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ABSTRACT The lithium-ion batteries in the electric vehicles are nonlinear systems with complex elec-
trochemical dynamics, and estimation of battery state-of-charge (SOC) is affected by factors such as
environmental temperature and battery current. Considering the above problems, the accurate estimation
of battery SOC has always been a difficult and the critical issue of battery management system (BMS).
In this paper, the constant phase element (CPE) is introduced to the traditional time domain circuit model
by analyzing the electrochemical impedance spectra of lithium-ion batteries. Accordingly, an equivalent
circuit model based on electrochemical impedance is constructed by using fractional order theory, which
has specific physical significant, leading to the improved estimation accuracy to represent battery voltage.
Moreover, the polarization resistance in the model is replaced by Butler-Volmer (BV) equation, which can
solve the problem caused by large current and temperature variation during the actual operation of electric
vehicles. Next, based on themodel, anH∞ observer is designed for battery SOC estimation, and the proposed
SOC observer is tested by real-time experimental data of battery. The efficiency of the proposed model and
observer are validated by some simulations and experiment tests.

INDEX TERMS Lithium-ion batteries, Butler-Volmer equation, state of charge estimation, electrochemical
impedance model, fractional calculus, H∞ observer.

I. INTRODUCTION
With the promotion of renewable energy, more and more
attention has been paid to electric vehicles [1], [2]. Electric
vehicles have many advantages: environment-friendly, clean
energy, low cost investment. However, low performance of
the BMS of electric vehicle is still the most essential restric-
tion for the development of electric vehicle, and estimation of
battery SOC is one of the main functions of the BMS. SOC is
defined as the percentage of the amount of left energy to the
rated capacity of a battery, which cannot bemeasured directly,
and can only be estimated by the indirectly measured vari-
ables such as current and terminal voltage [3]. Considering
battery internal performance and the diversity of operating
conditions, the high-precision estimation of battery residual
SOC is still a great challenge [4], [5]. Inaccurate estimation
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of the SOCmay lead to over-charge and over-discharge of the
battery, which affects the safety and life of the battery. Hence,
high-precision estimation of the SOC is necessary [6].

A large number of scholars have proposed a variety of
SOC estimationmethods: ampere-hour integral method, data-
driven estimation method, model-based method and so on.
Among them, the ampere-hour integral method is the most
commonly used method in the laboratory, however, due to
the accumulation of the measurement errors of battery cur-
rent, the ampere-hour integral method will lead to large
estimation error of the SOC, this method is more apt to
work as the supporting technique of other methods. Shen
proposed a novel approach using adaptive artificial neural
network (ANN)-based model and neuro-controller for SOC
estimation, results show that the ANN-based battery sys-
tem model adaptively simulates battery system with high
accuracy, and the predicted SOC converges to the real value
quickly within the error of 1% [7]. However, the data-driven
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method may not even be convergent with bad parameters
selection when the training data cannot completely cover
the present operating conditions [8]. Estimators or observers
provide an effective method to estimate SOC. Some schemes
such as the state observer [9]–[12], Kalman filter [13]–[16],
particle filter [17], [18] and H∞ observer [19], [20] are the
most commonly used methods for SOC estimate. Perfor-
mance of an observer is dependent on the quality of a dynamic
model of the lithium-ion batteries, and many models have
been applied to estimate the SOC of lithium-ion batteries.
Generally, common models can be classified into three cat-
egories: electrochemical model, equivalent circuit model and
electrochemical impedance model. Han et al. [21] developed
a simplified pseudo-two-dimensional (SP2D) model, which
could simulate the battery efficiently without too much loss
of accuracy. Base on this model, an estimation algorithm
using the Luenberger observer is proposed. Although elec-
trochemical model can describe the mechanism of the BMS,
it is difficult to identify all parameters. In addition, it requires
the specialized know-how of the operator. Chen and Rincon-
Mora [22] proposed an accurate, intuitive and comprehensive
equivalent circuit model by considering all the dynamic char-
acteristics of the battery, the proposed model can accurately
predict the running time and performance of the battery.
However, the more RC modules in the equivalent circuit,
the higher accuracy of the model, it will also lead to increase
of model parameters and computational burden. Xiong et al.
[23] proposed a BV equation-based fractional ordermodel for
electric vehicle, and it is proved that it has good performance
concerning the terminal voltage estimation accuracy and SOC
estimation accuracy. Since the diffusion between the internal
electrodes of lithium-ion batteries belongs to a typical type
of anomalous diffusion based on fractal medium, the dif-
fusion coefficient is directly related to the fractional-order,
the physical significance of the electrochemical impedance
model based on the fractional order theory is clear, and the
electrochemical impedance model combines the accuracy of
electrochemical model and the adaptability and extensibility
of equivalent circuit model, it may describe the inherent char-
acteristics of lithium-ion battery. This paper will investigate
the SOC estimation method based on the electrochemical
impedance model.

