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ABSTRACT Underwater images are often deteriorated with blurring, darkness, poor visual quality of low
contrast, and color diminishing. This is mainly due to the fact that the light is exponentially attenuated while
traveling through water and the strength of attenuation is color dependent. After constructing a simplified
image formationmodel, this paper proposes a new strategy for single underwater image restoration. In light of
different perspectives, two distinct transmission coefficient estimation approaches have been developed. One
is based on the optical characteristics while the other relies on the essence of image processing knowledge.
Subsequently, these two transmission maps are fused to produce the final outcome, which is adaptively
weighted by their respective saliency maps. The obtained signal radiance is dissolved through point spread
function deconvolution and color compensation to produce the final scene radiance. A variety of underwater
images with various scenarios were exploited to evaluate the restoration performance. Experimental results
demonstrated the superiority of the proposed algorithm over other competitivemethods for underwater image
restoration.

INDEX TERMS Image restoration, transmission fusion, saliency map, dark channel prior, blurriness
detection.

I. INTRODUCTION
With rapid advancement in technology the number of under-
water images of many kinds has been increased dramatically
in recent years. Underwater imaging plays an essential role in
a variety of fields such as marine biology, undersea archaeol-
ogy, mine and wreckage detection, water fauna identification
and assessment, and ocean sciences. However, underwater
images are often degraded with blurriness, darkness, low
contrast, and color diminishing due to particular propagation
properties of light absorption and scattering along with unsta-
ble environments of water turbidness and light changing [1].
This necessitates the need to either enhance or restore under-
water images before further processing and analysis.

The reasons for underwater image degradation can be
realized from the characteristics of optics in water. Based
on the Beer-Lambert law [2], the absorption comes from an
exponential decay term of light attenuation with

t (x, λ) = e−β(λ)d(x) (1)
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where t (x, λ) is the transmission of light with wavelength λ
at scene position x, β (λ) is the spectral volume attenuation
coefficient for wavelength λ, and d (x) is the distance from
the imaging device to the radiant object at x. Unlike atmo-
spheric images, the transmission medium is water instead
of air, which results in severer deterioration in underwater
images. Light attenuation can limit the visibility distance
from 20m in clear water down to 5m or less in turbid
water [3], [4]. Moreover, red light with its longer wavelength
travels the shortest in water and is absorbed more than other
colors. As such, the majority of underwater images are exhib-
ited mostly green to blue tones.

One of the pioneering research in underwater optics was
proposed by Duntley [5] who defined the fundamental limi-
tations of underwater imaging. Subsequently, McGlamery [6]
and Jaffe [7] proposed a notable underwater image for-
mation model called the Jaffe-McGlamery model, which
decomposed an underwater image into three major com-
ponents: direct, forward-scatter, and backscatter compo-
nents. This model has been the foundation of many studies
for the restoration of underwater images. For example,
Schechner and Karpel [8] introduced a physics-based scheme
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to recover visibility while imaging undersea scenes in nat-
ural illumination. They observed that the main degradation
effects were associated with partial polarization of light.
Accordingly, two or more images taken through a polarizer
with different orientations were required in their approaches.
Nascimento et al. [9] proposed an iterative algorithm that was
based on classical models of light propagation. Two images
taken from an underwater scene under natural illumination
were also needed for depth estimation.

While employing multiple images can improve the
restoration performance, it requires extra equipment to simul-
taneously capture the same scene. A more challenging and
practical scenario is to perform restoration when only one
input image is available. Single underwater image restoration
is an ill-posed problem since the amount of scattering, the dis-
tance between the scene and the camera, and the light condi-
tions are unknown. Nevertheless, it has drawn much attention
in computer vision and image processing. Generally speak-
ing, approaches for single underwater image enhancement
and restoration can be broadly divided into two major cate-
gories: image-based and model-based. Image-based methods
consider this as a fundamental image processing issue by
employing image enhancement techniques without a priori
assumption. Alternatively, model-based methods tackle this
based on different degrees of optical model approximations
that generate underwater images.

Examples in the first category include the work by
Iqbal et al. [10], where the authors introduced a slide stretch-
ing scheme to enhance underwater image quality that con-
sisted of two majors steps. Firstly, the contrast stretching
was applied to equalize the color image contrast in the RGB
(red, green, blue) color space, followed by saturation and
stretching in the HSI (hue, saturation, intensity) color model
to boost the true color and improve the background lighting.
Abdul Ghani and Mat Isa [11] proposed a stretching process
in the RGB and HSV (hue, saturation, value) color models
for underwater image quality enhancement. They suggested
that a better stretching manner for underwater images was to
follow the Rayleigh distribution, which effectively eliminated
the problems of producing over-dark and over-bright images.
The study by Liu and Chau [12] was based on a local contrast
enhancement scheme for underwater image restoration. The
authors first repeatedly divided the image into four equal
rectangular regions until the size was smaller than a spec-
ified threshold, from which the waterlight was estimated.
Subsequently, a cost function was formulated and minimized
to maximize the image contrast. Li et al. [13] described a
systematic underwater image enhancement framework that
was composed of an image dehazing method, which was
built on a minimum information loss principle, and a con-
trast enhancement method, which was based on a histogram
distribution assumption.

