithms for each of the benchmark problems. The results
show that SSCA-APS algorithm has better performance and
higher accuracy in most problems. Compared with SCA
and several other improved SCA, it is more competitive in

low-dimensional (F14-F23) problems and performs better in
high-dimensional (F1-F7) problems. In the high-dimensional
multi-peak problem (F12, F13), it has obvious advantages
over SCA, but for the test problem (F8) where the optimal
value is not at the origin, SSCA-APS is outperformed.

As has been shown in the Table 7, SSCA-APS has the
largest number of black bolded parts for 23 benchmark
problem, and the experimental results show that, overall,
the proposed SSCA-APS algorithm has some competitive
advantages compared with other algorithms.

VOLUME 8, 2020 25281



B. Wang et al.: Symmetric Sine Cosine Algorithm With Adaptive Probability Selection

FIGURE 9. (a). Compare the results of test function F2. (b). Compare the results of test
function F5. (c). Compare the results of test function F7. (d). Compare the results of test
function F8. (e). Compare the results of test function F12. (f). Compare the results of
test function F13. (g). Compare the results of test function F15.
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These algorithms are ranked according to error mean and
standard deviation to see the advantages and disadvantages
of each algorithm clearly and intuitively, and the results are
shown in the following Table 8.

TABLE 8. Ranking.

The smaller the error, the higher the accuracy, the smaller
the standard deviation and the stronger the robustness of
the algorithm, that is, the more stable the performance of the
operator. Therefore, it can be seen from Table 8 that the
performance of the proposed algorithm is the best in both
accuracy and stability.

To see the operation effect of the algorithm more intu-
itively, the function error values of these algorithms running
independently for 50 times were compared, several repre-
sentative results as shown in Figure 9 (a)-(g). And it clearly
shows the performance of the proposed algorithm and SCA
and its variants in terms of convergence speed, fitness change,
and accuracy.

In Figure 9, the faster the error curve drops mean the
faster the algorithm converges, and the lower the curve mean
the higher the accuracy. Due to the limitation of aesthetics
and layout, only the convergence graph on the benchmark
problem F2, F5, F7, F8, F12, F13, and F15 was selected
to represent the display. Blue triangle, red star, green star,
black square, black diamond and blue circle respectively rep-
resent SCA, SCADE, SOA, ISCA, NMSCA and SSCA-APS
algorithm. As can be seen from Figure 9, the proposed
algorithm significantly improves the optimization accuracy
in low-dimensional problems. In general, the proposed algo-
rithm is improved in both accuracy and convergence.

D. ALGORITHM COMPLEXITY ANALYSIS AND
COMPARISON
In order to objectively compare the quality of the algo-
rithms, here we analyze and compare the complexity of the
algorithms involved in the experiments. The complexity of
the algorithm mainly includes two parts: time complexity
and space complexity. Since none of the algorithms in the
experiment introduces external files, that is, they operate in
populations with the same number of individuals, and the
spatial complexity of each algorithm is approximately equal.
The following mainly analyzes the time complexity of the
algorithm.

For the SCA algorithm, its time complexity is mainly
related to the number of fitness evaluations of individuals
in the population. The population size is N , the problem
dimension is D, and the number of cycles is T. Then, the
algorithm has a time complexity of O(N ·D · T ). In SCADE,

three additional individuals need to be randomly selected
and evaluated separately in each iteration, so its time com-
plexity is O (4N·D · T ). The SOA, ISCA, and NMSCA
algorithms only change the equations of the SCA search
strategy, so the time complexity is the same as SCA, which is
O(N ·D ·T ). For the proposed algorithm SSCA-APS, because
it evolves in two stages, and in order to adaptively adjust the
probability, the fitness evaluation and probability calculation
are performed at each iteration, so the time complexity is
O(N 2

· D · T ). It can be seen that SSCA-APS algorithm
is more complicated than the original SCA and its vari-
ants. However, from the experimental results, the increase
of algorithm complexity contributes to the improvement of
algorithm performance.

V. CONCLUSION
In the original SCA algorithm, the standard sine cosine
functions were used as the probability functions to generate
mutation step sizes. In general, the standard sine cosine func-
tions have greater probability of generating larger strides than
small ones, which is not conducive to the convergence in the
exploitation stage. In response to this problem, the symmetri-
cal sine cosine operators were proposed and applied in the late
stage of evolution. To balance the convergence and diversity
of the algorithm, the adaptive probabilistic selection mecha-
nism was added, which was used to dynamically select the
standard sine cosine operators or the proposed symmetrical
sine cosine operators.

With the increase number of iterations, the mutation
strength of the SCA algorithm gradually decreases, so it is
easy for that solution to fall into local optimal. The introduc-
tion of Gaussian mutation can overcome this problem. To fur-
ther improve the overall quality of the population, quadratic
interpolation is introduced to replace the worst individual in
the population. In addition, a simple and efficient boundary
handling mechanism is added so that the search can be con-
ducted within the predefined search space. The results show
that this method can accelerate the approach speed towards
the ideal point in the search space.

In simulations, by analyzing experiments on SCA and
some state-of-the-art variants in 23 benchmark functions,
it was concluded that the proposed SSCA-APS algorithm
on high-dimensional problems compared with the SCA and
other several improved SCA, has strong competitiveness,
and on the low dimensional problem, it behaved better than
the SCA. Overall, the experimental results show that the
proposed SSCA-APS algorithm has some competitive advan-
tages compared with other algorithms.

VI. FUTURE WORK
Although the mathematical proof and numerical experiments
have been shown that the improved sine cosine algorithm of
this paper has certain competitiveness compared with SCA
and its variants, further research on practical problems is
still needed, such as the optimal sitting and sizing of pho-
tovoltaic based distributed generator [32], [33], distribution
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static synchronous compensator [34], optimization of airfoil
design [35], and other applications [36].

In addition, the algorithm proposed in this paper divides
the search into two phases based on an iterative process,
which may have certain risks. So how to properly measure
the evolutionary stage has become the direction of future
research, such as judging the evolutionary stage based on
the diversity of the population or using the distance between
individuals in the population as the evaluation criteria.

Moreover, the accuracy of the algorithm is improved, but at
the same time the computational complexity is also increased.
Future research can work on how to improve the efficiency of
the algorithm and reduce the complexity of the algorithm.
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