To accurate estimate the SOC of lithium-ion batteries in
electric vehicles, an H∞ observer is proposed based on a
novel equivalent circuit model of electrochemical impedance.
In Section II, the model which considers both BV equation
and CPE is proposed. Section III proposes the H∞ observer
for SOC estimation. Section IV introduces the battery test
system and the characteristic test of battery. Experimental
results and discussions are provided in Section V. The con-
clusions are presented in the last Section.

II. BATTERY ELECTROCHEMICAL IMPEDANCE MODEL
A. ELECTROCHEMICAL IMPEDANCE MODEL
Electrochemical impedance spectroscopy (EIS) is an impor-
tant tool for analyzing the dynamic behavior of battery.

FIGURE 1. Typical EIS of the lithium-ion battery.

EIS is one of the accurate methods for simulating lithium-
ion batteries, many studies attempt to estimate SOC directly
by EIS, but the EIS method is too complicated to be applied
directly. At present, EIS is mainly used to establish electro-
chemical impedance circuit model.

The EIS of a lithium-ion battery can be divided into three
parts: high-frequency region, mid-frequency region and low-
frequency region. A typical lithium-ion battery EIS is shown
in Fig. 1, in which the horizontal axis is the real part of
the impedance and the vertical axis is the imaginary part of
the impedance. In the high-frequency region, the EIS curve
intersects the real axis, and the intersection point represents
the ohmic resistance of lithium battery. In the mid-frequency
region, the EIS curve is a semi-circular curve segment, which
is related to the double electric layer at the interface between
the battery electrode and electrolyte. This characteristic is
described by parallel connection of a resistor and a CPE.
In the low-frequency region, EIS curve is a straight line
with constant slope associated with the solid diffusion pro-
cess inside the lithium-ion active material particles, which
is described by CPE. In the EIS analysis, fractional-order
components such as CPE are often used instead of ordinary
RC component in order to get higher accuracy. Therefore,
to make the model more accurate by replacing two capac-
itors in the common second-order RC circuit model with
fractional-order components, the equivalent circuit model of
electrochemical impedance shown in Fig.2 can be obtained.

In Fig.2, the circuit impedance of CPE1, and CPE2 can be
expressed as

ZCPE1(jω) =
1

Y1 · (jω)r1
(0 < r1 < 1)

ZCPE2(jω) =
1

Y2 · (jω)r2
(0 < r2 < 1) (1)

where Y1, Y2 ∈ R represent the coefficient of the CPE; j is
an imaginary unit; ω = 2π f , f is the frequency; Voc denotes
open circuit voltage (OCV); Vh is battery terminal voltage
which can be directly measured; Ra, Rb and Rc represent
the Ohmic resistance; Vb and Vc denote the terminal voltage
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of CPE1 and CPE2; r1, r2 are the arbitrary order of the
fractional element. 0 < r1 < 1 and 0 < r2 < 1 represent
respectively the extent to which CPE1, CPE2 deviates from
pure capacitive element. When r1 = r2 = 0, CPE1 and CPE2
are equivalent to resistors; when r1 = r2 = 1, CPE1 and
CPE2 are equivalent to capacitors. The size of r1 determines
the distance from the center of the arc to the real axis in the
mid-frequency of the EIS curve in Fig.1, and r2 determines
the slope of the straight line in the low-frequency section of
the curve [24].

B. DEFINITIONS FOR FRACTIONAL CALCULUS
Through the analysis of EIS, CPE can well describe the
electrochemical impedance characteristics of battery, which
can be applied to battery model establishment and state esti-
mation. However, the CPE is difficult to deal with in time
domain which need to be processed by means of fractional
calculus theory.

