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ABSTRACT Residents clustering in different periods of load fluctuation and aggregated forecasting can
increase the load prediction accuracy. But the strength of load fluctuation reflects the difference in the
electricity consumption behavior of residents and affects the cluster results of residents. This paper presents
a new day-ahead aggregated load-forecasting method for distribution networks based on the load fluctuation
and feature importance (FI) profile clustering of residents. First, the input features are determined, the FI
profile of residents is determined, and residents are clustered according to the FI profile. Then, the crow
search algorithm is used to optimize the initial cluster centers for preventing the clustering results from
falling into a local optimum. And the cluster verification index S_Dbw, the sum of the average scattering for
the clusters and the inter-cluster density, is used to evaluate the cluster quality. The optimal clustering results
of the aggregated load for different fluctuation periods are determined via statistical experiments. Finally,
arandom forest predictor based on ensemble learning is selected. According to the optimal clustering results
in different fluctuation periods, a rolling forecasting model is constructed to realize day-ahead aggregated
load forecasting in a residential distribution network.

INDEX TERMS Aggregated load forecasting, feature importance, load fluctuation, crow search algorithm,

S-Dbw, random forest.

I. INTRODUCTION
Load forecasting plays a vital role in power system, including
safe operation, economic optimization scheduling, and clean
energy consumption [1]-[3]. With the large-scale populariza-
tion of smart meters [4], the high-resolution electricity load
datarecorded by smart meters can break the restrictions of the
physical structure of traditional power system measurement
and improve the accuracy of load forecasting [5]. Accurate
aggregated day-ahead load forecasting for a distribution net-
work is important for the economic and safe operation [6] of
the distribution system.

Unlike traditional load forecasting, aggregated load fore-
casting is a bottom-up forecasting method based on smart
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meters, and the scale of the aggregated load is generally
small. For residential distribution networks, the difference in
residents’ electricity consumption behavior will increase the
fluctuation and complexity of the aggregated load, which will
have a negative impact on power quality [7]. What’s more,
it will also make the aggregate residential load forecasting
more difficult [8], [9].

The commonly used loading forecasting methods
include the time-series method and the machine-learning
method. The time-series method (such as the autoregressive
moving average) only considers the impact of the time factor
on prediction. They often exhibit great deviation when signif-
icant changes occur in other features [8]. Machine-learning is
widely used in load forecasting and has achieved great results
[10], [11], including artificial neural networks (ANNs),
support vector regression (SVR), decision trees (DT),

VOLUME 8, 2020


https://orcid.org/0000-0002-8262-9499
https://orcid.org/0000-0003-4503-5613
https://orcid.org/0000-0003-1807-8060

N. Huang et al.: Incorporating Load Fluctuation in FI Profile Clustering

IEEE Access

random forests (RF), deep neural networks (DNNs), etc.
ANNSs exhibit good performance for nonlinear loads. How-
ever, when the input dimension is high, constructing a suitable
ANN is difficult. In SVR, the structure and parameters are
adjusted according to the different inputs, and the optimiza-
tion process is complicated. Ensemble learning methods
[12] and deep learning methods [13], [14] have achieved
satisfactory performance in load forecasting problems. For
ensemble learning methods, Ref. [15] proposed an ensem-
ble framework to predict the day-ahead average household
energy consumption. And it confirms that the ensemble
learning can bring solutions to the challenges that forecasting
energy consumption at smaller aggregation level. Ref. [16]
proves that the ensemble learning method can significantly
improve the prediction accuracy of electricity load with high
fluctuation. For deep learning methods, Ref. [5] proposes
a model fusion method for different DNNs based on the
deep learning. Moreover, the fusion of different DNNs and
group prediction can cooperate with each other, which can
effectively improve the prediction accuracy. In [17], an inno-
vative neural network architecture consisting of a radial basis
function, a convolution, a pooling, and two fully connected
layers is proposed and used in load forecasting.

The traditional load-forecasting methods generally only
build a single model for predicting the load in the area of
interest, and they are not suitable for aggregated load forecast-
ing. For aggregated load forecasting, related research shows
that the application cluster identified customer groups with
similar load consumption patterns from smart meters can
improve the forecasting accuracy [6]. Load data collected by
a smart meter (SM) provides a basis for analyzing the load
characteristics of a large number of users [18]. The prediction
accuracy can be increased by reducing intra-class differences
[19]. Ref. [20] clusters high-dimensional data according to
indicators describing the characteristics of electricity con-
sumption. In [9], an aggregate load forecasting method based
on SM data was proposed, which has the advantages of small
computational burden and few requirements for historical
data. In [12], the ensemble method was proposed for fore-
casting the aggregated load with sub-profiles. In [21], this
was achieved by using K-means to cluster users according
to the load curve. Then, ANN models were constructed for
each class. The final load forecasting results are obtained
by summarizing the forecasting results. In [22], a shape-
based approach that classifies and predicts consumer energy
consumption behavior at the household level was proposed.
The method is based on the dynamic time warping. In [23],
a finite mixture model based on clustering was presented.
Data from four key time periods were used to form relevant
attributes for clustering. In [24], an M-shaped model was used
to cluster daily electricity load curves.

