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ABSTRACT The sigma-point Kalman filters are generally considered to outperform extended Kalman
filter in the application of GNSS/INS, where cubature Kalman filter (CKF) is widely approved
because of its rigorous mathematic derivation. In order to improve the robustness of GNSS/INS under
GNSS-challenged environment, a robust CKF (RCKF) is developed based on novel sigma-point update
framework (NSUF) in our previous work, whereas the efficiency of NSUF is still plagued by the unknown
process model uncertainty. In this paper, an enhanced RCKF is proposed based on Gaussian process quadra-
ture (GPQ), where the uncertainty consisted in sigma points transform is processed by GPQ conditioning
on the approximated posterior PDF. Experiment result on loosely coupled GNSS/INS demonstrates the
superiority of proposed method, where the heading error and roll error are reduced by 60.5% and 37.5%
respectively compared with RCKF, and it achieves better position result than GP-CKF under GNSS outage.

INDEX TERMS Land vehicle navigation, sigma-point Kalman filter, Gaussian process quadrature, sigma
points transform.

I. INTRODUCTION
Global navigation satellite system (GNSS) has been widely
approved as an efficient tool for the navigation of land vehicle
because of its superiority in all-weather condition and long-
term high accuracy. However, GNSS suffers from frequently
blocking and disturbances in the application of self-driving
vehicle, making it be integratedwith other navigation systems
often rather than be used as a standalone system. Due to
the complementary error properties of GNSS and inertial
navigation system (INS), the integration of the two is a typical
solution for seamless land vehicle navigation, where Kalman
filter (KF) and its variants dominate the information fusion
algorithms. For the filtering problem of linear state-model
and be given precise prior knowledge, KF is the optimal

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuai Han .

solution in the minimum mean squared error (MMSE) under
Gaussian hypothesis of underlying state. However, these con-
ditions are hardly satisfied in real-world, where the time-
varying uncertainty, large prior error and unknown noise
properties are the most active research aspects of nonlinear
filtering.

The error propagation model of INS is usually taken as the
systemmodel of GNSS/INS, where the nonlinearity resulting
from large attitude error or position error cannot be neglected.
To solve the nonlinearity problem contained in state esti-
mation, many sub-optimal KF have been proposed, where
extended Kalman filter (EKF) and unscented Kalman filter
(UKF) are two famous solutions in navigation and target
tracking application [1], [2]. Unlike EKFwhich linearizes the
nonlinear model directly based on Taylor series expansion,
UKF utilizes sigma points transform tomatch the moments of
transformed random variable, which achieves better accuracy
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and is more easily to be implemented than EKF because of
its derivative free merit. However, in the application of UKF,
the filtering performance depends on the selection of scale
parameters of sigma points generation [3]. What is more, it is
reported that UKF becomes unstable with the increase of state
dimension, and cubatureKalman filter (CKF) ismore suitable
for high-dimensional filtering problem [4]. From the number-
integration perspective, many nonlinear filters are developed,
such as high degree CKF [5] and sparse-grid quadrature
filter [6], which however inherit the weakness of KF frame-
work, i.e., problems of model uncertainty and unknown prior
information. In order to enhance the robustness of KF, max-
imum correntropy criterion rather than the MMSE is used
to update the posterior PDF under non-Gaussian noise [7],
whose efficiency however, depends on the kernel parameters
heavily. In order to handle the uncertainty contained in the
process model of GNSS/INS, the M-estimation-based KF is
developed [8], which is less efficient when uncertainties co-
exist in the measurement and process model.

By stochastically approximating the posterior probability
density function (PDF), particle filtering (PF) can handle the
nonlinear and non-Gaussian filtering problem efficiently at
the cost of prohibitive complexities [9]. Many extensions of
PF have been proposed to reduce its complexity [10]–[12],
which may still have problems in resampling or choice of
importance function. What is more, it has been reported
that the deterministic nonlinearity of GNSS/INS is mild,
and the stochastic or uncertainty-induced nonlinearity is the
main problem of filter divergence [13]. Recently, adaptive
KFs based on variational Bayesian (VB) become conspic-
uous [14]–[16], because it can not only handle parameter
identification and state estimation but also is efficient for
high-dimensional state model estimation. In order to process
the skew-t distributed noise, an improved skew-t filter is
proposed by using VB [17]. However, it is hard to estimate
the parameters of skew-t distribution due to the changes of
sensor environment, and the Student’s t filter may encounter
new problems by using fixed scale matrix [18].

