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ABSTRACT Reducing the impact of hazy images on subsequent visual information processing is a
challenging problem. In this paper, combining with atmospheric scattering model, we propose an end-to-
end multi-scale feature multiple parallel fusion network called MMP-Net for single image haze removal. The
MMP-Net includes three components: multi-scale CNN module, residual learning module and deep parallel
fusion module. 1) In multi-scale CNN module, a multi-scale convolutional neural network (CNNs) is adopted
to extract different scales features from whole to local, and these features are fused multiple times in parallel.
2) In residual learning module, residual blocks are introduced to deeply learn detailed features, which can
recover more image details. 3) In deep parallel fusion module, those features from residual learning module
are deeply merged with the fused features from CNNs, and finally used to recover a clean haze-free image
via the atmospheric scattering model. The experimental results show that on the average of three datasets
(SOTS, HSTS, and D-Hazy), proposed MMP-Net improves PSNR from 20.91db to 22.21db and SSIM from
0.8720 to 0.9023 over the best state-of-the-art DehazeNet method. What’s more, MMP-Net gains the best

subjective visual quality on real-world hazy images.

INDEX TERMS Image dehazing, convolutional neural network, residual learning, parallel fusion.

I. INTRODUCTION
In hazy weather, due to the fine particles suspended in the
atmosphere, the outdoor image captured by the machine is
scattered, which causes a decline in image quality and a
dim color of the image. This not only has a negative impact
on human perception, but also constitutes an obstacle for
many computer vision tasks, such as video surveillance [1],
target recognition [2], [3], image classification [4], [5] and
so on. Therefore, in order to improve the image quality and
performance of computer vision systems, image haze removal
has become an important research topic in current computer
vision [6], [7].

At present, image dehazing methods can be summarized
into three categories: one based on prior knowledge, one
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based on learning and the other based on a combination of
prior knowledge and learning. For the first kind, researchers
need to find the common features between hazy images and
clean images. There are some image dehazing methods based
on prior knowledge. Tan [8] found that the hazy image con-
trast is often weaker than the clean image, and propose a local
contrast pair maximization algorithm. However, increasing
the contrast of the image for dehazing may cause image
color distortion and loss of image realism. He et al. [9]
assumed that haze-free images often have low-intensity val-
ues in at least one channel. Therefore, a dark channel prior
dehazing algorithm is proposed to remove haze by an atmo-
spheric scattering model. However, color distortion is likely
to occur in the sky area and other areas that do not satisfy
the dark channel prior. Zhu ef al. [10] discovered the linear
relationship between scene depth, brightness and saturation
of images, and proposed a color attenuation prior method.
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Berman and Avidan [11] found that the colors of a clean
image form a tight cluster in the RGB space. Then, a non-
local prior image dehazing method is proposed. Kratz and
Nishino [12] used the factorial MRF model to estimate albedo
and depth, and factorized a single hazy image via a canonical
expectation-maximization algorithm with alternating mini-
mization. In addition, the prior knowledge-based method
can also be used for images captured at night and under
non-uniform illumination. Zhang [13] found that ambient
illumination is the main source of local maximum intensity
for each color channel in nighttime hazy images. Subse-
quently, a maximum reflectance prior is proposed to estimate
the ambient illumination and transmission map. Although
methods based on prior knowledge are simple and effective
in many scenarios, they still have some limitations in specific
scenarios. What’s more, it is quite difficult to extract image
features and prior knowledge artificially.