Although high-resolution smart meter data can improve
load forecasting accuracy, the high input dimensionality of
the prediction model caused by it cannot be ignored. Ref. [5]
proposed an aggregated load forecasting method based
on deep neural network and two-terminal sparse coding.
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And two-terminal sparse coding can achieve feature
extraction and dimensionality reduction, which overcomes
the challenges brought by fine-grained smart meter data.
In addition, it can effectively improve the accuracy of day-
ahead aggregated load forecasting. Ref. [25] proposed a smart
meter data compression method based on stacked convo-
lutional sparse auto-encoder. And this method can achieve
significant enhancements in model size, computational effi-
ciency, and reduction in reconstruction errors while main-
taining the maximum number of details. It is important to
effectively avoid the influence of high feature dimensions on
the forecasting results of the aggregated residential load. RF
is a common ensemble learning algorithm, and it can reduce
the variance of the prediction results to some extent. Addi-
tionally, it screens the important features when DT generation
occurs and its nodes split, reducing the effect of redundant
features on the prediction accuracy [26]. Additionally, RFs
have significant advantages to load forecasting with high-
dimensional feature sets [27]-[29].

Existing research has achieved breakthrough results for
aggregated load forecasting, but most of them model the each
cluster of overall data. The impact of load fluctuation on
forecast results is rarely considered. Moreover, the problem of
whether the prediction model can adapt to high-dimensional
feature inputs remains to be solved. The contributions of the
present study are fourfold.

1) Load-fluctuation analysis: The load fluctuation of res-
idents is strongly related to load forecasting. The proposed
method is time-segmented in the sense that the load fluctua-
tion varies in different periods. The method aims at clustering
the aggregated load and establishing forecasting models for
different fluctuation periods, as described in Section II.

2) Clustering based on feature importance (FI) profile:
We use FI for clustering SM users, rather than the feature
value, as described in Section III A. Clustering using load
curves or statistical load features has drawbacks. It is difficult
to ensure that users in the same cluster have similar responses
to inputs of the predictor. Moreover, clustering via FI allows
analysis of the effects of non-load characteristics on the future
electricity load.

3) Optimizing initial centers and quality of clustering:
The proposed clustering method, which is described in
Section III B, is optimized by crow search algorithm (CSA)
and S_Dbw. The CSA is applied to search the initial cluster
center for preventing the clustering results from falling into
a local optimum. And S_Dbw is used as the evaluation index
of the clustering quality, which can improve intra-cluster
similarity and inter-cluster difference.

4) Efficient forecasting approach: The proposed RF-based
approach can reduce the impact of redundant features
on the prediction result during the forecasting process,
and no feature selection is required. And it also shows
positive performance in reducing the accumulative errors
of the rolling forecast. The forecasting results are pre-
sented in Section V, and Section VI concludes the

paper.
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Il. DATA ANALYSIS AND TIME SEGMENTATION

The load characteristics of different distribution networks
vary greatly. Therefore, it is important to study the residential
load pattern of the target distribution network before estab-
lishing the prediction model.

A. RESIDENTIAL LOAD DATASET OF SM

In this study, SM data for residential customers from the
Commission for Energy Regulation (CER) in Ireland are
used, comprising the electricity consumption recorded at
intervals of 30 min. In the case of missing values in the load
profiles, the mean of the points in the vicinity of the missing
ones was employed [21], [30]. If an SM had serious data loss,
the corresponding load was omitted. Finally, 3790 residents
were selected for the experimental analysis. We used the SM
data from August 2009 to December 2010. The training set
and test set were constructed as described in [21].

B. RESIDENTIAL LOAD FLUCTUATION IN TIME DOMAIN
Because the residential load consumption of different load
customers differs in both magnitude and time of use, cluster-
ing load customers can improve the current practices for load
forecasting [21]. Load fluctuations affect the user clustering
and load forecasting, as demonstrated in Section V. In this
section, the load fluctuation of the SM datasets for different
periods is analyzed, using the standard deviation o (¢), which
is defined as:

N

N
}VZ(LN) _ Lzt b0, ey

o(t) = N

n=1

where n(n = 1, 2, ..., N) is the number of SMs, and L,(¢) is
the load value of n™ SM in 7.

Owing to differences in the geographical location and
social environment, the electricity-consumption behavior dif-
fers for residents in different regions, and the results of load-
fluctuation analysis vary for different datasets. Taking the
CER dataset as an example, instead of finding the optimal
number of load-fluctuation periods, it provides a new idea of
dividing the load-fluctuation period. Fig. 1 shows the analysis
and fluctuation of the total residential load to be forecasted
for one year. Fig. 1(a) shows the standard deviation of the
annual electricity load of the SM users. It embodies the load
fluctuations for this year at 7. A larger o (¢) indicates greater
fluctuation at ¢. Fig. 1(b) shows a box plot of whole power-
consumption distribution of all the users at ¢. The black boxes
represent the fluctuation range of the total residential load at
t. The black lines in the boxes represent the median. The red
circles represent outliers in the data. Longer boxes indicate a
wider range of load fluctuations.