In the context of integrated navigation, the VB is often used
to estimate the unknown parameters or time-varying mea-
surement noise [19]. Recently, many works apply VB to the
estimation of process noise covariance, e.g., an adaptive EKF
is developed by identifying process noise and measurement
noise online in [20]. However, it has been well recognized
that the process noise cannot be estimated accurately based
on limited observations of short duration. What is more,
there is often state-dependent noise in GNSS/INS making
the VB-based process noise estimation failed. In our previ-
ous work, the robustness of CKF under GNSS-challenged
environment is enhanced by developing novel sigma-point
update framework (NSUF), where the sigma points residues
generated by the model prediction are transformed directly to
construct posterior sigma points by considering the measure-
ment uncertainty [21]. In order to process the time-varying
measurement noise appeared in NSUF for GNSS/INS, a
robust filter named as VB-RCKF is proposed in [22] by

employing the VB to update the noise covariance. In order
to fully utilize the emerged observation during a long GNSS
outage, a combined NSUF is developed to handle the fre-
quently appeared signal blocking that easily encounter in
urban area [23]. Although VB-RCKF outperforms VB-CKF
in terms of convergence and accuracy, it still suffers from
unmodelled uncertainty of processmodel which is induced by
the severemaneuvers of vehicle [8]. In a word, the uncertainty
of process model is considered as ignorable in our previous
works, which however is not the case for GNSS/INS of land
vehicle, especially when only finite sigma points are involved
in model prediction.

It is notable that the integrals involved in the moment
calculation cannot be computed exactly by propagating finite
samples through system function or measurement function.
As a non-parameter modeling method, the Gaussian process
(GP) represents posterior distributions over functions based
on training data [24], which can calibrate the stochastic
uncertainty of applying finite samples for moment matching.
In order to enhance the robustness of KFs, GP models have
been introduced to account for the system model and mea-
surement model, which achieves better results than its para-
metric counterparts when given enough training data [25].
In the application of GNSS/INS, GP has also been used
to enhance central difference KF, which however needs the
ground truth to identify the residue between approximated
model and reference model [26]. Recently, a quadrature rule
named Gaussian process quadrature (GPQ) is proposed to
further account for the uncertainty consisted in numerically
computed moments, base on which a new quadrature KF is
derived without a model identification step [27]. However,
the GPQ-based KF may still suffer from non-Gaussian mea-
surement noise, and the fixed selection of kernel parameters
for GP measurement model approximation is invalid due to
the changing sensor environment, which is not the case for
process model. In a word, the GP-based model prediction can
improve CKF by calibrating the uncertainty consisted in the
moments approximation of system function.

In our previous work, we have shown that RCKF can
retain some non-Gaussian and higher order information of
approximated posterior PDF [21], [23]. Unlike the above-
mentioned works, the aim of this paper is to develop a
GPQ-enhanced RCKF for GNSS/INS, which can further
improve the attitude of GNSS/INS by considering the uncer-
tainties consisted in process model. The novelty of this work
is that not only the uncertainty consisted in moments compu-
tation of prior PDF is considered but also the efficiency of GP
model prediction is improved by applying the posterior PDF
approximated by the NSUF-based KF update.

The structure of this paper is arranged as follows. Section II
reviews the filter model of GNSS/INS and the NSUF-based
CKF briefly. In Section III, the GP enhanced robust CKF
is given after discussing GP-based uncertainty calibration
in the context of sigma points-based moments prediction.
Numerical simulation based on field test data is reported in
Section IV. Finally, Section V concludes this paper.
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II. MODEL AND PROBLEM FORMULATION
A. FILTER MODEL OF GNSS/INS
The navigation frame of this paper is earth-centered earth-
fixed frame (e-frame), and the error state model of INS is
selected as the system function of GNSS/INS. The obser-
vation of GNSS is resolved in e-frame, and the IMU is
fixed in the body frame (b-frame) of vehicle which mea-
sures the angular motion and specific force of vehicle with
respect to the geocentric inertial frame (i-frame). The state of
GNSS/INS is x =

(
δψ δv δp ba bg

)T , where δψ indicates
the attitude error resolving in e-frame, δv and δp represents
the velocity and position error respectively, ba and bg are the
biases of accelerometers and gyroscopes. In the following
discussion, we omit the time index t for brevity and clarity
reasons, e.g., δψ̇ (t)will be denoted by δψ̇ . The attitude error
equation of INS resolving in e-frame is given by