In contrast to image-based methods, work in the second
categorymade assumptions regarding the formation of under-
water images. For example, Trucco and Olmos-Antillon [14]

proposed a self-tuning image deconvolution filter based on
the Jaffe-McGlamery model. This method automatically
estimated the filter parameters in each individual image by
optimizing a quality criterion for underwater image restora-
tion. Tarel and Hautiere [15] introduced a linear-time func-
tion method for visibility restoration that was capable of
handling both color and gray level images. Qiu et al. [16]
presented a simplified underwater image formation model
and developed an adaptive image restoration scheme in light
of an improved signal-to-noise ratio. Based on an underwater
imaging model, the study by Zhao et al. [17] derived inherent
optical properties of water from the background color of
underwater images for quality enhancement. Liu et al. [18]
developed a deep sparse non-negative matrix factorization
method to estimate the illumination of an underwater image.
After the factorization process, the estimated illumination
was applied to each patch of the input image to obtain the final
output. Cho and Kim [19] described a visibility enhancement
algorithm that included an artificial light model in underwater
particle physics for visual simultaneous localization and
mapping.

Alternatively, Wang et al. [20] simplified the full underwa-
ter light propagation model and derived a maximum attenu-
ation identification method to estimate the depth map from
degraded underwater images. An adaptive attenuation-curve
prior was proposed in [21] to restore underwater images.
Extended from the concept of the non-local haze-line in [22],
this prior estimated the transmission for each pixel accord-
ing to its distribution on a curve with a power function.
Deng et al. [23] introduced a removing light source color
and dehazing (RLSCD) scheme to perform underwater image
enhancement. The scene depth was estimated based on the
attenuations of different light conditions and the background
light was estimated based on gray open operations. In [24],
the authors utilized a multilevel decomposition approach
based on LP-norm decomposition to dissolve an image into
three levels: detail, structure, and illuminance. From the orig-
inal degraded image, two input channels were generated and
modulated by their correspondingweightmeasures. Recently,
Cao et al. [25] presented the use of a convolutional neural
network to estimate background light and a multiscale deep
network to determine the transmission map. Liu et al. [26]
proposed an Underwater Resnet (UResnet) based on the
very-deep super-resolution reconstruction (VDSR) model for
underwater image enhancement.

Though abundant approaches have been proposed, it is
still challenging for underwater image restoration due to
the unpredictable variation of vision properties in undersea
environments. The ambition of this paper is in an attempt
to develop a new underwater image restoration algorithm
based on adaptive fusion of image-based and model-based
approaches. While taking advantage of both categories, the
proposed algorithm strikes a favorable compromise between
two kinds of different methods. The main contributions of the
current work are summarized as follows:
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a) Two different approaches are introduced to compute the
background light and integrated into a more accurate
estimation.

b) Two transmission maps are computed from distinct
perspectives and fused into one single transmissionmap
weighted by their saliency maps.

c) Essential characteristics of model-based and image-
based approaches are illustrated and discussed.

d) Influences of the unpredictable variation of undersea
vision properties are alleviated due to the proposed
fusion scheme for better restoration.

e) Extensive experiments in fair comparison with the
state-of-the-art methods are conducted to evaluate the
restoration performance.

The remainder of this paper is organized as follows:
In Section 2, we deliver a brief review of single underwater
image restoration related work. We then describe the pro-
posedmethodology in Section 3. The experimental results are
presented and discussed in Section 4. Finally, the conclusion
is drawn in Section 5.

II. RELATED WORK
A. IMAGE FORMATION MODEL
One simplified and well known underwater image formation
model is given as:

I (x, λ) = J (x, λ) t (x,λ)+ B (λ) (1− t(x,λ)) (2)

where I (x, λ) is the observed image perceived from the
camera, J (x,λ) is the scene radiance of the intact image,
t (x, λ) is the medium transmission coefficient along the ray
that describes the portion of the light not backward scattered
and reaching the camera as given in (1), and B (λ) is the back-
ground light. The first term J (x, λ) t (x, λ) on the right-hand
side of (2) is treated as direct attenuation and the second
term B (λ) (1 − t(x, λ)) indicates waterlight illumination.
Given I (x, λ) and based on (2), the single underwater image
restoration problem is to solve J (x, λ) by computing t (x, λ)
and B (λ). However, the challenge is how to correctly obtain
these two terms using only one single image. Consequently,
in this scenario the key to successful restoration of underwa-
ter images is a reliable and adequate approximation of the
transmission coefficient map and the background light.