As shown in Fig. 1(a), the power-consumption fluctuations
at night exhibit a decreasing trend. The first valley appears at
06:30 in the morning, and the fluctuation increases thereafter.
The time of day with the greatest fluctuation is 19:30, and
the fluctuation declines thereafter. As shown in Fig. 1(b),
from 01:00 to 06:30, the fluctuation range of the load is
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FIGURE 1. Standard deviation and electricity load distribution at every
time point from August 2009 to August 2010.

small, but the outliers are numerous and concentrated. From
06:30 to 19:30, the fluctuation range is relatively stable, and
the outliers are numerous and dispersed. There are no outliers
from 19:30 to 00:30.

The daily load from the CER dataset can be divided into
three periods according to the standard deviation and load
fluctuations.

a) Period 1: 01:00-06:30, low fluctuation; outliers are
numerous and concentrated.

b) Period 2: 07:00-19:30, moderate fluctuation; outliers
are numerous but scattered.

c¢) Period 3: 20:00-00:30, high fluctuation; no outliers.

Clearly, the load fluctuation differs for different periods.
Thus, to improve the load-forecasting accuracy, we seek to
cluster the customers according to the different periods of
load fluctuation.

C. INFLUENCE OF LOAD FLUCTUATION ON CLUSTERING
RESULTS

In this section, it is proven that the load fluctuation is related
to the clustering results. Usually, the consumption behav-
ior patterns (CBPs) of consumers are used as the K-means
clustering basis. In this method, the data points can be
arranged in a 3790 x 35 data matrix, where 3790 is the
number of SMs, and 35 (five segments per day for the
seven days of the week) is the number of features [21].
CBP-K-Means is the baseline clustering method used in this
study.

Because we intend to utilize the SM data for load forecast-
ing, the mean absolute percentage error (MAPE) of the pre-
dictor is regarded as an index for determining k. A smaller
MAPE indicates a more accurate forecast result. The MAPE
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FIGURE 2. MAPE and MAPE(t) for three periods at different k values
obtained using the CBP-K-means-predictor.

is defined as follows:
1&g
MAPE:ZVZL—r}Lr—Lp| x 100% 2

! n=1

where L, is the real load, L, is the forecasting load, and »,
(n, = 1,2,...,N,;) is the number of L, values. We take the
sum of the MAPEs at the same ¢ for each day in the test
set, and the average of these sums represents the error at this
time point, i.e., MAPE(?). The MAPE used to select k,p; is
obtained using the RF predictor. A detailed description of this
method is presented in Section IV. .

Fig. 2 shows the k(’;;trmdl, kf;,Mﬂ, and k{,’;{“’“ obtained
using the CBP-K-Means-Predictor. In the histogram, the red
represents k,p;, and the black represents non-clustering. The
fluctuation of the distribution-network aggregated load varies
during different periods. k., must be selected specifically at
various load fluctuations. The k,p; values corresponding to
different periods are not equal. Clearly, the load fluctuation is
related to the clustering results, and the clustering has positive
effect on load forecasting.

lIl. OPTIMAL FI-CLUSTERING

The proposed method involves clustering SM users based on
the FI rather than the feature value. Because different users
have different FI sets, the FI can reflect different responses
of different user loads to the predictor input features. Com-
pared with CBP-clustering, FI-clustering is not limited by the
type of features and can be used to analyze the relationship
between multiple types of features and the predicted objects.
The K-means clustering method is optimized in this section.

A. FI ANALYSIS BASED ON RReliefF

Numerous FI algorithms have been developed. After careful
consideration, RReliefF (Algorithm 1)—a robust and widely
used feature-weight calculation method—was selected for
analyzing the FI of the SM users.

1) RReliefF ALGORITHM [31]
Each feature is given a final weight value W (F') by calculat-
ing the weight Wyr(F) between the features F, the weight
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Algorithm 1 RReliefF
1: function RReliefF
War, War (F), War&pr(F), W(F), A, b, f)
2: for a from 1 to A
3: randomly select instance R,
4: select G instances Ig nearest to R,
5: forgfrom1tob
6: Wi = War +diff (L Ra, I) - d(a. §)
7
8
9

for F from 1 to f
Wup(F) = Wap(F) + diff (F, Ry, Iy) - d(a, g)
Wargar (F) = War.ar (F) + diff (L, R, I)-
diff (F, Ra, Iy) - d(a, g)
10: for F from 1 to f
11: W(F) = WarL.ar(F)/War)
— (Wap(F) — Wap.ar (F)) /(f — War))

W4 between the electricity load values L, and the weight
Warsar(F) between the electricity load value L and fea-
ture F. Then, arandom instance R,(a = 1, 2, ..., A)andits G
nearest instances Io(¢ = 1, ..., G) are selected. The number
of iterations is b, and Wy, Wyr(F), and Wy g4 (F) are cal-
culated. Finally, the importance of each feature is obtained via
f iterations. The term d(a, g) takes into account the distance
between the two instances R, and /,. The function diff( ) [31]
is used for calculating the distance between instances to find
the nearest neighbors. Compared with other feature-weight
analysis methods, RReliefF can address incomplete data and
noisy data.

2) EFFECTIVENESS OF FI PROFILE CLUSTERING

RReliefF is applied to calculate the FI of each SM user.
The SM users are clustered according to the FI, avoiding the
effects of differences in the data types and power consump-
tion on the clustering results.