Different from the prior knowledge-based method, the
learning-based image dehazing method no longer relies
on manually extracting image features, but automatically
obtains image features by learning model. In recent years,
many researchers have studied learning-based image dehaz-
ing methods. Cai et al. [14] proposed a DehazeNet with
the new BReLU activation function to dehaze by pre-
dicted transmittance map. Ren et al. [15] used a multi-scale
CNN to predict the transmission map for image dehazing.
Li et al. [16] proposed a deep all-in-one model to gen-
erate clean images directly by convolutional neural net-
works. Zhang and Patel [17] proposed an end-to-end densely
connected pyramid network (DCPDN) to jointly learn the
transmission map, atmospheric light. In addition, a joint dis-
criminator based on a generative adversarial network frame-
work is used to determine whether the estimated transmission
map is real or fake. In [18] a Cycle-Dehaze network was
proposed for single image dehazing, which does not rely on
the estimation of atmospheric scattering model, but instead
produces visually better haze-free images by improving the
quality of texture information recovery. Zhang et al. [19]
proposed a fully point CNN (FPCNet) method. This network
shuffles the original images and inputs them to the net-
work, which can model the statistical regularities effectively.
Finally, the haze is removed by point-wise convolutions in
all convolutional layers. Du and Li [20] proposed to redefine
dehazing as a problem of learning structural residue. A deep
residual learning (DRL) network that directly estimates the
non-linear mapping of the input image to the output image
is designed for dehazing. Mei et al. [21] proposed a pro-
gressive feature fusion network to directly learn a non-linear
function from a hazy image to a clean image. Although
it can recover hazy images with 4K resolution, dehazed
images exhibit noise such as grid shapes. Zhang and Tao [22]
proposed a network consisting of encoders at three scales
and a fusion module. This multi-scale end-to-end dehazing
network can quickly and accurately learn haze-free images,
which called FAMED-Net. Dudhane and Murala [23] pro-
posed RNet and YNet to extract haze-related features through
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RGB and YCbCr color spaces and generate two transmission
maps (TrMaps). The TrMap Converged Network (FNet) is
designed to integrate two TrMaPs. This network structure is
called RYF-Net. Currently, learning-based methods can also
be applied to night images. Kuanar ef al. [24] proposed a
deep learning based DeGlow-DeHaze iterative architecture.
The DeGlow model eliminates the glow generated in the night
scene, and the DeHaze network eliminates the haze. Although
improvements have been gained by the learning-based meth-
ods, their dehazed performances are still hindered by the esti-
mation of the transmittance map and atmospheric light and
deep neural network structure. The current dehazing methods
still leave much space to improve.

In recent years, some dehazing methods based on a combi-
nation of prior knowledge and learning have also been born.
Ren et al. [25] presented an end-to-end gating fusion network
consisting of an encoder and a decoder for dehazing, where
image preprocessing is applied via white balance (WB),
contrast enhancement (CE) and gamma correction (GC).
Wang et al. [26] found that haze mainly affects the luminance
channel in YCrCb color space and proposed a novel simple
but powerful atmospheric illumination prior (AIP). Based on
this prior knowledge, a multi-scale convolutional neural net-
work that automatically recognizes hazy areas, and restora-
tion of deficient texture information is designed for image
dehazing. These networks cleverly combine prior knowledge
and succeed in dehazing a single image. However, there is
still extensive optimization that needs further investigate.

In this paper, we propose a MMP-Net for single image
haze removal. Three different scales features are extracted
by a multi-scale CNN model and fused multiple times in
parallel. Further, the residual learning blocks are introduced
to get more detailed image features. These features are deeply
fused with those from CNNss in parallel, and finally utilized to
produce the dehazed image via atmospheric scattering model.

Here we firstly give the visual quality subjective compar-
ison between MMP-Net and several state-of-the-art methods
on a natural hazy image shown as Fig.l. It can be seen
these models can augment image details and enhance visual
quality. However, color distortion appears in Fig.1 (b), and
dehazed image shows not natural. In Fig.1 (c) and Fig.1 (d),
the texture is not clear, and dehazed images shows a little
blurred. Compared with Fig.1 (e), Fig.1 (f) shows clearer
texture and more realistic colors. In general, Fig.1 (f) shows
the fewest color distortions and the best visual quality.