B. DARK CHANNEL PRIOR BASED APPROACHES
One famous model-based haze removal algorithm has
been the dark channel prior (DCP) scheme proposed by
He et al. [27] according to (2). The main idea underlining
this approach was based on an experimental observation that
most local patches in outdoor haze-free images contain pixels
whose intensity is fairly low in at least one RGB color chan-
nel. To formally describe this observation, the authors defined
the dark channel using

JD(x) = min
y∈�(x)

(
min

λ∈{R,G,B}
(J (y, λ))

)
(3)

where JD(x) is the dark channel of J (x, λ), �(x) indicates
the local patch centered at x, and λ ∈ {R,G,B} repre-
sents the color channel index. Obviously, the dark channel
obtains the outcome using two minimum operators: min

λ∈{R,G,B}
finds the minimum value among the three color channels on
each pixel, and min

y∈�(x)
is basically a minimum filer centered

at x. If J (x, λ) is an outdoor haze-free image, I (x,λ) =
J (x, λ) and the intensity of JD(x) is pretty low and tends to
be zero:

JD(x)→ 0 (4)

This observation is called the DCP.
Based on this DCP, the authors efficiently estimated haze

thicknesses and adequately recovered haze images. This bril-
liant framework has become the foundation of many subse-
quent studies. For example, Li et al. [28] described a single
image haze removal algorithm by introducing a minimal
color channel, through which a simplified dark channel was
computed. To accommodate the transmission map, an adap-
tive sky region compensation term was introduced to avoid
amplifying noise in the sky realm. The principal compo-
nent analysis and minimum volume ellipsoid approximation
were utilized by Gibson and Nguyen [29] to explain the
effectiveness of the DCP. Based on the approximation of an
RGB cluster with the minimum volume ellipsoid, the authors
showed the effectiveness of this ellipsoid to geometrically
interpret how the DCP works well in hazy images. A fast
depth map approximation method using the DCP was pre-
sented by Han and Wan [30] for single image dehazing. The
approximation made use of the pixel-wise depth map and the
observation that most artifacts appeared in the region where
the original estimated depth map had large differences from
its pixel-wise depth map.
Conceived from the concept of the DCP, a number of

approaches for underwater image enhancement and restora-
tion using a single image have been proposed. For exam-
ple, Chiang and Chen [31] described an underwater image
enhancement framework that combined an image dehazing
algorithm with a wavelength compensation. The influence of
the haze was reduced by modifying the classical DCP algo-
rithm. According to the amount of attenuation correspond-
ing to each light wavelength, the authors administered color
change compensation to restore color balance. A two-phase
regularization mechanism was proposed by Guo et al. [32]
to restore underwater image vision. A modified DCP method
was developed to remove haze in underwater images followed
by a series of color balancing and contrast stretching tech-
niques for making the image color more natural. In spirit
similar to the DCP, Galdran et al. [33] presented a red channel
scheme to rectify underwater image color with short wave-
lengths, which resulted in luminous contrast enhancement
and realistic color correction. The work by Drews et al. [34]
introduced an underwater DCP that considered only the green
and blue channels to restore visual quality of underwater
images. Borkar and Bonde [35] extended the DCP to remove
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the haze in underwater images using the red channel of a sin-
gle input underwater image, whose depth map was computed
using morphological operations.

C. OTHER APPROACHES WITH IMAGE PROCESSING
KNOWLEDGE
There are single image restoration approaches that took
advantage of image processing knowledge in facilitat-
ing the recovery procedure. Without using any prior,
Li and Zheng [36] introduced an edge-preserving
decomposition-based method for single image haze removal.
A weighted guided image filter was adopted to generate a
base layer image, which was further utilized to restore the
hazy image. Hou et al. [37] applied wavelet decompositions
to underwater images for isolating noise from signals. Sub-
sequently, the authors employed the point spread function in
the spatial domain and the modulation transfer function in the
frequency domain for restoration. Tian and Narasimhan [38]
built a compact spatial distortion model of the water surface
with the wave equation. Based on this model, they presented
a tracking technique while recovering the planar underwater
scene without using any image prior. Li et al. [39] utilized a
quad-tree subdivision and graph-based segmentation scheme
for estimating the global background light. The transmission
map was then computed using the minimum information loss
principle associated with optical properties of underwater
imaging.

Recently, Peng and Cosman [40] investigated a single
image oriented algorithm to restore underwater images based
on image blurriness and light absorption. Better restoration
results were obtained in comparison to image formation
model-based methods. In their approach, the authors first
define the initial blurriness map Pi as

Pi(x) =
1
n

∑n

i=1

∣∣Ig(x)− Gri,ri (x)∣∣ (5)

where Ig(x) is the grayscale version of I (x, λ) in (2),Gri,ri (x)
is the outcome of the input image smoothed by an ri × ri
spatial Gaussian filter with standard deviation ri, where ri =
2in+ 1 with n = 4. The maximum filter was then applied to
obtain the rough blurriness map Pr using

Pr (x) = max
y∈�(x)

Pi(y) (6)

where �(x) is a 7 × 7 local patch centered at x. A refined
blurriness map Pb was finally computed with

Pb(x) = Fg {Cr [Pr (x)]} (7)

where Cr is a hole-filling morphological reconstruction oper-
ator and Fg is the guided filtering function [41].