To verify the effectiveness of the FI profile clustering,
clustering based on CBP is employed as a baseline for com-
parative experiments. Four users were randomly selected for
analysis. (The FI dimension is the same as the construction
feature dimension of Section 1V, i.e., 345. The CBP dimen-
sion for each user is 35. See Section II C.)

If the number of clusters is 2, the CBP clustering results
show that userl and user 2 are the same class and that
user3 and user4 are in another class. However, in the FI profile
clustering results, userl, user2, user3 and user4 are in the
same class.

Fig. 3 shows the CBP and FI profiles for userl-user4. For
the CBP clustering, the load curves for userl and user2 are
similar, and the load values are large. The load curves for
user3 and user4 are similar, and the load values are small.
For the FI profile clustering, although the four users have
differences in the load values, the FI profiles are similar in
shape. Additionally, the users are in the same cluster.

As shown in Fig. 3, the FI method allows analysis of
different types of features during the clustering, avoiding the
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FIGURE 3. CBP and FI profiles for user1, user2, user3, and user4.

effects of user power-consumption differences on the cluster-
ing results. Compared with the CBP method, this technique
improves the similarity of the responsiveness of intra-cluster
users to the predictive load and enhances the prediction accu-
racy.

B. CLUSTERING IMPLEMENTATION FOR FI GROUPING
Clustering algorithms analyze the similarities and differences
between different data by analyzing and mining the entire
dataset. The K-means method is widely used in clustering.
However, it has two shortcomings related to: 1) the criteria
for measuring similarity and 2) the selection of the initial
cluster center. For enhancing the quality of the clustering
and reducing the clustering uncertainty, a new clustering
algorithm called S_Dbw-based crow optimization K-means
(SDCKM) is proposed.

1) CLUSTER QUALITY OPTIMIZATION

LetX = {x;},g=1,2,..., 0beadataset with Q instances,
and Cq, Cy, ..., Ci be the k disjoint clusters of X. The K-
means method divides X to minimize the sum of squared
errors for all the classes. The clustering result is evaluated
using the Euclidean distance after the clustering is completed
[21], [24]. The clustering should ensure the smallest intra-
cluster distance and the largest distance between clusters.
However, the Euclidean distance only considers the intra-
cluster similarity and ignores the scattering among clusters.
To resolve this deficiency, S_Dbw—the sum of the average
scattering for the clusters and the inter-cluster density (ID)—
is introduced as a clustering evaluation index.

S_Dbw(Cy) = Scat(Cy) + Dens_bw(Cy) 3)

here, Scat(Cy) represents the average scattering for the clus-
ters, and Dens_bw(Cy) represents the ID. A smaller S_Dbw
indicates better clustering qualification [32], [33].

2) OPTIMIZATION OF INITIAL CLUSTER CENTER

The K-means methods initializes cluster centers vy (k =
1,2, ..., K). Different initializations can yield different final
clusters because the K-means only converges to the local min-
imum. The CSA (Algorithm 2) is widely used in optimization
owing to its excellent global search capability, which avoids
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Algorithm 2 CSA
1: function CSA(M, m, MNI, k, fl, P)
4: Evaluate the position of the crows
5: for m from 1 to MNI do
6: Randomly choose one of the crows to follow(y)
7 for i from 1 to M
8: if )\.j > Pi’m
9- li,m—i—] — li,m + }\i Xﬂi,m X (me/,m _ li,m)
10: else
11: 1-m+1 = g random position

12:  Check the feasibility of new positions
13:  Update the memory of crows

the effect of randomly selecting initial cluster centers on the
clustering quality.

3) CSA [34]

It is assumed that there is a k-dimensional environment con-
taining M crows (k is the dimension of the cluster centers).
The location of each crow i(i = 1,2,...M) at time m(m =
1,2, ..., MNI) in the search space is specified by the vector
[m = (™, 5™, ..., ™1, and MNI represents the maxi-
mum number of iterations. Each crow saves its location in a
memory vector me"™, which is similar to /"™, The location
matrix LOC and memory matrix MEM of each crow are
defined as follows:

-7l 1 1
1] R
2 2 2
roc= | b ok
M M M
L s Iy
B me} meé i me,1<
2 2 2
MEM — | €1 me;  ---  me @)
M M M
| mey mey s mey

It is assumed that crow i follows crow j and finds the loca-
tion of crow j, when crow j returns to its location in the mth
iteration. At this time, the probability of crow j discovering
and replacing its location is P. The new location of crow i is
defined as:
fim+l {li’m + A X fIV X (melt — 1), Ay > PP 5)

random, else

where A; and A; are uniformly distributed random numbers
between 0 and 1, and f is the flight distance. If the fitness-
function value of the new location is better than that of
the original location, the location is updated. Otherwise, the
location is not updated.

1M+l Fitness(12"+ 1) better than f (me™)

mez,m+1 — .
me-" . else

(6)
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FIGURE 4. MAPE of the predictor for four clustering methods:
FI-K-Means, FI-SDCKM, CBP-K-Means, and CBP-SDCKM.

Here, “Fitness” represents the fitness function. When MCN
is 10, the CSA tends to converge, according to statistical
experimental analysis.