δψ̇ = −ωeie ⊗ δψ + Ce
bbg (1)

where ωeie is the earth angular rate with respect to i-frame,
Ce
b is the rotation matrix from b-frame to e-frame, and ⊗

represents the skew symmetric matrix. The update of attitude
in e-frame refers to the update of Ce

b based on ω
b
ib, and it can

be written as

Ce
b (+) ≈ Ce

b (−)
(
I3 +�b

ibτi

)
−�e

ieC
e
b (−) τi (2)

where �b
ib = ωbib⊗, �

e
ie = ωeie⊗, C

e
b (−) is the transform

matrix of last time instant, Ce
b (+) is the updated matrix after

applying ωbib, I3 is the identity matrix of 3 dimension, and τi
is the integration interval of angular-rate measurement. The
‘‘≈’’ indicates that we consider theωbib over τi is constant, and
the exponents term contained in Ce

b update is approximated
by its first order Taylor series expansion. The error equation
of velocity and position are given by

δv̇eeb = −
(
Ce
bf
b
ib

)
⊗ δψ − 2ωeie ⊗ δv

e
eb

+
2g0
reeS

peeb∣∣peeb∣∣2
(
peeb
)T
δpeeb + Ce

bba (3)

δṗeeb = δv
e
eb (4)

where g0 is the acceleration due to local gravity, reeS is the
geocentric radius at the earth surface. The update of veeb is
written as

veeb (+)≈v
e
eb (−)+

(
feib+g

e
b
(
peeb (−)

)
−2�e

iev
e
eb (−)

)
τi (5)

where feib =
1
2

(
Ce
b (−)+ C

e
b (+)

)
fbib, g

e
b

(
peeb (−)

)
is the

local gravity resolving in e-frame, veeb (−) and veeb (+) are
the velocity before and after the application of fbib, p

e
eb (−)

is position of last time instant, and the ‘‘≈’’ indicates that
the variation of Coriolis term is neglected in the integration
interval. The update of position peeb can be written as

peeb (+) ≈ peeb (−)+ veeb (−) τi

+
(
feib + geb

(
peeb (−)

)
− 2�e

iev
e
eb (−)

) τ 2i
2

(6)

where the ‘‘≈’’ indicates the assumption of velocity varies
linearly can only give an approximation to the true value
of position. The error equations of accelerometers and gyro-
scopes are given by

ḃa = 0 (7)

ḃg = 0 (8)

By combining (1), (3), (4), (6) and (7), and discretizing them
we can get the system model of GNSS/INS. By using (2),
(5), (6) to update the navigation parameters of INS and taking
the position difference and velocity difference betweenGNSS
and INS output as the measurement, we can formulate the
filter model of GNSS/INS. More details on the filter model
of GNSS/INS can refer to [28].

B. REVIEW OF NSUF-BASED CKF
In order to facilitate the following discussion, the discrete-
time filter model of GNSS/INS are given by

xk = f (xk−1)+ wk−1 (9)

zk = h (xk)+ νk (10)

where xk ∈ <n, wk−1 ∈ <
n are the state and process noise

vectors of system model, and zk ∈ <p, νk ∈ <p are the
observations and noise of measurement model. The system
function satisfies f : <n → <

n, measurement function
satisfies h : <n → <p, and x0, wk−1 and νk are mutually
independent. Under Gaussian assumption, the prior PDF and
posterior PDF of state can be written as p(xk |Zk−1) =
N
(
xk ; x̂k|k−1,Pk|k−1

)
and p(xk |Zk ) = N

(
xk ; x̂k|k ,Pk|k

)
,

where Zk = z1:k is the measurement from time 1 until time k ,
and N (x; x̄,P) denotes a Gaussian distribution of variable x
with mean x̄ and variance P. The sigma points of CKF for
prior PDF approximation are generated by

xik−1|k−1

=

{
x̂k−1|k−1+

(√
nPk−1|k−1

)
i i = 1, · · · , n

x̂k−1|k−1−
(√

nPk−1|k−1
)
i−n i = n+ 1, · · · , 2n

(11)

where
(√

nPk−1|k−1
)
i = ei

√
nPk−1|k−1, and ei ∈ <n is the

i-th elementary column vector. Similarly, for the likelihood
function approximation, the sigma points are updated by

xik|k−1=

{
x̂k|k−1+

(√
nPk|k−1

)
i i=1, · · · , n

x̂k|k−1−
(√

nPk|k−1
)
i−n i=n+1, · · · , 2n

(12)