To estimate the distance function d (x) in (1), the authors
proposed three different methods. The first approach is based
on the image blurriness Pr (x) in (6) through a regulation
process using

d1 (x) = 1−
Cr [Pr (x)]−min {Cr [Pr (x)]}

max {Cr [Pr (x)]} −min {Cr [Pr (x)]}
(8)

The second estimation for d (x) is derived from a disparity
map D (x) with

d2 (x) = 1−
D (x)−min {D (x)}

max {D (x)} −min {D (x)}
(9)

Herein, it is assumed that a greater value of the disparity
indicates the closer the point is to the camera. Similarly,
a scene point with more red light is assumed closer to the
camera, which gives rise to the third distance estimation

d3 (x) = 1−
R (x)−min {R (x)}

max {R (x)} −min {R (x)}
(10)

where R (x) is the red channel map defined as

R(x) = max
y∈�(x)

I (y,R) (11)

These three distance functions are then consolidated to form
a single distance estimation ds (x) using

ds (x) = η1 [η2d2 (x)+ (1− η2) d3 (x)]

+ (1− η1)d1 (x) (12)

where

η1 = S (mean (I (x,R)) , 0.1) (13)

and

η2 = S (mean (B (λ)) , 0.5) (14)

with S the sigmoid function.

III. PROPOSED METHODS
A. OPTICAL MODEL
Figure 1 illustrates the proposed optical model for underwater
image formation. The perceived image captured by the cam-
era consists of three major components with

I (x, λ) = Ed (x, λ)+ Ef (x, λ)+ Eb (x, λ) (15)

where Ed (x, λ) is the direct component, Ef (x, λ) is the for-
ward scattered component, and Eb (x, λ) is the backscattered

FIGURE 1. The proposed underwater imaging model with simplified
optical characteristics.
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component. The direct irradiance is related to the character-
istics of the medium through exponentially decayed depen-
dence as

Ed (x, λ) = Ev (λ) e−β(λ)d(x) (16)

where Ev (λ) is the radiance of the object due to vertical
absorption. The other light reflected by the object but scat-
tered at a small angle constitutes the forward scattered com-
ponent that is modeled as

Ef (x, λ) = Ed (x, λ) ∗ g (x, λ) (17)

where the operator ∗ represents convolution and g (x, λ) is the
point spread function. The backscattered component results
from the interaction between the illumination source and the
floating particles dispersed in the water, which is estimated
using

Eb (x, λ) = B (λ)
(
1− e−β(λ)d(x)

)
(18)

From the viewpoint of optics, the direct and forward
scattered components comprise the signal because they all
originate from the object. Accordingly, we define the signal
irradiance Es (x, λ) as

Es (x, λ) = Ed (x, λ)+ Ef (x, λ)

= Ev (λ) e−β(λ)d(x) + Ev (λ) e−β(λ)d(x) ∗ g (x, λ)

= Ev (λ) e−β(λ)d(x) ∗ [δ (x)+ g (x, λ)]

= Ed (x, λ) ∗ [δ (x)+ g (x, λ)] (19)

where δ (x) represents the Dirac delta function. Substitute
(18) and (19) into (15), we can rewrite I (x, λ) as

I (x, λ) = Es (x, λ)+ B (λ)
(
1− e−β(λ)d(x)

)
(20)

Substitute (1) into (20), we can express I (x, λ) in terms of
the Es (x, λ), B (λ), and t (x, λ) using

I (x, λ) = Es (x, λ)+ B (λ) (1− t (x, λ)) (21)

Similar to (2), our task now is to compute the background
light and the transmission coefficient for solving the signal
irradiance given a single underwater image I (x, λ). Two
approaches derived from different perspectives are proposed
and integrated into one final solution for each computation.

B. BACKGROUND LIGHT ESTIMATION
Our first background light estimation comes from the
observation of the characteristics in undersea environments.
In most underwater images, the dominating color due to light
diminishing and/or the presence of planktonic algae is green
to blue. Aa such, we define a disparity map D (x) as

D (x) = I (x,R)−max (I (x,G) , I (x,B)) (22)

where D (x) is the intensity difference between the red chan-
nel component I (x,R) and the maximum of the green chan-
nel I (x,G) and the blue channel I (x,B) components. The
first background light B1 (λ) is estimated by averaging the

intensity values at locations that have the most significant
disparity based on D (x) using

B1 (λ) = mean
(
I
(
x̂1, λ

))
(23)

where x̂1 is the set of positions that possess absolute D
(
x̂1
)

magnitudes within the preceding ξ1 percent.
Stimulated by the blurriness computation in [40], we locate

the background light candidate positions of the second group
according to (7) with