Fractional calculus is an extension of the traditional integer
calculus, first proposed by Leibniz in 1695, and has now
become a hot research topic in the field of science and engi-
neering. Fractional calculus has high accuracy in describing
nonlinear systems such as battery [25]. In fractional calculus,
the operator aDrt defined as (2), where aDrt is used to repre-
sent the derivative or integral of arbitrary order r with respect
to t; a is the initial time, here, a is 0 by default in this paper.
When r > 0, aDrt represents the fractional derivative; when
r < 0, it stands for the fractional integral. We consider only
0 < r < 1, and the operator is then simplified as Dr .

aDrt =


d r

dt

r

, r > 0

1, r = 0∫ t

a
(dτ )−r , r < 0

(2)

The Grünwald–Letnikov (G-L) definition is one of the
most commonly used definitions [26], the fractional order
G-L definition is defined as

d r f (t) = lim
Th→0

1
Thr

[t/Th]∑
q=0

(−1)q
(
r
q

)
f (t − qTh) (3)

where Th is the sampling period; [t/Th] is the integer part of

t/Th;
(
r
q

)
is the quadratic coefficient of Newton, shown as(

r
q

)
=

0(r + 1)
0(q+ 1)0(r − q+ 1)

,
r !

q!(r − q)!

=
r(r − 1) · · · (r − (q+ 1))

q!
(4)

C. INTRODUCING BV EQUATION TO ELECTROCHEMICAL
IMPEDANCE MODEL
The equivalent circuit model of electrochemical impedance
obtained in previous section is shown in Fig.2. Considering
the wide range variation of current and significant change of
temperature during the actual operation of electric vehicles,

FIGURE 2. Equivalent circuit model of electrochemical impedance.

FIGURE 3. Equivalent circuit model of electrochemical impedance with
BV equation.

the equivalent circuit model by replacing polarization resis-
tance with BV equation is shown in Fig. 3.

The BV equation depicts the relationship of overpotential
and current in a charge transfer process, the resistance Rb in
the circuit model is replaced by BV equation as

IR = kJ ·
(
exp
(
aa · n · F

Rg ·T
· Vb

)
−exp

(
−ac ·n·F

Rg·T
·Vb

))
(5)

where IR denotes the current; Vb denotes the polarization
voltage. kJ is the product of exchange current density and
electrode area; ac and aa are cathodic and anodic charge
transfer coefficients (ac + aa = 1, ac, aa > 0); n is the
number of electrons involved in the electrode reaction; F is
the Faraday constant(96485C·mol-1); Rg is the universal gas
constant (8.314J· mol−1 · K−1); T stands for temperature
in K .

The cathodic and anodic charge transfer reaction coeffi-
cients to be equal(ac = aa), which is quite correct for lithium-
ion battery [27]. Using substitutions K (T ) = aa ·n ·F/Rg ·T ,
the BV equation can be denoted as

IR = 2kJ ·
(
exp(K (T ) · Vb)− exp(−K (T ) · Vb)

2

)
(6)

Applying the definition of the hyperbolic sine function
sinh x =

(
ex − e−x

)
/2, (6) can be simplified as

IR = 2kJ sinh[K (T ) · Vb] (7)

The mathematical model of the equivalent circuit model is
established as follows

Va = RaI (8)
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Dr1Vb =
I
Y1
−

Vb
Y1Rb

(9)

Dr2Vc =
I
Y2
−

Vc
Y2Rc

(10)

By substituting BV equation into (9), we have

Dr1Vb =
I
Y1
−

2kJ
Y1

sinh[K (T ) · Vb] (11)

Taylor expansion of sinh[K (T )·Vb] in (11) is

sinh [K (T ) · Vb] = [K (T ) · Vb]+
[K (T ) · Vb]3

3!

+
[K (T ) · Vb]5

5!
+

[K (T ) · Vb]7

7!
+ . . . (12)

Since Vb is a very small value, the higher order term in
the expansion tends to zero and is often ignored, (11) can be
simplified to

Dr1Vb =
I
Y1
−

2kJK (T )
Y1

Vb (13)

Therefore, the model shown in Fig.3 can be described by
Vh = −Vb − Vc − RaI + Voc

Dr1Vb =
I
Y1
−

2kJK (T )
Y1

Vb

Dr2Vc =
I
Y2
−

Vc
Y2Rc

(14)

According to the formula of ampere-time integral method,
we have

SOC = SOC0 −
1
QN

∫ t

t0
ηIdt (15)

Differentiating (15), the fractional model of the SOC can
be obtained as

dSOC
dt
= D1SOC = −I

η

QN
(16)

where η is the charging/discharging efficiency and QN is the
nominal battery capacity.