Noting in (11) and (12), the sigma points used in function
value evaluation only contain the moments of a Gaussian dis-
tribution with prescribed accuracy. The function values based
on finite sigma points, e.g., f

(
xik−1|k−1

)
and h

(
xik|k−1

)
, are

dropped after calculating the moments. A NSUF is developed
in [21], where the new sigma points for next filtering period is
updated by formulating a transformmatrix γ k , which is given
by

γ k = L+k 4
T (L−k )−1 (13)
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Algorithm 1 RCKF

Require: x̂k−1|k−1, Pk−1|k−1, x̃+k−1|k−1
Model-based PDFs prediction
for i = 1, · · · ,N do

X+i,k−1|k−1 = x̂k−1|k−1 + X̃+i,k−1|k−1, ωik = 1/N

end for

X−i,k|k−1 = f
(
X+i,k−1|k−1

)
, x̂k|k−1 =

N∑
i=1

ωikX
−

i,k|k−1

Pk|k−1 =
m∑
i=1

ωikX
−

i,k,k−1

(
X−i,k|k−1

)T
−x̂k|k−1x̂Tk|k−1+Qk−1

ẑk|k−1 =
N∑
i=1

ωikh
(
X−i,k|k−1

)
(14)

Pzzk|k−1 =
m∑
i=1

ωikh
(
X−i,k|k−1

) (
h
(
X−i,k|k−1

))T
− ẑk|k−1ẑTk|k−1 + Rk (15)

Pe
k|k−1 =

N∑
i=1

ωikX
−

i,k|k−1

(
h
(
X−i,k|k−1

))T
− x̂k|k−1ẑTk|k−1 (16)

Update posterior moments
zk−1← zk F Receive new observations

Kk = Pxzk|k−1
(
Pzzk|k−1

)−1
x̂k|k = x̂k|k−1 +Kk

(
zk − ẑk|k−1

)
(17)

Pk|k = Pk|k−1 −KkPzzk|k−1K
T
k (18)

Update sigma points
Update the transform matrix use (13)
for i = 1, · · · ,N do

X̃−i,k|k = X−i,k−1−x̂k|k−1 FCompute function evaluation

residue
X̃+i,k|k = γk X̃

−

t,kk−1
end for

where Pk|k−1 −1Q = L−k
(
L−k
)T
, Pk|k −1R = L+k

(
L+k
)T
,

44T
= I and I is the identity matrix of appropriate dimen-

sion. More details on the setting of 1Q and 1R please refer
to [22], [23]. Suppose the number of sigma points is N = 2n,
and the steps of NSUF-based CKF (RCKF) are summarized
in Algorithm 1.
Remark 1: Notice that, there is uncertainty in the calcu-

lation of function evaluation residue by using finite sigma
points, and also γ k approximates to 0when the filter becomes
stable, which is an expected phenomenon for the sigma points
error reduction. However, in order to ensure the filter stable
it is better to add positive defined matrix to Pk|k [29]. If the

process uncertainties including the unmodelled model error
and function evaluation error are taken into consideration in
the calculation of γ k , the enlarged Pk|k−1 will result in a
further reduction of γ k .
Remark 2: Because the points away from the central point

would lead to performance degradation in moments approx-
imation, the sigma points generated by (11) are less effi-
cient for high-dimensional filtering problem. What is more,
the measurement model of loosely coupled GNSS/INS is
linear, andRk can be fine-tuned by evaluating the filter perfor-
mance or using VB-based noise estimation algorithm. Con-
sequently, we focus on the calibration of function prediction
error of system model only, which has a significant effect on
the attitude estimation of GNSS/INS.