B2 (λ) = mean
(
I
(
x̂2, λ

))
(24)

where x̂2 is the locations where their absolute Pb
(
x̂2
)
mag-

nitudes are within the preceding ξ2 percent. The final back-
ground light is obtained by integrating both estimations using

B (λ) = α (λ)Bmax (λ)+ (1− α (λ))Bmin (λ) (25)

where

Bmax (λ) = max (B1 (λ) ,B2 (λ)) (26)

Bmin (λ) = min (B1 (λ) ,B2 (λ)) (27)

and the weight α (λ) is computed through a sigmoid function

α (λ) = S (ψ (λ) , p) = [1+ e−s(ψ(λ)−p)]
−1

(28)

where p = 0.2 is a shape factor, s = 32 is an empirical
constant, and ψ (λ) is related to the lighting conditions of the
input image with

ψ (λ) =
|I (x,λ) > Iε |

MN
(29)

where Iε is an intensity threshold for counting the number
of pixels brighter than this value (e.g., half of the maximum
possible intensity) in the numerator, and M and N are the
width and length of the input image, respectively.

Figure 2 illustrates the effectiveness of the proposed back-
ground light integration scheme, where the input under-
water image is severely blurred and distorted. While the
restoration using B1 in (23) is dark with greenish artefact,
the restored image by B2 in (24) is somewhat too saturated
to reveal the far distant details. It is demonstrated that the
integrated background light based on (25) strikes a good
compromise between brightness and contrast. On the other
hand, the restoration outcome based on [40] is still green-
ish with some blurriness. The background light estimation
in [40] requires the iterative decomposition of the input image
according to the variance or blurriness using a quadtree
scheme. As such, the background light is estimated in square
regions, whichmay exclude some important background light
areas. When there are many similar regions in the input
image, the estimated background light could be misleading.
Moreover, the background light estimation procedure in [40]
is more time consuming with 115 ms comparing to 57 ms
using the proposed strategy in the restoration illustration
of Fig. 2.
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FIGURE 2. Illustration of the effectiveness of the background light estimation procedure, where B1, B2, and B are computed based on (23), (24),
and (25), respectively.

C. TRANSMISSION COEFFICIENT ESTIMATION BY DCP-W
Inspired by the DCP, we previously proposed a new dark
channel prior-water (DCP-W) for a haze-free underwater
image [42]. By introducing the DCP-W, normalizing (21)
with B (λ), and applying the minimum operators, we can
obtain the following formula:

max
λ∈{R,G,B}

(
t̃ (x, λ)

)
= 1−min

 min
y∈�(x)

(1− I (y,R))

B (R)
,

min
y∈�(x)

(I (y,G))

B (G)
,

min
y∈�(x)

(I (y,B))

B (B)

 (30)

where t̃ (x, λ) is the transmission coefficient map under the
constant local patch (�(x)) assumption. Since the blue atten-
uation coefficient is the weakest among the three colors,
the transmission coefficient of the blue channel dominates the
left-hand side of (30). The estimated blue transmission map
of our first perspective can be computed using [42]

t̃1 (x,B)

= 1−min

 min
y∈�(x)

(1− I (y,R))

B (R)
,

min
y∈�(x)

(I (y,G))

B (G)
,

min
y∈�(x)

(I (y,B))

B (B)

 (31)

The transmission coefficient maps of the green and red chan-
nels are estimated respectively using [42]

t̃1 (x,G) =
(
e−β(B)d(x)

) β(G)
β(B)
= t̃1 (x,B)

β(G)
β(B) (32)

and

t̃1 (x,R) =
(
e−β(B)d(x)

) β(R)
β(B)
= t̃1 (x,B)

β(R)
β(B) . (33)

D. TRANSMISSION COMPUTATION BY DISTANCE
ESTIMATION
Our second transmission computation originates from the
perspective of the distance function in (1). Conceived
from [40], the distance d0 between the camera and the nearest

scene point is estimated using

d0 = 1−max
x,λ

{
|B (λ)− I (x, λ)|

max [B (λ∗) , 1− B (λ∗)]

}
(34)

where λ∗ = argmaxλ∈{R,G,B} [maxx |B (λ)− I (x, λ)|] and
d0 ∈ [0, 1]. Combining (12) and (34), the final distance
function is estimated as

df (x) = 8× (ds (x)+d0) (35)

where 8 is a scaling constant for converting the normalized
distance to the physical distance. The transmission map of the
red channel based on df (x) is computed with [40]

t̃2 (x,R) = e−β(R)df (x) (36)

The other two transmission maps can be similarly obtained
using [40]

t̃2 (x,G) =
(
e−β(R)df (x)

) β(G)
β(R)
= t̃2 (x,R)

β(G)
β(R) (37)

and

t̃2 (x,B) =
(
e−β(R)df (x)