Consequently, the battery is modeled as a nonlinear frac-
tional system, which can be expressed as{

Drx (t) = Ax (t)+ Bu (t)
y(t) = Cx (t)+ Du (t)+ h (x (t))

(17)

where x(t) = [Vb(t)Vc(t) SOC(t)]T is the state vector; y(t)
is the battery terminal voltage Vh (system output); u(t) rep-
resents the battery current I (system input); r = [r1r21]T

represents the order vector, and A, B, C , D are the matrices
with appropriate dimensions as

A =


2kJK (T )

Y1
0 0

0 −
1

Y2Rc
0

0 0 0

 , B =


1
Y1
1
Y2
−
η

QN


C =

[
−1 −1 d1

]
, D = −Ra (18)

The function h∗(x(t)) has been extensively used to rep-
resent the OCV-SOC relationship for many batteries [22],
which is expressed as

h∗ (x (t)) =
M∑
k=0

dkSOC (t)k (19)

where dk (k = 0, 1, . . .M ) are the coefficients of
h∗(x(t)).When the linear term d1SOC(t) is excluded from
h∗(x(t)) and incorporated into the input matrix C , h(x(t))
in (17) can be get. According to the relationship between the
OCV- SOC of the battery, h(SOC) is a monotonic increasing
function, it can be easily shown that (19) is Lipschitz contin-
uous within 0 ≤ SOC ≤ 1, then βmin ≤ ḣ (SOC) ≤ βmax .
Since the battery charge-discharge process involves com-

plicated physical and chemical reactions, (17) are further
rewritten as (20){

Drx (t) = Ax (t)+ Bu (t)+ Eωx(t)
y (t) = Cx (t)+ Du (t)+ h (x (t))+ Fωy(t)

(20)

where ωx denotes the state disturbance; ωy is the output
disturbance. The disturbances ωx and ωy are assumed to be
bounded: ‖ωx <∞‖ and

∥∥ωy <∞∥∥.
Based on model (20), our objective is to design an H ∞

observer for a nonlinear fractional order system for battery
SOC estimation.

III. H∞ OBSERVER DESIGN
According to the battery model (20), the following observer
is proposed{

Dr x̂(t) = Ax̂(t)+ Bu(t)+ L(y(t)− ŷ(t))
ŷ(t) = Cx̂(t)+ Du(t)+ h

(
x̂(t)

) (21)

where x̂(t) is the state estimation; ŷ(t) denotes the output
estimation of the real terminal voltage, and L is the observer
gain that will be designed later. Then, the error system is given
by (22).

Drex(t) = Aclex(t)+ LH (t)+ (E − LF)ω(t) (22)

where ex(t) = x(t) − x̂(t) =
[
Ṽ b(t) Ṽ c(t) SÕC(t)

]T
is

the estimate error of the state; Acl = A − LC ;E = [I0, 0];
F = [0, I0];H (t) = h

(
x̂(t)

)
− h (x(t));ω(t) = [ωx(t)ωy(t)]T

is the synthetic disturbance, and I0 denotes identity matrix
with appropriate dimensions.

The aim of designing an H∞ observer is as follows: For
a given attenuation level γ >0, designing the observer (21)
such that the error system (22) is stable and the following
inequality is satisfied under the zero-initial condition

‖ex (t)‖ ≤ γ ‖ω (t)‖ (23)

Since dynamic error system (22) contains fractional order
terms, it can not be directly analysed by Lyapunov theory.
Hence, continuous frequency integral transformation needs
to be applied. To prove the stability of the observer, the fol-
lowing properties and lemmas are presented.
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Property 1:

HT (t)H (t) ≤ eTx (t)Lf ex(t),Lf = diag
{
0, 0, β2min

}
Proof: By utilizing the mean value theorem, the follow-

ing is obtained

H (t) = h
(
x̂(t)

)
− h (x(t))