Further we also give the objective assessment results
of Fig.1 by using blind image quality assessment metric
NIQE [27], shown in subtitle of Fig.1. A lower NIQE indi-
cates better image quality. It can be seen our MMP-Net
gets the lowest NIQE value, suggesting the best dehazed
performance.

Our main contributions can be summarized as follows.

(1) We propose an end-to-end multi-scale feature multiple
parallel fusion network MMP-Net, which consists of multi-
scale CNN module, residual learning module and deep paral-
lel fusion module.
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FIGURE 1. Visual quality comparison between MMP-Net and several state-of-the-art methods on a natural hazy image. Please amplify figures to view
the detail differences in bounded regions. Note that the score of NIQE are range from 0 (the best) to 100 (the worst).

(2) In MMP-Net, the residual blocks are introduced to
deeply learn detailed features, and different scales features
are deeply merged multiple times in parallel.

(3) Experimental results show proposed MMP-Net outper-
formed current reported top image dehazing methods both on
synthetic SOTS, HSTS and D-Hazy hazy image datasets and
real-world hazy images.

Il. ATMOSPHERIC SCATTERING MODEL AND
TRANSFORMED EXPRESSION

McCartney [28] proposed an atmospheric scattering model
for expressing haze image formation as follows:

I(x) =J)t(x) + A0 —t(x)) (1)

where /(x) is the observed hazy image; J(x) is the scene
radiance (i.e., the ideal ‘““clean image’’) to be recovered; A
is the global atmospheric light; #(x) is the haze transmission
matrix; and x denotes pixel location. #(x) is defined as:

t(x) = e P4 )

where 8 denotes the medium attenuation coefficient, and d (x)
is the scene depth.

The dehazing process is to estimate the transmittance map
t(x) and the atmospheric light A from the hazy image I(x).
Then, the Eq. (1) can be rewritten into an expression about a
clean image:

1 1
Jx)=—Ix)—A——+A 3
(x) pron (x) oS, + (3)
From Eq. (3) it can be seen the transmittance map #(x) and
the atmospheric light A have a great influence on dehazing
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effect. For a single image haze removal, the haze image 7(x)
is known. However, the A and 7(x) are unknown. For simpli-
fying the two unknowns, according to [16], a single variable
K(x) will be used to get a new mathematical expression as
follows.

Jx)=Kx)I(x)—K(x)+b )

where b is the constant bias with the default value 1. Then

K (x) can be expressed as following Eq. (5).

@) —A) + (A -b)
Ix)—1

After K (x) is predicted by a deep learning model, and then
a clean image J(x) can be gained.

Kx) =

&)

Ill. PROPOSED MMP-Net FOR SINGLE IMAGE DEHAZING
In this section, we introduce our proposed MMP-Net, which
includes three parts: multi-scale CNN module, residual learn-
ing module and deep parallel fusion module. The multi-scale
CNN module consists of 6 convolutional layers, each fol-
lowed by a nonlinear ReLU activation. The residual learning
module consists of 18 residual blocks, each of which contains
a PReLu activation function. The deep parallel fusion module
is used to further fuse different scales features from CNN and
residual learning module. The schematic diagram of a single
image dehazing via MMP-Net is shown as Fig.2.

A. MULTI-SCALE CNN MODULE
Firstly, the multi-scale CNN module (the 1st part in Fig.2)
uses three convolution kernels of different scales to extract
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FIGURE 2. Schematic diagram of a single image dehazing via MMP-Net.
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FIGURE 3. Residual block structure.

features from the hazy image. Here, the features obtained by
the convolutional kernels of 1 x 1 and 3 x 3 are merged in
parallel to obtain Fusel. The 3 x 3 and 5 x 5 convolutional
kernels get Fuse2 by the same operation. Fusel and Fuse2 are
then convoluted and merged in parallel to obtain Fuse3. The
1x convolutional kernel is used to preserves as much detail
as possible of the original image, especially edge information.
Multiple parallel fusions are used to compensate lost features
by 3 x 3 and 5 x 5 convolution kernels. Multi-scale CNN
module facilitates the transfer of detailed features obtained
via small-scale convolution into subsequent images to gener-
ate rich features and edge information. The feature extraction
by convolution operation is expressed as follows:

Gi(Y) =W;xGi1(Y) (6)

where G;(Y) denotes the feature map of the i — th layer of
the output; W; is the convolution kernel of the i — th layer;
Gi_1(Y) is the feature map of the (i — 1) — th layer; and *
represents a convolution operation.