4) PROCEDURE OF SDCKM

SDCKM combines the excellent global search capability of
the CSA and the local search ability of the K-means method.
S_Dbw is set as a fitness function for evaluating the clustering
quality at each time, and the optimal initial cluster center is
obtained. The SDCKM process is as follows:

a) Initialization: M, LOC, MEM, k, MNI, fl, P.

b) Use the K-means to perform clustering based on the
memory vector me"™ for each crow, which represents
the initial cluster center for obtaining the clustering
results.

c) Calculate the fitness according to the clustering result
of step a). The fitness function is defined as

K
Fitness = » ~S_Dbw(Cy) (7
k=1

d) Update the location using formula (5).

e) Calculate the fitness according to the updated location
of each crow. Use formula (6) to determine whether to
update the memory.

f) Repeat steps b), ), d) and e), until the MNI is reached.
The memory vector with the smallest fitness value is
selected as the optimal initial cluster center.

g) The initial cluster center obtained in step f) is treated
as the initial K-means clustering center, after the fore-
going steps are completed. A final clustering scheme is
then generated.

C. FI-SDCKM PRACTICABILITY

The clustering quality for different & values without time
segmentation is compared according to the prediction error
in Fig. 4.

Fig. 4 shows the MAPE of day-ahead load forecasting
for a household-based distribution network with k of 1-7,
for the FI-K-Means, FI-SDCKM, CBP-K-Means, and CBP-
SDCKM methods. Regarding the K-means methods, for
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FIGURE 5. MAPE and MAPE(t) of the FI-SDCKM-predictor for three
periods at different k values.

each k, the MAPE of the FI-Predictor is smaller than that
of the CBP-Predictor. Additionally, the SDCKM based on
the FI is more accurate than the SDCKM based on the CBP.
The MAPE of the SDCKM-Predictor is smaller than that of
the K-means-Predictor. CBP-K-Means is used as the baseline
for the comparison, and FI-SDCKM is the clustering method
proposed in this paper. When the number of clusters is 2,
the proposed method exhibits the greatest improvement com-
pared with the baseline. The MAPE decrease from 2.814% to
2.431%, and the prediction error decrease by 13.61%. Thus,
FI-SDCKM allows a significant reduction of the MAPE in
load forecasting and is effective for improving the predic-
tion accuracy. Detailed experimental results are presented in
TABLE 4.

Regarding time segmentation, the clustering results of FI-
SDCKM in Fig. 5 differ according to the fluctuation periods
mentioned in Section II. A detailed explanation for this is
presented in Section IV. Clearly, the proposed FI-SDCKM
clustering method is effective in both the time-segmented and
non-time-segmented cases.

IV. MIXTURE LOAD FORECASTING MODELING

To improve the accuracy of load forecasting in distribution
networks, a new forecasting model based on the load fluc-
tuation and FI profile clustering is proposed. Fig. 6 shows
flowcharts of the proposed forecasting model. First, RReliefF
is used to analyze the importance of each feature. Second,
the 24h of the day are divided into periods according to
the load fluctuation. Third, the improved SDCKM clustering
method based on FI is used to cluster users for the different
periods. The optimal number of clusters (k) in each period
is determined via statistical experiments. Then, the k), for
each period is determined according to the rolling prediction
accuracy of the RF. Finally, the final forecast results are
obtained by aggregating the results for every cluster.

A. RF-BASED LOAD FORECASTING
Because the RF is composed of multiple classification and
regression trees (CARTS), it avoids unstable prediction results
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and overfitting. Additionally, the RF is a data-driven method
based on ensemble learning theory; thus, it is effective for
analyzing high-dimensional SM data [29].

1) RF
The RF is described as:

{h(x,®q),d =1,2,...,D} ®)

where h(x, ®,) represents the d th DT that constitutes the RF,
and x is the input vector of the DT. Each ® is independently
distributed, representing the random process of DT growth
and extraction of the sample data of the d™ tree in the RF.
Thus, the final prediction result can be obtained according
to the output of all the CARTSs in the model. On the other
hand, the bootstrap random sampling of the RF comprises
two aspects: training sample extraction and the selection of
candidate feature sets from nonleaf nodes in the CART.

1) First, in the process of constructing the RF, a bootstrap
is used to randomly generate individual training sets for
each CART. The training sets for each CART probably
include 2/3 of the entire sample space and the remain-
ing out-of-bag samples for this CART.

2) Second, at each node, rather than choosing the best split
among all the features, random samples my (my < Mg,
where My is the number of features) of the feature sets
are chosen and then the best split among these variables
is chosen.

Therefore, the RF is not affected by noise, outliers, or
dimensional hazards. The RF is suitable for constructing
predictors with complex multiclass high-dimensional input
features.

RF requires only two parameters to be set: D and my . In this
study, these parameters are set as [27]: D = 500 and my =
M;/3.

2) PREDICTION FEATURES

The load to be predicted is correlated with the historical load,
temperature, month, and other features according to previous
studies [21], [35]. The cycle variables improve the accuracy
of the distribution-network load forecasting [36]. To facilitate
the capture of cycles and reflect the cyclical changes in the
total load of a household based on the distribution network,
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TABLE 1. 345 features for the day-ahead load forecasting.