) β(B)
β(R)
= t̃2 (x,R)

β(B)
β(R) . (38)

E. TRANSMISSION FUSION AND SIGNAL RECOVERY
Image fusion is a pragmatic procedure that aims at the cre-
ation of a single composite image frommultiple input images,
which is known as synergy [43]. It is defined as the process of
integrating relevant information from two (or more) images
of the same scene into a single output image, which is more
informative for human visual perception or for computer
processing [44]. Studies of existing image fusion methods
along with their applications suggest that the output image
from the fusion process can provide us with an improved
quality than the one provided by any of the individual input
images [45]. More specifically, the benefits of image fusion
include reduced uncertainty, increased reliability, extended
spatial and temporal coverage, and compact representation of
information [43]. As such, one primary objective of fusing
transmission maps is to mitigate the influence of the unpre-
dictable variation of vision properties in underwater envi-
ronments. Image fusion can be broadly classified into three
classes: pixel-level, feature-level, and decision-level. Artifact
free and pattern conservation are the two major requirements
for a good image fusion algorithm [46]. The pixel-level image
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fusion approach appears to be a natural choice for visualiza-
tion applications as in our scenario.

To eliminate potential artefacts and speckles in the esti-
mated transmission maps while maintaining scene details
during the fusion process, a saliency procedure is performed
in advance using

t̃si (x, λ) =
∥∥B [t̃i (x, λ)]−mean

[
t̃i (x, λ)

]∥∥ (39)

where B represents the bilateral filter operator [47] and
t̃si (x, λ) is the transmission saliency map with i = 1, 2.
The two transmission maps are then fused into one single
transmission map t̃ (x, λ) using [48]

t̃ (x, λ) =
∑2

i=1
wi (x, λ) t̃i (x, λ) (40)

where wi (x, λ) is the weight based on the transmission
saliency map with

wi (x, λ) =
t̃si (x, λ)∑2
j=1 t̃

s
j (x, λ)

(41)

where
∑2

i=1 wi (x, λ) = 1. The obtained transmission map
is further refined using the guided filter [41] and denoted as
t̂ (x, λ). Substitute t̂ (x, λ) into (14) and set a lower bound
t0 to the transmission coefficient, we can recover the signal
radiance using

Es (x, λ)= I (x,λ)−B (λ)
(
1−max

(
t̂ (x, λ) , t0

))
. (42)

Figure 3 illustrates the effectiveness of the proposed trans-
mission fusion procedure with respect to the recovered signal
radiance Es. The first transmission map t̃1 is rugged with
speckles so that the recovered Es is generally dark with
green spots. In contrast to t̃1, the second transmission map
is overall more uniform and brighter without showing the
proper scene depth. Consequently, the recovered radiance is
still greenish and similar to the input image. It is demonstrated
that the transmission fusion map t̃ takes advantage of both
transmission maps in that the fine details are revealed with
proper depth information. Accordingly, the recovered Es by t̃
exhibits better contrast and vivider color than t̃1 and t̃2.

F. SCENE RADIANCE RECOVERY
Since Es (x, λ) comprises Ed (x, λ) and Ef (x, λ), it is crucial
to remove the forward scattered effect fromEs (x, λ) to obtain
Ed (x, λ). In our approach, the point spread function g (x, λ)
in (17) is modeled as [7]

g (x, λ) =
(
e−Ad(x) − e−β(λ)d(x)

)
=
−1
{
e−Bd(x)f

}
(43)

where A and B are empirical constants, =−1 is the
inverse Fourier transform, and f is the radial frequency.
Substitute (43) into (19) and take the Fourier transform on
both sides, we obtain

= {Es (x, λ)} == {Ed (x, λ)}

×

{
1+=

[
e−Ad(x)−e−β(λ)d(x)

]
e−Bd(x)f

}
(44)

FIGURE 3. Illustration of the effectiveness of the transmission fusion
procedure using the same input image in Fig. 2.

where = is the Fourier transform. Assuming that the inner
Fourier transform in the bracket is constant, we have

= {Es (x, λ)} = = {Ed (x, λ)}
{
1+ Ke−Bd(x)f

}
(45)

where K = =
[
e−Ad(x) − e−β(λ)d(x)

]
. The direct compo-

nent Ed (x, λ) is computed with the blind deconvolution
method [49] using

Ed (x, λ) =
Es (x, λ)

=−1
{
1+ Ke−Bd(x)f

} (46)

Subsequently, the vertical radiance Ev (λ) is estimated
through the transmission coefficient with

Ev (λ) =
Ed (x, λ)

max
(
t̂ (x, λ) , t0

) (47)

To compensate color distortion due to vertical attenuation,
the ultimate radiance Eu (λ) is recovered using a simple color
correction as

Eu (λ) = Ev (λ)+ (µλ −mean (Ev (λ))) (48)

where µλ is the desired mean intensity for each channel.
Finally, in Fig. 4, we depict the flowchart of the proposed
single underwater image restoration framework.