III. UNCERTAINTY CALIBRATION OF SIGMA POINTS
TRANSFORM
A. GAUSSIAN PROCESS QUADRATURE
Following the definition and notation in [25], we briefly
review GP in the context of sigma points-based moments pre-
diction. Let the system function f(x) distributed according to a
GP satisfy GP

(
M (X) , k

(
x, x′

))
, and the GP can be uniquely

determined by its mean function m(x) and covariance func-
tion k

(
x, x′

)
. In this paper, we select squared exponential

(SE) kernel as the covariance function, and the mean function
is set as 0 without loss of generality. The SE kernel is given
by

k
(
x, x′

)
= α2 exp

(
−
1
2

(
x− x′

)T
3
(
x− x′

))
(19)

where 3 are the length-scales of SE kernel and α2 is
the variance of latent function f(x). Suppose the data
D = {(xi, f (xi))}Ni=1 have been generated according to (9),
where the training input xi = xik−1|k−1 and f (xi) is the
function evaluation value using xik−1|k−1, i.e., the training

targets y =
[
f
(
x1k−1|k−1

)
· · · f

(
xNk−1|k−1

) ]T
. Then the

predictive mean and variance of GP posterior p ( f |D) are
given by

mf (x) = Ef [ f (x)|D] = kT (x)K−1y (20)

σ 2
f (x) = Vf [ f (x)|D] = k (x, x)− kT (x)K−1k (x) (21)

where E[·] and V[·] denote the expectation and variance
operator, [k(x)]i = k(x, xi) is the i-th element of k(x),
the element of K at position (i, j) is denoted as [K]ij =
k(xi, xj) = Cf[f(xi), f(xj)], and C[·] denotes the covariance
operator. Because both of the uncertainty in xi and f(·) are
considered in GP, the a-th dimension of the prediction mean
can be written as(

x̂k|k−1
)
a =

∫
mfa (xk−1) p (xk−1|Zk−1) dxk−1

= yTa
(
K+ σ 2

wa

)−1
qxa (22)
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where ya is the a-th training target, σ 2
wa is the learned system

noise variance, a = 1, · · · , n and qxa is defined as

qxai = α
2
fa

∣∣∣Pk−1|k−13−1a + I
∣∣∣− 1

2

× exp
(
−
1
2

(
xi − x̂k−1|k−1

)T (Pk−1|k−1 +3a
)−1

×
(
xi − x̂k−1|k−1

) )
(23)

where αfa and 3a are the hyper-parameters learned by using
sigma points corresponding to the a-th target of GP model.
Let b = 1, · · · , n, and the entries of prediction covariance
are given by(
Pk|k−1

)
ab = Exk−1 [Cf [ fa (xk−1) , fb (xk−1)| xk−1]|Zk−1]

+Cxk−1
[
Efa [ fa (xk−1)| xk−1] ,

Efb [ fb (xk−1)| xk−1]
∣∣Zk−1] (24)

Inserting (20) and (22) into the second term of (24), we get

Cxk−1
[
mfa (xk−1) ,mfb (xk−1)

∣∣Zk−1]
=
(
βxa
)T Q

(
βxb
)
−
(
x̂k|k−1

)
a

(
x̂k|k−1

)
b (25)

By defining ςi = xi − x̂k−1|k−1, zi,j = 3−1a ςi + 3
−1
b ςj and

R = Pk−1|k−1
(
3−1a +3

−1
b

)
+ I, the entries of Q can be

written as

Qij = kfa
(
xi, x̂k−1|k−1

)
kfb
(
xj, x̂k−1|k−1

)
× exp

(
1
2
zTijR

−1Pk−1|k−1zij

)
/
√
|R|

=

[
log

(
α2fa

)
+ log

(
α2fb

)
−

1
2

(
ςTi 3

−1
a ςi + ς

T
j 3
−1
b ςj

− zTijR
−1Pk−1|k−1zij

) ]
/
√
|R| (26)

Let tr(·) denote the trace operator, and the first term of (24)
is non-zero only when a = b, where the entries of expected
covariance is given as

Exk−1 [Cf [ fa (xk−1) , fb (xk−1)| xk−1]|Zk−1]

= α2fa − tr
((

K+ σ 2
wa

)−1
Q
)
+ σ 2

wa (27)

Then the prediction covariance matrix in (24) can be obtained
by (25) when a 6= b or by adding (27) to (25) in case a = b.

B. DISCUSSION ON GPQ ENHANCED NSUF
By combining the GPQ-based model prediction and the mea-
surement update of RCKF, we develop an enhanced RCKF,
named as GP-RCKF in this paper. In case only position and
velocity are used as the observations for GNSS/INS, the cor-
rection information of attitude appears in the prediction stage
of KF and we only modify the state prediction of RCKF
to reducing the complexity of GP-RCKF. The flowchart of
GP-RCKF is shown in Fig. 1.

FIGURE 1. Flowchart of GPQ enhanced RCKF.