Category of Label Variables
variable
Load F~Fs3 Li1~Li336 (2 week)
working days=0,
Day-type F nonworking days =1
Calendar Fiy Monthly variables
Cycle Fi330~F341 cos(2nt/48), cos(2nt/336), cos(2nt/17520)
4 Fs0~F344 sin(2nt/48), sin(2nt/336), sin(2nt/17520)
Temperature Fiys T,

two cycle variables c(¢) and c,(¢) are designed:

c1(t) = cos(2m‘/T) O]
(1) = sinQ2mt [T) (10)
where t(t = 1,2, ..., T)is the time index, and T is the cycle

period. T = 48, T =336, and T = 17520 correspond to the
day cycle, week cycle, and year cycle, respectively. Working
days and non-working days are relevant and are represented
by 0 and 1, respectively. [36].

TABLE 1 presents the feature set of day-ahead load fore-
casting for households based on the distribution network. The
dimension of the historical load is large in order to reduce the
accumulative error of the rolling forecasting model. This is
analyzed in detail in Section IV B.

The root-mean-square error (RMSE) is introduced for eval-
uating the forecast results. The RMSE is defined as

1

N; 2
1 2
RMSE = | > (L — L) (11)

! n=1

The RMSE and MAPE are used to evaluate the prediction
accuracy of the predictor during the day or three periods
of the day. RMSE(¢r) and MAPE(?) are used to evaluate the
prediction accuracy of the predictor at every time point ¢.

B. PREDICTION ACCURACY OF RF IN ROLLING
PREDICTION MODEL

For verifying the accuracy of the RF predictor and analyzing
the influence of the accumulative error on different predic-

tors, two types of rolling forecast models are designed using
the RF and the ANN [16].
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TABLE 2. The composition of the four feature sets.

FS FN Composition of features
1 22 Lii~Li6,Lias~Li-s4,Li-366~Lt342, Ti M, Hi, Dy
2 63 Li1~Liag,Lios, Li14a,Li-192,Li240, Liass, Liaze, Ti,C1,02,Mi, Dy
3 157 Lei~Li1ag,Le192,Li2a0,Le2ss, Lisss, Ti,€1,62,Me Dy
4 345 Lii~Lisse, T1,1,2,Mi,Dy

L =load; T = temperature; H = holiday variables; M = monthly variables;
D = day-type variables; FS = feature set; FN = feature number.
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FIGURE 7. MAPE(t) and RMSE(t) for the RF and ANN with four different
feature sets.

The prediction error for the rolling forecast is mainly
affected by two factors: (1) the predictor performance and (2)
the use of the predicted values as the eigenvalues for the sub-
sequent forecast. Next, we conduct experiments on different
sources of error. To analyze the effect of accumulative errors,
we design four different feature sets, as shown in TABLE 2.

FS1 is constructed according to [21]. FS4 is the feature
set constructed in this study. FS2 and FS3 are feature sets
formed by reducing part of the historical load features of FS4.
The Levenberg—Marquardt approach is employed to select the
parameters of the ANN. When the feature dimension is 22,
63, 157, and 345, the number of hidden neurons is 20, 110,
360, and 890, respectively [37].

Fig. 7 presents the MAPE(¢) and RMSE(¢) of the RF and
ANN without clustering and with the splitting of the period
for the four feature sets. The results are as follows:

1) The accuracy of the RF does not decrease as the number
of features increases and is unaffected by the feature dimen-
sion, in contrast to that of the ANN.

2) The RF is less affected by accumulated errors than the
ANN, especially with a high feature dimension.

A higher proportion of predicted features in the input
features yields a greater impact of accumulated errors [21].
An RF model based on ensemble learning is suitable for
the proposed method, according to the conclusions drawn on
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TABLE 3. Statistial value of total load of the test set with and without
time segmentation.

Mean value (kW) Peak value (kW)

Pl 822.6 1524.1
P2 1812.3 2716.5
P3 2109.6 3027.6
TL 1626.8 3027.6

P1 = Period 1; P2 = Period 2; P3 = Period 3; TL = Total load

the basis of Fig. 4. Therefore, we can increase the historical
load feature dimension of the input features to reduce the
accumulative error.