IV. EXPERIMENTAL RESULTS
To quantitatively evaluate the restoration performance of the
tested methods, several performance measure metrics were
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FIGURE 4. Flowchart of the proposed single underwater image
restoration framework.

employed. For color correctness assessment, a straightfor-
ward pixel-by-pixel channel intensity disparity is defined as

δ =

∑
λ∈{R,G,B}

(
Igt (x, λ)− Irt (x, λ)

)2
MN

(49)

where δ is the normalized color deviation metric, Igt is
the ground truth image, Irt is the restored image, and both
images are normalized with the maximum intensity to unity.
A smaller value of δ suggests better color correction ability.
To understand the overall restoration performance without

the knowledge of the ground truth image, the underwater
image quality measure (UIQM) [50] was utilized. The UIQM
metric is a linear combination of three independent image
quality measures using

UIQM=c1×UICM+c2×UISM+c3×UIConM (50)

where UICM is the colorfulness, UISM is the sharpness,
and UIConM is the contrast measure. The parameters c1, c2,
and c3 are weights, whose values are application dependent.
In this paper, we have set the values as follows: c1 = 0.3282,
c2 = 0.2953, and c3 = 3.5753. A greater score of the UIQM
metric indicates superior image quality.

A. UNDERWATER IMAGE DATABASES
A variety of underwater images with different levels of tur-
bidness and distinct scenarios of distortion were utilized to
evaluate the proposed restoration framework, which involve
three different databases:

1. AL-NG-OVD Database: This dataset consists of
143 diverse underwater images acquired from the web-
sites of the aqua life (AL) [51], national geographic
(NG) [52], and ocean view diving (OVD) 53].

2. Deep-sea debris (D-SD) Database: This dataset com-
prises 98 marine debris images, which were collected
from the public website that is owned by the Japan
Agency for Marine-Earth Science and Technology
(JAMSTEC) [54].

3. Hawaii Institute of Marine Biology (HIMB) Database:
This dataset contains 37 challenging stereo underwater
images, which were selected from the coral site images
of HIMB#1 dataset [55].

The entire system was implemented and programmed in
MATLAB2018 (TheMathWorks Inc. Natick,MA,USA). All
experiments were executed on an Intel R©Core(TM) i5 CPU@
2.50GHz with 8 GB RAM running 64-bit Windows 10.
Experimental results produced by our algorithm were com-
pared to six state-of-the-art methods of the integrated color
model (ICM) [10], enhancement with Rayleigh distribution
(ERD) [11], underwater dark channel prior (UDCP) [34],
image blurriness and light absorption (IBLA) [40], underwa-
ter light scattering model (ULSM) [19], and non-local image
dehazing (N-LID) [22].

B. PARAMETER SENSITIVITY
In our implementation, the intensity of the input image was
normalized to [0, 1] with double precision before processing.
The parameter µλ in (48) was automatically computed as
the median of the mean intensities of the three channels. To
understand the influence of the scaling constant 8 in (35)
and the lower bound t0 in (42), we first investigated the set-
ting of these essential parameters in the restoration process.
As illustrated in Fig. 5, there was no significant difference
between various settings of the scaling constant. Based on
the examples, it was demonstrated that 8 = 5 was a good
choice for most situations. For the value of the lower bound,
extensive tests suggested t0 = 0.3, which was a favorable
comprise between clarity and vagueness as shown in Fig. 5.

C. RESTORATION OF COLOR BOARD IMAGES
We then evaluated the color correction performance on color
board images. The ground truth image was distorted and
deteriorated based on the Jaffe-McGlamery model [6], [7]
to simulate the undersea environments in depths from 1 to
20 m. The underwater color board images beneath the sea
level 3M and 9M and their corresponding recovery results
were illustrated in Fig. 6. Table 1 presents quantitative anal-
yses of the restoration results using the IBLA, ERD, UDCP,
ICM, and proposed methods based on the normalized color
deviation metric in (49). Our restoration framework not only
produced the smallest δ value in each depth but also achieved
the lowest average score (δ̄ = 0.0087) among all tested
methods.
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FIGURE 5. Sensitivity analysis of the parameters. Top: the scaling constant 8 in (35). Bottom: the lower bound t0 in (42).

FIGURE 6. Restoration of the deteriorated color board images 3M (top) and 9M (bottom) in depth.

TABLE 1. Restoration evaluation of the color board images in terms of the normalized color deviation metric, δ.

D. RESTORATION OF UNDERWATER IMAGES
A number of underwater images were utilized to evaluate
the restoration performance of the proposed framework in

comparison with the state-of-the-art methods. Fig. 7 depicts
the recovery of Scene 1 image in the AL-NG-OVD database
along with the UIQM scores. While the restoration results of
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TABLE 2. Quantitative performance analyses of different methods based on three underwater image databases using the UIQM metric.