Define8k|k−1 = ∂f (xk−1)/∂xk−1,Hk = ∂h(xk )/∂xk , and
the predicted error vectors by (9) and (10) can be formulated
as

x̃k|k−1 =
(
8k|k−1+AkNf ,k2f .k

)
x̃k−1|k−1

+Bk1BkEBkxk−1+wk−1 (28)

z̃k|k−1 =
(
Hk + CkNh,k2h,k

)
x̃k|k−1

+Dk1DkEDkxk + νk (29)

where Ak and Ck are problem dependent scaling matrices,
x̃k|k−1 = xk − x̂k|k−1, z̃k|k−1 = zk − ẑk|k−1, x̃k−1|k−1 =
xk − x̂k−1|k−1, Nf ,k and Nh,k are unknown time-varying
linearization error of f(·) and h(·), 2f .k and 2h,k provide an
extra degree of freedom for filter tune. Bk1BkEBkxk−1 and
Dk1DkEDkxk denote the unmodelled uncertainties, whereBk
and Dk are known scaling matrices, 1Bk ∈ <

n×n, 1Dk ∈

<
n×n and satisfying E[1Bk1

T
Bk ] ≤ I, E[1Dk1

T
Dk ] ≤ I, EBk

and EDk are known and can be set as I here. Then we have
Theorem 3.1 for the prior covariance and posterior covariance
corresponding to (28) and (29).
Theorem 3.1: For system (9) and (10) with bounded noise

and unmodelled uncertainties, the predication covariance and
posterior covariance are given by

Pk|k−1 =
(
8k|k−1 + AkNf ,k2f .k

)
Pk−1|k−1

(
8k|k−1

+ AkNf ,k2f .k
)T
+1Pk|k−1 +Qk−1 (30)

Pk|k =
[
I−Kk

(
Hk|k−1 + CkNh,k2h,k

)]
×Pk|k−1

[
I−Kk

(
Hk|k−1 + CkNh,k2h,k

)]T
+Kk (1Pk + Rk)KT

k (31)
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where

1Pk|k−1 = BkE
[
1Bkxk−1xTk−11

T
Bk

]
BTk

1Pk = DkE
[
1Dkxk−1xTk−11

T
Dk

]
DT
k

and both (30) and (31) are bounded.
Proof: See the proof given in Appendix A of [21].

Remark 3: Notice that, the unmodelled uncertainties terms
Bk1BkEBkxk−1, Dk1DkEDkxk are linear function of under-
lying state, and the matrices Bk and Dk are considered
as known but hard to tune in practical. In the GPQ-based
model prediction framework, the effect of these terms can
be compensated by using the learned instantiated function
values partly, which does not need parameter tune and in
turn provides better result compared with normal sigma-point
Kalman filter without fixing these terms.
Remark 4:Because themeasurementmodel of loosely cou-

pled GNSS/INS is linear, and the time-varying measurement
noise can be online estimated, we do not apply GPQ for
measurement function transform. What is more, the hyper-
parameters for GP measurement model after the training
period are hardly suitable for model prediction because of the
changing sensor environment. Therefore, in order to enhance
the attitude estimation of GNSS/INS without increasing the
complexity obviously, only the uncertainty of system function
transform is handled by GPQ in our algorithm.

IV. FIELD TESTS
The error of navigation state is selected as the state to be
estimated, and a closed-form filter loop is used to update the
state recursively. The field test setups are shown in Fig. 2,
where a NovAtel SPAN system is employed to record the
sensors’ data. The specific characteristics of the involved
IMU are listed in Table 1. The raw data sets of GNSS receiver
and IMU output are then post-processed by the Waypoint
Inertial Explorer and the proposed algorithms, respectively,
where the former is taken as the ground truth. By logging the
raw data records with GNSS 1PPS, it is easily to integrate
the output data of different frequencies in post-processing
way. The update frequencies of GNSS, IMU and the post-
processing software are 5Hz, 200Hz and 100Hz, respectively.

The trajectory of the field test is shown in Fig. 3, where
a signal outage (less than 5 s) is flagged by a purple circle.
In our simulation, all the filters use the same configuration
parameters including P0|0, Qk−1 and Rk making the com-
parison among the filters fair. What is more, we utilize the
VB-based measurement noise estimation algorithm proposed
in [18] and applied in [20] to compare the VB-based adap-
tive CKF, named as VB-CKF, with our proposed algorithm.
Because the training stage is time-consuming, we use the
sigma points and the function values from 30th to 60th epoch
for hyper-parameters learning, and then the learned hyper-
parameters are applied for system function transform.

