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ABSTRACT Phosphate is one of the major elements affecting agricultural production. The accurate
determination of phosphate concentration essential for plant growth, especially in a hydroponics system,
allows regulating the balanced and suitable range set of nutrients to plants efficiently. This study proposed
a data fusion model based on 70 samples for calibration and 30 samples for predicting concentrations of
phosphate in an eggplant nutrient solution. Three multivariate analysis methods i.e. partial least squares
model (PLS), Gaussian process regression (GPR), and artificial neural network (ANN) were studied and
compared for their performance efficiencies. The results showed that combining the multivariate standard
addition method (MSAM) in acquiring data from cobalt electrodes and ANN data fusion model came up with
satisfactory outcomes. Both the method provided good performance with R? values of 0.98 and 0.96, and
the root mean square error (RMSE) of 50 and 66 mg. L™! respectively in calibration and evaluation tests.
These values were much higher than those of conventional processing techniques. Moreover, the normal
direct calibration method in acquisition signal from cobalt electrodes was also applied, which provided R?
values of 0.7 to 0.8. These high values are sufficient for development to measure phosphate concentration in
hydroponic solutions.

INDEX TERMS Phosphate sensing, multi-sensor data fusion, multivariate standard addition method
(MSAM), partial least squares model (PLS), Gaussian process regression (GPR), neural network-ANN.

I. INTRODUCTION

Phosphate is an essential nutrient component needed for
plants [1]. The optimization of phosphorus to improve crop
productivity has been widely used in the traditional agri-
cultural system. Moreover, the rapidly developing high pro-
duction hydroponic farming has become an economically
effective method of crop culture [2]. Optimized crop nutrient
levels i.e. POy4, NO3, and K etc. (written as POZf, NOy3', and
K™ respectively in ionic form) are continuously used at all
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stages of hydroponic process in order to improve the quality
and yield of plants [3], [4].

Appropriate phosphate supply is very important for the
growth and development of plants, especially at the flowering
and pollination stages. Moreover, phosphate ion occurs in
three states of protonation whilst the change in pH level
affects the phosphate sensor system. Thus determining phos-
phate concentration in a hydroponics solution is difficult and
less accurate even with a cobalt electrode [5]. In addition,
there is still a lack of an effective phosphate ion-selective
electrode that allows to determine phosphate conveniently
and precisely. Therefore, most approaches, created a reaction
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between cobalt electrode surface and phosphate to quantita-
tively detect phosphate ions from the treated soil or aqueous
samples, for which a sufficient selective sensitivity could
be confirmed [6]-[8]. Nevertheless, the cobalt electrode has
not yet been used in practical applications because of some
weaknesses such as the instability of the electrode signal
band. To deal with this problem, some approaches have been
used, such as the one proposed by Jung et al. [9] to adapt to
the calibration equation they developed. However, the cobalt
electrode’s response potential to complex phosphate ion con-
centration in the solution and the high ionic strength made the
simple calibration methods unsuitable [10].