B. RESIDUAL LEARNING MODULE

In MMP-Net, we introduce residual learning [29] (the 2nd
part in Fig.2) into a deep network structure for extracting
more detailed image features. Mei et al. [21] show that
18 residual blocks can keep the balance between learning per-
formance and computing resources, so we also use 18 residual
blocks in the MMP-Net. The skip connections are adopted
between the residual blocks, which can reduce the problem
of gradient disappearance caused by deep neural networks.
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FIGURE 4. Architecture of deep feature parallel fusion module.

Fig.3 shows the structure of the residual block, which
consists of 2 convolutional layers and a non-linear activation
function PreLU. The authors of [30] suggest using PreLU can
not only alleviate the vanishing gradient problem, but also
speed up the convergence of the network, so it is chosen as
the activation function of MMP-Net. The PreLLU is expressed
as:

JereLU = max(x;, 0) + o; min(0, x;) N

where x; is the input of the nonlinear activation f on the
i — th layer, and «; is a coefficient controlling the slope of
the negative part.

C. DEEP PARALLEL FUSION MODULE

Fig.4 shows the architecture of deep feature parallel fusion
module. In this module, the features from residual learning
module are merged with Fusel and Fuse2 separately in par-
allel to get Fuse4 and Fuse5. Fuse4 and FuseS5 are convolved
separately and then merged to get Fuse6 in parallel. Fuse6 is
convolved to get the final feature map K (x). At last, dehazed
image J(x) is got by taking K (x) into Eq. (4).

IV. EXPERIMENTAL RESULTS AND ANYLYSIS

Dataset: NYU Depth Dataset V2 [31] is used as a training
set, which includes 27,256 hazy images of different con-
centrations and 1449 clean images with size of 640 x 480.
Specially, given a clean image J, random atmospheric light
A € [0.7,1.0] for each channel, and the corresponding
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Hazy image

FIGURE 5. Dehazed results on the SOTS dataset.

ground-truth depth map d, function #(x) = ¢~#4® is applied
to synthesize transmission map first, then a hazy image is gen-
erated by using the physical model in Eq.(1) with randomly
selected scattering coefficient 8 € [0.6, 1.8].

Three datasets are selected as test sets to evaluate the
dehazing performance. The Synthetic Objective Testing
Set (SOTS) of RESIDE [32] includes both indoor and outdoor
scenes with 500 images of each. The Hybrid Subjective Test-
ing Set (HSTS) of RESIDE consists of 10 outdoor synthetic
hazy images. The D-hazy dataset [33] is a standard dataset
for image dehazing, which consists of 1,449 synthetic hazy
images and their respective clean images.

Experimental Setup: MMP-Net is implemented in the
pytorch [34] framework and runs on a workstation with a
3.2 GHz CPU, 32G RAM, and Nvidia GeForce GTX 1080 Ti
GPUs. During training, ADAM is used as the optimizer. The
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MMP-Net

Ground Truth

initial learning rate is 0.001, the batch size of images is 8 and
then the model is trained for 120 epochs on GPU.