FIGURE 7. Visual comparison of restoration in Scene 1 image.

the ICM, N-LID, and IBLA methods were somewhat green-
ish, the foreground scenes of the ERD, UDCP, ULSM, and
proposed methods were relatively clear. Moreover, the con-
trast of the foreground using the ERD and UDCP methods
was somewhat over-enhanced comparing to our algorithm
(µλ = 0.5186), which produced the largest UIQM score
of 4.464. The restoration results of another representative
image (Scene 2) with green distortion from the AL-NG-OVD
database were shown in Fig. 8. The ICM, ERD, IBLA, and
ULSM methods generated somewhat similar color tone out-
comes. The UDCP method darkened the image with blue
distortion, whereas the results of the N-LID and proposed
methods revealed the foreground while maintaining some
vagueness in the background.

Figure 9 presents the restoration of Scene 3 image in the
AL-NG-OVD database, which is deteriorated by bluish haze.
While the background scenes generated by the ERD and

FIGURE 8. Visual comparison of restoration in Scene 2 image.

ULSM methods were darkish, all other methods more or
less maintained the bluish background. Particularly, the pro-
posed restoration scheme (µλ = 0.4474) efficiently removed
the haze with more brilliant color and the highest value of
UIQM = 5.786. Fig. 10 illustrates the image of Scene 4 from
the AL-NG-OVDdatabase associated with the recovery using
different approaches. In contrast to other methods, our tech-
nique (µλ = 0.3964) and theN-LIDmethod unveiled the near
foreground while preserving appropriate vagueness in the
distant background. However, the foreground scene produced
by the N-LID method was slightly greenish comparing to
the proposed algorithm, which obtained the best evaluation
measure value.

We show, in Fig. 11, the restoration results of Scene 5
image in the D-SD database. While the ICM, ERD, and
IBLA methods partially removed the haze, the UDCP,
ULSM, and N-LID schemes somewhat darkened the scene.

VOLUME 8, 2020 38659



H.-H. Chang: Single Underwater Image Restoration Based on Adaptive Transmission Fusion

FIGURE 9. Visual comparison of restoration in Scene 3 image.

FIGURE 10. Visual comparison of restoration in Scene 4 image.

FIGURE 11. Visual comparison of restoration in Scene 5 image.

The restoration outcome of our proposed algorithm was
more pleasant and visually brighter. Another example
from the D-SD database is illustrated in Fig. 12. All methods

FIGURE 12. Visual comparison of restoration in Scene 6 image.

lessened the haze with different degrees and tone changes.
In contrast to other techniques, the restoration result of the
UDCP method was reddish. Fig. 13 depicts the restoration
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FIGURE 13. Visual comparison of restoration in Scene 7 image.

of a challenging underwater image in the HIMB database.
The ICM, UDCP, IBLA, and N-LID methods were unable to
discard the green tone. The restoration results of the ERD and
ULSMmethods exhibited some green distortion, whereas our
algorithm more efficiently lessened the green tone with the
best score of UIQM = 4.431. Finally, massive experiments
were conducted on hundreds of underwater images in the
three databases, whose restoration outcome using different
methods is summarized in Table 2. It was noted that our
proposed restoration algorithm produced the highest average
evaluation scores in all databases.

Underwater image restoration with one single input image
without further imaging information is highly challenging as
demonstrated in the above experiments. The key to successful
restoration relies upon accurate estimations of two impor-
tant parameters: background light and transmission map.
For model-based methods, assumptions with different
degrees of simplification have been made in order to achieve
practical implementations. For image-based approaches,
techniques derived from various image processing theories
and observations are typically exploited, without considering
the image formation model. Since estimation errors are on
a case-by-case basis, an adaptive mechanism to precisely
correct errors is difficult to develop provided that only one
underwater image is given. This study suggests an image
fusion solution by integrating two different schemes that
compensate each other to alleviate the influence of the unpre-
dictable variation of vision properties in undersea environ-
ments, which improves the accuracy of estimation. As can be
observed from the demonstration, the restoration by our algo-
rithm strikes a good compromise between the model-based
and image-based methods. Nevertheless, the integration of
other methods for the background light and transmission
map estimation through our proposed framework is worth
investigating in the future.

V. CONCLUSION
In conclusion, this paper exclusively introduced a new
underwater image restoration framework based on adaptive
transmission fusion of two different approaches. By the

incorporation of saliency maps, the resultant transmission
map took advantage of both estimation strategies. A variety
of simulated and underwater images with different scenar-
ios of haze quality and color distortion were employed to
evaluate the performance of the proposed framework. The
restoration results were consistent with the philosophy of
the proposed restoration schemes in that the foreground
scene was efficiently corrected with high clarity and natural
color while maintaining a certain level of vagueness in the
background. Comparing to the state-of-the-art methods, our
restoration results were generally more qualitatively pleasing
and quantitatively convincing.
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