V. FORECASTING RESULTS
A. PREDICTION MODEL COMPARISON
We study the application of time segmentation in cluster-
ing according to FI based on SM data at the household
level for enhancing the load-forecasting performance at the
distribution-network level. We verify the effectiveness of the
clustering method for different periods after selecting the RF
predictor. As explained in the preceding sections, we con-
struct 84 independent RF-based forecasting models, with k
varying from 1 to 7. All the models are implemented in
MATLAB running on an Intel Core i7 at 3.7 GHz with 16 GB
RAM. (Analysis of the load fluctuation in the time domain
and the selection method for kqp¢ are presented in Sections II
and III, respectively.) According to a comparison of the error
evaluation indicators, the statistical values of the total load in
the test set with time segmentation are obtained (TABLE 3).
To highlight the advantages of the proposed method, three
different methods are employed to conduct residential distri-
bution network load-forecasting experiments. The proposed
method is denoted as RRF-SDCKM-RF. CBP-K-Means-RF
is a baseline method, and RF without clustering is the tra-
ditional method. And, in order to show the promotion of
prediction results, two indicators Promoting percentages of
mean absolute percentage error (Ppapg) and Promoting per-
centages of root mean square error (Prvsg) are introduced.
The forecast results of the three prediction models for three
periods and the aggregated load forecast results with time-
segment clustering and non-time-segment clustering are pre-
sented (TABLE 4). And the promotion of forecasting for each
period is shown in TABLE 5. As shown in TABLE 4 and 5,
the proposed load-fluctuation analysis and clustering method
improve the accuracy of load forecasting. We compared the
predicted increases in different periods. Among them,
the promotion effect of P1 is the most significant. Although
the fluctuation of P1 is small, there are many outliers, which
shows that the prediction error of outliers can be effec-
tively reduced when using time segment analysis of the new
approach. The fluctuation of P2 is medium, but the devi-
ation from the outliers is large. There are extreme electric
consumption scenarios on individual dates in P2. But time-
segment is also helpful for prediction results. P3 has the
highest fluctuation with high load in the night, but there is
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TABLE 4. Error of different models at different time segments.

Index RF(without cluster) CBP-K-Means-RF RRF-SDCKM-RF
NTS TS NTS TS NTS TS

P1 MAPE(%) 2.337 2.041 2.185 2.025 1.874 1.633
RMSE(kW) 31.046 26.129 25.486 23247  23.468 20.076

P2 MAPE(%) 3.137 3.145 3.276 3.012 2.935 2.801
RMSE(kW) 92.493 89.553 90.843 86.348  84.168 80.535

P3 MAPE(%) 3.738 3.494 3.721 3.408 3.347 3.043
RMSE(kW) 108.761 97.365 100933  90.356  91.831 86.123

Total MAPE(%) 2.907 2.864 2.814 2.725 2.431 2.303
RMSE(kW) 79.362 78.348 77.368 74452 71.836 69.021

RRF = RReliefF; TS = time-segment clustering; NTS = non-time-segment clustering

TABLE 5. Error improvement between RF-NTS and RRF-SDCKM-RF-TS.

P1 P2 P3 Total
Pumare 30.12%  10.71%  18.59%  20.78%
Pruse 3533%  12.93% 20.82% 13.03%
x10°
26 ---- Realload ~—— RF(without cluster) =~ —— baseline —— RReliefF-SDCKM-RF

Mon. Tues. Wed. Thur. Fri. Sat. Sun.

FIGURE 8. Aggregated forecasting load curves of different models for
working days and nonworking days.

no outlier, which results in Pyape and Prvsg being smaller
than P1 when time segment is used. Generally, the Pyapg
of the proposed method was 20.78% lower than that of
the traditional method (MAPE decreased from 2.907% to
2.303%); and the Prymsg was 13.03%. Taking full account of
load fluctuation, the forecasting effect of each time period
is improved, which is of significance to the dispatching of
distribution network.

The results indicate that the proposed clustering method
and clustering in different time periods according to the FI
positively impact the accuracy of aggregate load forecasting
for residents.

B. FORECAST RESULTS FOR WORKING AND
NON-WORKING DAYS

Differences in the electricity consumption between working
days and non-working days may affect the load forecast.
To verify the applicability of the proposed method, the load
forecasting results of one week are selected randomly.

Fig. 8 shows the aggregated load-prediction curves of dif-
ferent models for Monday to Sunday. For both date types,
the proposed model provides the best fit to the true value. The
MAPE:s for the working and non-working days are 2.686%
and 2.284%, respectively, and the RMSEs are 73.916 kW and
60.3175 kW, respectively.

Fig. 9 shows the forecast error distribution for working
and non-working days in August 2010. The prediction error
for working days at each interval of the day is larger, but
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FIGURE 9. Forecast error distribution for working days and non-working
days in August 2010.

there are fewer outliers. The prediction error for non-working
days at each interval of the day is smaller, but there are
more outliers. The results indicate that the diversity of the
residential electricity consumption on working days is greater
than that on non-working days and that load forecasting for
working days is more challenging.

C. EFFECTS OF DIFFERENT FI AND PREDICTORS ON
FORECAST ERRORS
To verify the improvements of the new method, the Pearson
coefficient [38], mutual information (MI) index [39], and
Gini index [29] are applied to the least-squares support vector
machine (LS-SVM) [40], ANN [21], and extreme learning
machine (ELM) [41] for experiments using the aforemen-
tioned modeling process. The clustering method is SDCKM.
The parameters (y = 50000, 02 = 5) of the LS-SVM (Gaus-
sian radial basis function kernel) are optimized according to
[40]. According to [41], the ELM has a sigmoid activation
function, and the number of hidden-layer nodes is 1000.
The ANN parameters are consistent with 345 dimensions,
as previously described.
TABLE 6 presents the kop; and errors of different mixture
load-forecasting models. The results are as follows:
a) The MAPE and RMSE are significantly large in Period
2 and Period 3 for the time-segment clustering model.
In Periods 2 and 3, the load fluctuation is greater than
that in Period 1, as shown in Fig. 2. This confirms that
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TABLE 6. Optimal number of clusters and errors for different mixture load forecasting models.