= −
∂h
∂x

∣∣∣∣
x=ξ

[
(x(t))− x̂(t)

]
ξ ∈

[
ξVb(t) ξVc(t) ξSOC(t)

]T (24)

Note that

∂h
∂x
=

[
∂h (x (t))
∂Vb(t)

∂h (x (t))
∂Vc(t)

∂h (x (t))
∂SOC(t)

]
=
[
0 0 ḣ (SOC)

]
(25)

Then

HT (t)H (t) = eTx (t)
(
∂h
∂x

)T (
∂h
∂x

)
ex(t)

= eTx (t)

 0
0

ḣ (SOC)

 0
0

ḣ (SOC)

T ex(t)
≤ eTx (t)Lf ex(t) (26)

The proof is completed.
Lemma 1: A fractional differential equation, Drixi(t) =

gi(t), 0 < ri < 1, is equivalent to the following continuous
frequency distributed model [28].

∂zi(ω, t)
∂t

= −ωzi(ω, t)+ gi(t)

xi(t) =
∫
∞

0
µi(ω)zi(ω, t)dω

µi(ω) =
sin(riπ )
π

ω−ri (27)

and for ri = 1, Drixi(t) = gi(t) can be represented as

∂zi(ω, t)
∂t

= −ωzi(ω, t)+ gi(t)

xi(t) =
∫
∞

0
µi(ω)zi(ω, t)dω

µi(ω) = δ(ω) (28)

where gi(t) represents the input; xi(t) denotes the output;
zi(ω, t) is the frequency distributed state variable; and µi(ω)
is the frequency weighting function, δ(ω) is a unit impulse
function.
Lemma 2 [29]: For a matrix S

S =
[
S11 S12
S21 S22

]
ST12 = S12, if S11 < 0, S22 − ST12S

−1
11 S12 < 0 or S22 < 0,

S11 − S12S
−1
22 S

T
12 < 0, we must have S < 0, and vice versa.

Theorem 1: For the system (20) and the observer (21), with
the given attenuation level γ > 0, if there exist matrices

FIGURE 4. Connection diagram of test system.

FIGURE 5. Battery test bench.

P = PT > 0, M with appropriate dimensions, together with
a scalar ε, such that

1 =

 3 M PE −MF

MT
−
1
ε
I 0

(PE −MF)T 0 −γ 2I

 < 0

3 = ATP+ PA−MC − CTMT
+

1
ε
Lf + I (29)

then the error system is globally asymptotically stable at
the zero-equilibrium point, where M = PL, and the observer
gain can be derived by L = P−1M .

Proof: According to Lemma 1, (22) can be converted
into

∂z(ω, t)
∂t

= −ωz(ω, t)+ Aclex(t)+ LH (t)

+(E − LF)ω(t)

ex (t) =
∫
∞

0
µ(ω)z(ω, t)dω (30)

where

z(ω, t) =
[
z1(ω, t) z2(ω, t) z3(ω, t)

]T
ex (t) =

[
Vb(t) Vc(t) SOC(t)

]T
µ(ω) = diag

[
µ1 (ω) µ2 (ω) µ3 (ω)

]
=


sin(r1π )
π

ω−r1 0 0

0
sin(r2π )
π

ω−r2 0

0 0 δ (ω)

 (31)
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FIGURE 6. Constant current discharge and charge curves at different
current rates: (a) constant current charge curve; (b) constant current
discharge curve.

After the equivalent transformation, the fractional order
model is transformed into a continuous frequency distributed
state model. In order to analyze the stability of the trans-
formed error system (30), the integral type Lyapunov func-
tion (32) is chosen.

V (t) =
∫
∞

0
zT (ω, t)µ(ω)Pz(ω, t)dω (32)

The derivative of V (t) takes the form of (33), as shown at
the bottom of the next page.

To simplify (33), applying Young’s inequality [30] to (33)
yields

V̇ (t) = eTx (t)
(
ATclP+ PAcl

)
ex (t)

+
1
ε
HT (t)H (t)+ εeTx (t)MM

T ex (t)

+ωT (t)(E − LF)TPex+eTx (t)P(E−LF)ω(t) (34)

In addition, according to property 1, (36) is simplified to

V̇ (t) ≤ eTx (t)
(
ATclP+ PAcl +

1
ε
Lf

)
ex (t)

+εeTx (t)MM
T ex (t)+ ωT (t)(E − LF)TPex

+eTx (t)P(E − LF)ω(t) (35)

FIGURE 7. HPPC test: (a) voltage profiles; (b) current profiles.