Several top single image dehazing methods are selected
for comparing our proposed model, which includes DCP [9],
CAP [10], DehazeNet [14], MSCNN [15], AOD-Net [16],
GFN [25] and PFF-Net [21]. The DCP and CAP are
based on prior knowledge, DehazeNet, MSCNN, AOD-Net,
PFF-Net and RYF-Net are learning-based dehazing meth-
ods, and GFN [25] is based on a combination of prior
knowledge and learning. Experiments are performed both
on the synthetic SOTS, HSTS and D-Hazy hazy image
dataset and the real-world hazy images dataset. Subse-
quently, the full-reference algorithm is used to evaluate the
synthetic hazy image dataset, and the blind image quality
assessment is used to evaluate the real-world hazy images
dataset.
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DehazeNet
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AOD-Net

PFF-Net MMP-Net

FIGURE 7. Subjective comparisons between MMP-Net and state-of-the-art methods on real-world hazy images.

A. RESULTS ON SYNTHETIC HAZY IMAGES

Fig.5 shows hazy images, the MMP-Net dehazed results and
Ground Truth on the SOTS dataset. It can be seen MMP-Net
dehazed images show very good subjective visual quality,
although some deep and uneven color in the sky occurs in the
dehazed images of first group, and some noise is distributed
in the dehazed images of fourth group in the form of particles
around the stairs.

We also give the objective assessment results listed
in Table 1. The popular PSNR [35] and SSIM [36] are
used to evaluate the dehazed performance. The higher the
PSNR means that the image is less affected by noise. The
SSIM reflects the similarity of image structure information.
The closer the SSIM is to 1, the smaller the difference in
distortion.

As shown in Table 1, compared with other models, MMP-
Net gets the highest PSNR and SSIM on the SOTS dataset
(both indoor dataset and outdoor dataset), which suggests the
best detailed recovery and the least noise impact are obtained
by the MMP-Net.

The HSTS and D-Hazy datasets are selected to verify the
generalization ability of proposed model, and the results are
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TABLE 1. PSNR and SSIM on the SOTS of RESIDE.

Model PSNR (indoor/outdoor) SSIM(indoor/outdoor)
DCP[9] 17.88 (16.62/19.13) 0.8164 (0.8179/0.8148)
CAP[10] 19.05(19.05/-) 0.8364(0.8364/-)
DehazeNet[14]  21.80 (21.14/22.46) 0.8493 (0.8472/0.8514)
MSCNNJ15] 17.57 (17.57/-) 0.8102 (0.8102/-)
AOD-Net[16] 19.68 (19.06/20.29) 0.8635 (0.8504/0.8765)
GFNJ[25] 21.93 (22.30/21.55) 0.8622 (0.8800/0.8444)
RYF-Net[23] 21.44 (21.44/-) 0.8716 (0.8716/-)
PFF-Net[21] 22.91 (24.70/21.12) 0.8687 (0.8951/0.8422)
MMP-Net 25.30 (27.53/23.08) 0.9376 (0.9580/0.9161)

TABLE 2. PSNR and SSIM on the HSTS of RESIDE.

Model PSNR SSIM
DCP[9] 14.84 0.7609
CAP[10] 21.53 0.8726
DehazeNet[14] 24.48 0.9153
MSCNN[15] 18.64 0.8168
AOD-Net[16] 20.55 0.8973
PFF-Net[21] 15.78 0.5778
Proposed MMP-Net 23.02 0.9116

given in Table 2 and 3. Since the authors of GFN and RYF-Net
did not give their results on HSTS, their results of are not
listed in Table 2.
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PFF-Net

FIGURE 9. Subjective comparisons between MMP-Net and state-of-the-art methods on real-world hazy images.

From Table 2 it can be seen on the HSTS dataset, the SSIM
and PSNR of MMP-Net are only a little lower than of the
DehazeNet. Owing to haze in all images of HSTS are thin,
the residual structure of MMP-Net use skip connection, and
maybe bypass some thin haze, which makes MMP-Net not
shows the best on the HSTS.

Images in the D-Hazy dataset are with dense haze. From
Table 3 it can be seen our proposed MMP-net get the best
PSNR and SSIM on the D-hazy dataset, which suggests it is
more effective in dense haze removal.
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For comprehensive comparison, we give the average PSNR
and SSIM of above algorithms on RESIDE, HSTS and
D-Hazy datasets, shown as Table 4. It can be seen that
proposed MMP-Net gets the highest PSNR and SSIM, and
outperforms the state-of-art dehazing methods.