el Type RF LS-SVM ANN ELM
MAPE(%) RMSE®&W) k, MAPE(®%) RMSE®&W) k, MAPE®%) RMSE&W) k, MAPE®%) RMSE&W) ko
P1 1.633 20.076 2 2.013 33.439 3 3.836 46.245 2 2.228 36.172 3
P2 2.801 80.535 3 2.931 83.352 4 4.825 110356 2 2.987 85.288 4
RRF P3 3.043 86.123 5 3.345 91.132 5 5.635 119352 4 3.362 91.418 5
NTS 2431 71.836 2 3.029 80.242 3 5.013 110524 2 3.299 85.257 4
TS 2.303 69.021 -~ 2.937 79.934 -~ 4.923 107522 - 3.111 80.163 -~
Pl 1.693 23.680 3 2.194 35367 3 4.724 49572 3 3231 39.735 3
M1 P2 2.966 84.227 3 3.132 86.527 4 4.982 115854 4 3.587 95.362 3
P3 3.321 90.652 4 3.653 97.367 5 5.745 121456 4 3.959 100463 6
NTS  2.540 73.824 3 3.499 90.989 3 5391 117.596 4 3.781 98.185 4
TS 2.492 71.902 - 3.320 89.322 - 5214 112355 - 3.652 95.194 —
Pl 1.702 25.141 1 2.063 33.625 2 4.021 48.169 3 2.234 36.537 3
P2 3.248 89.562 3 3.403 94.256 3 4.682 109.356 3 2,988 86.813 3
Gini P3 3.368 91.512 3 3.551 95.578 5 5.724 121355 5 3399 93.461 6
NTS 2592 75.256 2 3.791 98.082 4 5.001 109.348 4 3213 84.926 3
TS 2.483 70.913 - 3.954 101372 - 4.935 108.345 3.127 81.245 ~
P1 1.679 22.958 2 2.014 34386 3 4.924 50367 3 2.195 34.925 4
P2 3.226 88.053 2 3.441 94.869 3 5.724 130245 5 3.263 89.245 5
Pearson  P3 3.366 91.441 4 3.681 97.356 5 5.924 129.341 5 3.936 104353 5
NTS  2.599 75.961 2 3.593 91.253 3 5781 121583 3 3.581 92.104 4
TS 2.456 70.896 - 3.555 90.145 5.632 119.035 - 3.459 89.753 -

the load fluctuation is related to the prediction accuracy.
Time-segment clustering models improve the accuracy
of load forecasting.

b) The RF has the smallest MAPE and RMSE for each
Period and each type of FI, indicating the advantage of
the RF for prediction using high-dimensional data.

¢) When RReliefF is used to calculate the FI, the predic-
tion error for each Period is minimized. This confirms
the effectiveness of analyzing the FI with RReliefF.

RReliefF-SDCKM-RF is identified as the most accu-
rate mixture load forecasting model. Using the proposed
RReliefF-SDCKM-RF model with time-segment clustering,
the smallest prediction error is achieved. The predicted exe-
cution time of the proposed method is 3.332394 s. Compared
with traditional prediction methods and CBP-K-Means-RF,
the MAPE is reduced by 0.604% and 0.511%, respectively,
and RMSE is reduced by 10.341 kW and 8.347 kW, respec-
tively.

VI. CONCLUSION
Rational utilization of smart meters could help realize the
smart grid. This paper shows how to use smart meter load
data to improve the load forecasting accuracy of the entire
distribution network according to the difference of load fluc-
tuation. The proposed day-ahead residential distribution net-
work load-forecasting model has the following advantages.
The period fluctuation of different residential load was
found, and the overall methodology was improved on this
basis. The experimental results show that electricity fluc-
tuation of residential users directly affects load forecasting
results. To increase the prediction effect, the 24h of the day
are divided into different periods according to the fluctuation
of the electricity consumption of the users (the lowest/highest
point of standard deviation).
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The aspects of the clustering process have been optimized.
Breaking the convention of clustering using load shape, this
paper uses FI to cluster massive users. It overcomes the
inability of traditional clustering methods to analyze the
effects of non-load features on the clustering. What’s more,
the SDCKM can optimize the cluster center selection, and
consider the intra-cluster distance and inter-cluster dispersion
in clustering.

The input dimension is augmented and the stable forecast-
ing models (RF) are used for rolling prediction. To reduce the
error of rolling prediction model, the proportion of predicted
values used as subsequent predictive features in the total input
is reduced by expanding the historical load features. Addi-
tionally, the proposed prediction model solves the problem of
high input feature dimension in aggregated residential fore-
casting, and feature selection is not needed before aggregated
forecasting.

There are some limitations in our study which could be
the future research. Firstly, the aggregate forecasting result
we obtained is only for the electricity demand of residents in
the distribution network, and the impact of renewable energy
access to the distribution network on the electricity demand
of residents has not been considered. Secondly, as we carry
out aggregated load forecasting analysis for residential users
in the distribution network, we do not consider the impact
of electric vehicles on aggregate residential load forecasting
results. Future research could focus on the impact of renew-
able energy and electric vehicles on aggregated residential
load forecasting.
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