FIGURE 8. OCV-SOC curves at different temperatures.

Define the following performance index

J =
∫
∞

0

[
eTx (t)ex(t)− γ

2ωT (t)ω(t)
]
dt (36)

Therefore

J =
∫
∞

0

[
eTx (t)ex(t)−γ

2ωT (t)ω(t)+V̇ (t)
]
dt−

∫
∞

0
V̇ (t)dt

<

∫
∞

0

[
eTx (t)ex(t)− γ

2ωT (t)ω(t)+ V̇ (t)
]
dt (37)
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FIGURE 9. EIS of the lithium battery.

A sufficient condition for J ≤ 0 is that

eTx (t)ex(t)−γ
2ωT (t)ω(t)+V̇ (t)≤0, ∀t ∈ [0,∞) (38)

Then

eTx (t)ex(t)− γ
2ωT (t)ω(t)+ V̇ (t)

≤ eTx (t)
(
ATclP+ PAcl +

1
ε
Lf + I

)
ex (t)

+εeTx (t)MM
T ex (t)− γ 2ωT (t)ω(t)

+ωT (t)(E − LF)TPex + eTx (t)P(E − LF)ω(t) (39)

By lemma 3, inequality (39) is converted to (40)

eTx (t) ex (t)−γ
2ωT (t) ω (t)+V̇ (t) ≤

[
ex (t)
ω (t)

]T
1

[
ex (t)
ω (t)

]
(40)

where

1 =

 3 M PE −MF

MT
−
1
ε
I 0

(PE −MF)T 0 −γ 2I


3 = ATP+ PA−MC − CTMT

+
1
ε
Lf + I (41)

FIGURE 10. Dynamic experiment test: (a) voltage profiles; (b) current
profiles.

Therefore, a sufficient condition for J <0 is that (41) is less
than zero. Then under the zero-initial condition, the following
is obtained

‖ex (t)‖ − γ ‖ω (t)‖ ≤ 0⇒ ‖ex (t)‖ ≤ γ ‖ω (t)‖ (42)

This completes the proof.
To realize the above observer, this paper adopts the

G-L definition in (4), which is the most direct numerical

V̇ (t) =
∫
∞

0

[
∂zT (ω, t)

∂t
µ(ω)Pz(ω, t)+ zT (ω, t)µ(ω)P

∂z(ω, t)
∂t

]
dω

=

∫
∞

0
[−ωz(ω, t)+ Aclex(t)+ LH (t)+ (E − LF)ω(t)]T µ(ω)Pz(ω, t)dω

+

∫
∞

0
zT (ω, t)µ(ω)P [−ωz(ω, t)+ Aclex(t)+ LH (t)+ (E − LF)ω(t)] dω

≤

∫
∞

0

[
eTx (t)A

T
clµ(ω)Pz(ω, t)+ H

T (t)LTµ(ω)Pz(ω, t) +ωT (t)(E − LF)Tµ(ω)Pz(ω, t)
]
dω

+

∫
∞

0

[
zT (ω, t)µ(ω)PAclex(t) +zT (ω, t)µ(ω)PLH (t)+ zT (ω, t)µ(ω)P(E − LF)ω(t)

]
dω

= eTx (t)
(
ATclP+ PAcl

)
ex (t)+ ωT (t)(E − LF)TPex (t)+ 2eTx (t)MH (t)+ e

T
x (t)P(E − LF)ω(t) (33)
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TABLE 1. Experiment equipment.

FIGURE 11. CPE order fitting curve.

implementation method.

x̂ (k + 1) =
[
T rhA+ diag (r)

]
x̂ (k)

−

N+1∑
q=2

(−1)q
(
r
q

)
x̂ (k + 1− q)

+T rhBu (k)+ T
r
h L
(
y (k)− ŷ (k)

)
ŷ (k) = Cx̂ (k)+ Du (k)+ h

[
x̂ (k)

]
(43)

where

T rh = diag
(
T r1h T r2h Th

)(
r
q

)
= diag

[(
r1
q

)(
r2
q

)(
1
q

)]
(44)

IV. BATTERY TEST SYSTEM AND MODEL
PARAMETER IDENTIFICATION
A. BATTERY TEST SYSTEM
According to the actual situation, the connection diagram of
test system is shown in Fig. 4. Based on LabVIEWplatform, a

FIGURE 12. The static experiment at 25◦C: (a) terminal voltage profiles;
(b) terminal voltage estimation error profiles.

battery test bench is built as Fig. 5, the experiment equipment
is shown in the Table 1.