B. RESULTS ON REAL-WORLD HAZY IMAGES

In this subsection, we use 5 hazy images in natural
scenes to further verify the reliability of the MMP-Net and
dehazed results via MMP-Net and 7 state-of-the-art dehazing

25437
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FIGURE 10. Subjective comparisons between MMP-Net and state-of-the-art methods on real-world hazy images.
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FIGURE 11. Comparison of the MMP-Net Variant on the SOTS dataset.

TABLE 3. PSNR and SSIM on the D-hazy.

Model PSNR SSIM
DCP[9] 15.49 0.8558
CAP[10] 15.17 0.8084

DehazeNet[14] 16.45 0.8513
MSCNNJ15] 15.81 0.8443
AOD-Net[16] 12.44 0.7354
RYF-Net[23] 17.20 0.8621
PFF-Net[21] 16.64 0.7768
Proposed MMP-Net 18.31 0.8576

algorithms are given in Fig.6—10, and the adjacent image on
the right is a detailed view of the bounded regions.

In Fig. 6, except for PFF-Net and MMP-Net, other models
still retain some haze at the intersection of the sky, and
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TABLE 4. Average PSNR and SSIM on three datasets.

Model PSNR SSIM
DCP[9] 16.07 0.8110
CAP[10] 18.58 0.8391
DehazeNet[14] 20.91 0.8720
MSCNNJ15] 17.34 0.8238
AOD-Net[16] 17.6 0.8321
PFF-Net[21] 18.44 0.7411
Proposed MMP-Net 22.21 0.9023

MSCNN method produces color distortion. PFF-Net shows
grid-like noise, and the proposed MMP-Net performs the
best. In Fig. 7, after using dehazing models the texts can be
clearly seen in the enlarged picture. Among them, DCP is
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J. Yan et al.: MMP-Net for Single Image Haze Removal

IEEE Access

TABLE 5. NIQE comparison for dehazed results on real-world images.

image DCP[9] CAP[10]  DehazeNet[14]  MSCNN[15] AOD-Net[16] GFN[17]  PFF-Net[21]  MMP-Net
Fig.6 3.2299 3.0353 3.3023 3.4812 3.4948 3.0696 45930 2.9761
Fig.7 3.8035 3.3734 3.5461 3.3290 3.4410 3.2765 4.8039 3.5335
Fig.8 3.0860 3.3957 3.2801 3.2923 3.0749 3.3745 47071 3.2008
Fig.9 4.1899 43176 43434 4.4294 3.9874 3.7670 4.4307 3.9670
Fig.10 1.8721 1.9342 1.9555 1.7793 1.6950 2.0685 5.4370 1.8157
Average 3.2363 32112 3.2855 3.26 3.1386 31112 47943 3.0986

TABLE 6. Results of different variants of MMP-Net on SOTS.

Model PSNR SSIM
MMP-Net without residual block 20.46 0.8267
Proposed MMP-Net 25.30 0.9376

the clearest, GFN and MMP-Net show the second. However,
in terms of the overall subjective perception, DCP is severely
distorted in the sky area, while GFN and MMP-Net are indis-
tinguishable. In Fig. 8, it is obvious that in MMP-Net’s result
the details of the girl’s hair can be clearly shown. DCP, GFN
and PFF-Net are overexposed, and haze persists in remaining
models’ results. In Fig. 9, GEN gets the best overall dehazing
performance. However, looking at the enlarged detail, only
in MMP-Net’ result the texture of the eaves are efficiently
recovered. MMP-Net also shows superior to other remaining
models in terms of overall image dehazing effect. In Fig.10,
MSCNN and GFN produce distortion, and CAP’s result is
excessively dim. Since haze is thin in Fig.10, the results of
MMP-Net and other most of models show almost subjective
perception. Comprehensive comparison by dehazing perfor-
mances of 5 real-world hazy images, MMP-Net show the
best subjective visual quality both in image details and color
fidelity.