The output trajectories of different CKFs are shown
in Fig. 4 and Fig. 5, where the result of different filters under
signal outage and frequent angular motion are given. It is

FIGURE 2. Field test setups.

TABLE 1. Specifications of sensors in IMU.

FIGURE 3. Trajectory of field test, the purple circle marks a signal outage
less than 5 s.

FIGURE 4. Position output of different filters under GNSS outage.

notable that GP-CKF outperforms CKF and VB-CKF when
GNSS outage appears which indicates that GPQ enhanced the
estimation of IMU biases when no observations are avail-
able. Notice that, when the vehicle runs in frequent angu-
lar motion there are obvious steady-state errors for CKF
and VB-CKF, which demonstrates that the unmodelled
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FIGURE 5. Position output of different filters under frequent angular
motion.

FIGURE 6. Roll error of different filters.

uncertainties in system model would degrade the perfor-
mance of CKF even if the observations are available. How-
ever, because GP-CKF utilizes the traditional sigma points
update framework, the accuracy of posterior covariance still
has a great effect on its position result in case a signal outage
present. By employing the NSUF, both RCKF and GP-RCKF
show better trajectory tracking result than the CKFs utilizing
sigma points generated by (11) and (12), which indicates the
efficiency of sigma points spanned by the posterior sigma
points error matrix.

Unlike position which is of strong observability in
GNSS/INS filtering, the attitude is of weak observability
and the heading would diverge in case the vehicle goes
along a straight line. The roll and pitch result of GNSS/INS
are shown in Fig. 6 and Fig. 7, respectively, where both
GP-CKF and GP-RCKF perform better than their non-GPQ
enhanced counterparts. What is more, the result of GP-CKF
is worse than NSUF-based CKFs, i.e., RCKF and GP-RCKF,
and more detailed results are listed in Table 2. In Table 2,
the RMSE of attitude and the average RMSE of position are
given, and the latter is defined by

AP =

√
1
2

(
E2
RMSE + N

2
RMSE

)
, (32)

FIGURE 7. Pitch error of different filters.

TABLE 2. RMSE of vehicle attitude and average RMSE of position for
different filters.

FIGURE 8. Heading error of different filters.

where ERMSE , NRMSE represent the RMSE of position in east
and north direction. Result of heading is shown in Fig. 8,
and noting that by employing GPQ to enhance the predic-
tion stage based on (9), the heading is improved obviously.
The VB-CKF does not achieve better results than CKF in
terms of attitude, but achieves a slight better result in terms
of position, which indicates the time-varying measurement
noise does affect the performance of position.

Noting Table 2, compared with CKF, GP-CKF does not
perform better in terms of AP, and on the contrary it degrades
the position. Furthermore GP-RCKF reduces the error of
attitude obviously but shows similar result when compared
with RCKF in terms of AP. Because the correction infor-
mation of attitude error mainly comes from the off-diagonal
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elements of prediction covariance, the improvement of atti-
tude demonstrates the enhancement of prediction covari-
ance. The reason for position degradation may come from
the unmodelled measurement uncertainties, e.g., the time-
varying measurement noise, which underestimates the pos-
terior covariance making the Kalman gain decreases quickly.
As the learning of the hyper-parameters can be done off-line,
we can further improve the training stage by using other more
accurate sigma points, such as generated by smoother-based
posterior PDF. What is more, increasing the training period
would surely improve the quality of learned hyper-parameters
and thus the prediction covariance.

V. CONCLUSION
In order to improve the prediction stage of RCKF which
is very important for attitude estimation of GNSS/INS,
a GPQ-based novel sigma-point update framework (NSUF)
is proposed in the context of sigma points-based moments
matching. Based on the GPQ-based NSUF, an improved
robust CKF, named as GP-RCKF, is derived by the authors to
process the uncertainty existing in system function transform.
The GP-RCKF is verified by field test data, and simulation
results demonstrate that GP-RCKF improves the heading by
60.5% compared with RCKF without degrading the position
result obviously.

It is notable that we only train the hyper-parameters of
GP system prediction model when the vehicle goes along
straight line at almost constant velocity, more works should
be done to train the hyper-parameters according to the observ-
ability analysis of GNSS/INS [30]. Further study will also
be focused on more widely application of non-parameter
transform for nonlinear filters design, e.g., non-parameter
form of (13) for sigma points error matrix transform.
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