The battery used in this paper is lithium-iron phosphate
power battery LF56. The characteristic test of battery is be
designed, the test consists of six parts: maximum available
capacity test, rate characteristic test, hybrid power pulse char-
acterization (HPPC) test, OCV test, AC impedance test and
dynamic experiment test.

The purpose of maximum available capacity test is to
determine the maximum available capacity of the battery
under present situation. The battery is filled with constant
current and constant voltage method at standard current, and
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FIGURE 13. The static experiment at 25◦C : (a) SOC profiles; (b) SOC
estimation error profiles.

FIGURE 14. The static experiment at −20◦C: (a) terminal voltage profiles;
(b) terminal voltage estimation error profiles.

then discharged to cut-off voltage with standard current, it is
necessary to measure the maximum discharge capacity of the
battery for three times and take the average. The maximum
available capacity of the battery at different temperatures is
shown in Table 2.

FIGURE 15. The static experiment at −20◦C: (a) SOC profiles; (b) SOC
estimation error profiles.

FIGURE 16. Terminal voltage profiles of the dynamic experiment at 25◦C.

TABLE 2. Maximum available capacity results at different temperatures.

The rate characteristic experiment is used to test the capac-
ity retention rate of battery under different charge and dis-
charge direct currents to evaluate the capacity loss of the
power battery at high rate. Fig.6 shows the constant current
discharge and charge curves of the battery at different direct
current (DC) rates.

The HPPC test is used to charge and discharge the power
battery by continuous pulse excitation to obtain dynamic
characteristics parameters of the power battery, the voltage
and current response are shown in Fig.7.

The purpose of OCV test is to establish the relationship
between OCV and SOC of power battery. The OCV-SOC
curves at different temperatures are obtained through experi-
ments as shown in Fig. 8.
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FIGURE 17. Terminal voltage estimation error profiles of the dynamic
experiment at 25◦C.

FIGURE 18. SOC profiles of the dynamic experiment at 25◦C.

FIGURE 19. SOC estimation error profiles of the dynamic experiment
at 25◦C.

The AC impedance test is a measurement method which
uses a small amplitude sinusoidal wave potential as distur-
bance signal to obtain characterization data of battery related
characteristics. Fig.9 shows the measured EIS of battery,
the test frequency is 10mHz-10kHz.

The dynamic experiment test is carried out under the exci-
tation condition of variable current, Fig.10 shows the current
and voltage curves of the dynamic test of the battery.

B. PARAMETER IDENTIFICATION
In order to realize the designed SOC observer, the model
parameters need to be identified, the parameters are identified
through the joint analysis of EIS and HPPC experimental
voltage response of lithium battery. The order of the CPE
is identified by using frequency fitting method in frequency

FIGURE 20. Terminal voltage profiles of the dynamic experiment at
−20◦C.

FIGURE 21. Terminal voltage estimation error profiles of the dynamic
experiment at −20◦C.

FIGURE 22. SOC profiles of the dynamic experiment at −20◦C.

domain [31]: the slope of the low-frequency part of EIS is
r2π/2 and commonly nearly π/4, so parameter r2 is equal to
0.5. The impedance spectrum curve composed of CPE and
a resistance is shaped like a semicircle, and the regression
rate of the semicircle varies will be changed with r1, when
r1 = 0.62, the measured impedance spectra will be matched
well, as shown in Fig.11.

We have performed battery tests at different temperatures
(−20◦C,−10◦C, 0◦C, 25◦C, 40◦C). Due to the length limit of
the paper, the simulation and experiment results at−20◦C and
25◦C are given later. The residual parameters are identified by
the least squares method according to the voltage response
of HPPC test shown in Fig.7 [31], [32], and the results of
parameter identification is shown in Table 3.
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TABLE 3. Results of parameter identification.