Here we use completely blind image quality assessment
metric NIQE [27] to verify the effectiveness of MMP-Net in
the real-world hazy images from the objective perspective.
Notably, the score of NIQE are range from 0O (the best) to 100
(the worst), and the lower NIQE, the better quality. NIQE
comparison for dehazed results on real-world images are
shown in Table 5. It can be seen proposed MMP-Net has the
lowest NIQE score on the average results, suggesting the best
dehazing performances.

C. MMP-Net VARIANT EXPERIMENT
A stripping experiment is performed to prove the rational-
ity of the MMP-NET, which includes MMP-Net removing

parallel fusion module (MMP-NoPF) and MMP-Net. The
MMP-NoPF includes a multi-scale feature extraction mod-
ule and 18 residual blocks. A multi-scale CNN module
can obtain richer image features from the whole to local,
such as the contour information and detailed features. The
proposed MMP-Net fuses multi-scale features in parallel
to improve the robustness and effectiveness of the internal
information of the image. The comparisons of PSNR and
SSIM for the two models on the SOTS dataset are shown
in Fig. 11.

Obviously, MMP-Net with multi-scale features in parallel
fusion has the highest PSNR and SSIM, which means it has
the best dehazing performance.

D. EFFECTIVENESS OF RESIDUAL BLOCKS

Here, we remove the residual block from MMP-Net to verify
the value of residual learning module, and give the results of
MMP-Net and MMP-Net without residual block on the SOTS
in Table 6.

From Table 6 it can be seen that MMP-Net has obvi-
ous advantage in PSNR and SSIM over the MMP-Net
removing residual block, which indicates that residual
learning module are very useful for extracting image
details.

E. RUNNING TIME COMPARISON

In the section, random 50 images in SOTS were selected
to test different models, on the same machine (Inter(R)
Core(TM) 17-6900K CPU @ 3.20 GHz and Nvidia GeForce
GTX 1080 Ti GPUs). The comparision results are given as
Table 7 with respect to parameters, model size and runtime.
Among them, the runtime refers to the average runtime of the
selected 50 images. Obviously, compared with lightweight
networks (such as AOD-Net), MMP-Net has more param-
eters and longer running time. However, compared to deep
PFF-Net, MMP-Net consumes shorter runtime and has less
parameter.

TABLE 7. Comparison of MMP-Net and state-of-the-art methods with respect to parameters, model size and runtime.

Model Image size Param. Size Platform Time(second)
DCP[9] 270x360 - - Matlab(C) 7.7293
DehazeNet[14] 270x360 8,240 - Matlab(C) 1.7194
MSCNNJ15] 270x360 8014 - Matlab(C) 2.2138
AOD-Net[16] 270x360 1761 9Kb Pytorch (C/G) 0.2696/0.0228
PFF-Net[21] 270x360 14,952,295 57.05Mb Pytorch (C/G) 0.6543/0.0874
Proposed MMP-Net 270x360 5,335,060 20.37Mb Pytorch(C/G) 0.5163/0.0384
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V. CONCLUSION

In this paper, an end-to-end multi-scale feature multiple par-
allel fusion network MMP-Net is proposed to tackle the
challenging single image dehazing problem. Different scale
features are extracted by a multi-scale CNN module, and
fused them multiple times in parallel. Detailed features are
learned by residual block, and are merged with these features
from CNNSs in parallel. Finally, these features from MMP-Net
are utilized to obtain the dehazed image by using the atmo-
spheric scattering model. The experimental results show that
our proposed MMP-Net gets the highest PSNR and SSIM
among start-of-the-art dehazing methods on the average of
the three datasets SOTS, HSTS and D-Hazy, and also gains
the best subjective visual quality on real-world hazy images.
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