FIGURE 23. SOC estimation error profiles of the dynamic experiment
at −20◦C.

TABLE 4. Identified coefficients for the OCV-SOC polynomial.

For the OCV at−20◦C and 25◦C, the polynomial function
fitting method is used to obtain the function of SOC with
OCV as shown in (45), and the fitting results are shown
in Table 4.

h (SOC) = d5 ∗ SOC5
+ d4 ∗ SOC4

+ d3 ∗ SOC3

+ d2 ∗ SOC2
+ d1 ∗ SOC + d0 (45)

The LMI toolbox in MATLAB is used to solve the
LMIs (29), the observer gains at different temperatures are
(46), as shown at the bottom of this page.

V. EXPERIMENT VALIDATIONS OF THE
SOC ESTIMATION
The efficiency of the proposedmodel with nonlinear observer
will be verified by both the static and dynamic experimental
operating conditions.

Static experiment: the discharging current is set to constant
1C (56A) in the battery testing system, and the experiment
are conducted at different temperatures of 25◦C and −20◦C.

The reference SOC curve is calculated based on the ampere-
hour integral method. In order to compare the performance of
the model, the proposed model in the paper, the integer order
model, and the electrochemical impedance model which do
not introduce the BV equation are used to predict the output.
The above threemodels are recorded asModel 1,Model 2 and
Model 3, respectively.

At 25◦C, the terminal voltage estimation and its errors
in Fig.12, and SOC estimation and its errors are shown
in Fig.13.

At−20◦C, the terminal voltage estimation and its errors in
Fig.14, and SOC estimation and its errors are shown in Fig.15.

To evaluate the performance of the proposed SOC esti-
mation model, the dynamic experiment shown in Fig.10 is
conducted with the proposed SOC estimation model and
other two models. At 25◦C, the terminal voltage estimation,
terminal voltage estimation errors, the SOC estimation and its
errors are shown in Figs.16-19, respectively.

At −20◦C, the terminal voltage estimation and its errors,
the SOC estimation and its errors are shown in Figs.20-23,
respectively.

Table 5 and Table 6 are the root mean square error (RMSE),
mean absolute error (MAE), maximum error (MAX) of the
all models under static experiment and dynamic experiment
at −20◦C and 25◦C. It can be observed that all models
perform better at high temperature than at low temperature
in Table 5 and Table 6, the RMSE of the proposed model
at −20◦C and 25◦C is smaller than the other two models,
this phenomenon is more evident at the lower temperature.
It can be seen from Fig.12,14,16 and 20 that the proposed
model has less error and higher precision than the other two
models in estimating the terminal voltage. Fig.13,15.18 and
22 show that the proposed model can accurately estimate
SOC, and the estimation error of SOC is limited to a very
narrow error range, the error of the proposed model is less
than the other two model after convergence. This shows that
the proposed model can estimates battery terminal voltage
more accurately, which is used to correct the estimated SOC.
It can be observed from Table 6 that when estimating the
battery SOC in a dynamic environment, the proposed model
is better than the other two models to predict the output.
Moreover, at −20 ◦C where the performance of the other
two models deteriorate significantly, the proposed model
can still give an accurate SOC estimation with the RMSE
less than 0.05.

25◦C
ε = 0.191γ = 1.578

P =

 1.1424 −0.0457 −0.0102
−0.0457 1.2613 −0.0302
−0.0102 −0.0302 1.0812


L =

−0.2725−0.1873
−0.2514



−20◦C
ε = 0.245γ = 2.491

P =

 1.1251 −0.0498 −0.0015
−0.0498 1.2205 −0.0446
−0.0102 −0.0446 1.0747


L =

−0.3342−0.2473
−0.0422


(46)
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TABLE 5. Estimation Performance of Three Models for Static Experiment.

TABLE 6. Estimation Performance of Three Models for Dynamic Experiment.

VI. CONCLUSION
Based on the analysis of EIS, a fractional order model of
lithium-ion batteries based on electrochemical impedance
was proposed, and BV equation was introduced to replace
the polarization resistance in conventional equivalent circuit
model. An H∞ observer for the SOC estimation is designed.
By Lyapunov’s direct method, the observer gains which can
stabilize the error system are obtained. The experiment and
simulation results show that the proposed model and the
observer can accurately estimate the battery state.
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