The multi-sensor data fusion technique has been high-
lighted considerably in various fields, because it can enhance
not only the accuracy of sensors but also the robustness of a
system [11], [12]. These advantages have been investigated
and applied in acquisition and analysis of sensor data in
measurement systems. Therefore, the data fusion method
was applied to effectively improve the performance of the
measurement system in various fields [13]. Data fusion has
been employed in precision agriculture, with soil property
analysis and aggregating of databases for the development
of nutrition distribution maps. La et al. [14] applied a soil
nutrient data fusion to determine phosphate concentrations.
Moreover, combining the modern multivariate calibration
processing or sampling techniques are solutions that resolve
drawbacks in measurement based on ISEs. For example,
multivariate standard addition method (MSAM) and principal
component analysis (PCA) or partial least squares regres-
sion (PLSR) model to overcome problems such as poten-
tial drift, ionic strength, and matrix effect etc. [15]-[20].
Currently, the multilayer perceptron neural network structure
and learning performance have been substantially improved
through the error back propagation algorithm. These exhib-
ited particularly good performance being highly nonlinear
and employed widely [21], [22]. Although the structure of
the neural network is a black box and many mathemati-
cal studies have been conducted to ascertain and complete
the approximation ability of various neural network types,
possible omitting of step in designing a hypothesis for the
model prompted to pursue ANNS in a variety of fields. The
neural network was used to eliminate interference caused
by changing temperature, especially, for the enhancement
of sensors with ion-selective electrodes [23], interference of
other ions with the primary ion [24], [25], fluctuating ionic
strength [26], [27], and drifting potential [17], [28], [29] etc.
Besides, the data fusion models have made a novel break-
through in processing sensor signals to improve sensors’
characteristics [30], fusing big data sensing [31], developing
virtual sensors for non-availability of commercial electrodes
ion types [32], [33]. Gutierrez et al. [34] proposed advanta-
geous multiple ISEs and ANN model to monitor nutrients in
hydroponic solutions.

Recently, fusion technique has been applied to detect phos-
phate in hydroponic solutions. For example, Jung et al. [35]
used two types of sensors, i.e. NIR spectroscopy and cobalt
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electrode, to develop fusion for detecting PO4 ion concentra-
tion in a paprika nutrient solution. They recorded R? of 0.90 in
training and 0.89 in testing and RMSE of 96.70 mg.L~!
in training and 119.50 mg.L~" in testing. La er al. [14]
fused both ISE information in P, K, and NIR spectroscopy
to estimate soil properties. The model fit resulted in R?> >
0.90, RPD > 3.19. Similarly, Chen et al. [32] used some
ion-selective electrodes (NO3, K, Ca), pH, and EC electrodes
to develop phosphate and sulphate virtual sensing. Though
many approaches based on unique or associative fusion tech-
niques have been used, the cobalt electrode has not been
deployed yet in practical applications. This is because of
some weaknesses such as it needs frequently abrading and
electrode surface treating constantly to ensure induce oxida-
tion reaction, which affects changes in the electrode signal
band [35], [36]. Moreover, MSAM is considered to be the
most suitable method for compensating the shortcomings of
ISEs sensing systems. However, ample information is not
available about the use of the MSAM for phosphate concen-
tration analysis.

This research proposes an approach combining MSAM in
sampling and data fusion techniques. The combination will
not only improve the characteristics of cobalt electrodes, but
also the performance of the models. Fusing the raw data from
cobalt electrochemistry aims to enhance the stabilization and
accuracy of phosphate measurement in eggplant hydroponic
solution, as depicted in figure 1. The electromotive force
(EMF) data was acquired from four cobalt electrodes and
supplied to pre-process and enhance the feature of input data
and then an artificial intelligence algorithm was employed.
The calibration model and comparative verification were per-
formed using PLSR, GPR, and ANN to assess the efficiency
of the model. The models were implemented and investigated
through Matlab 2017b and toolboxes (Math work corpora-
tion, USA).

The present article mainly consists of five parts. Section I
introduces the relevant literature and motivation of this study.
Section II describes the materials and methods used for con-
ducting the experiments. This section includes methodologies
for processing sensor signals and development of models
for fusion sensor data to determine phosphate concentration.
In section IIT and IV the results and discussion of different
tests are provided respectively, while section V offers the
conclusions of the study.

Il. MATERIALS AND METHODS

A. PREPARATION OF NUTRIENT SOLUTION SAMPLE

In this experiment, a circulating nutrient solution was pre-
pared for growing eggplant hydroponically. The nutrient solu-
tion was prepared according to the Hoagland standard, where
the stock solution was 200 times the normal concentration
presented by Trejo-Téllez and Gémez-Merino [37], as shown
in Table 1. The PO4 concentration was set in the solution
within the range of 6 —1350 mg.L~!. The amount of KH,PO4
was changed to increase or decrease the PO4 concentration.
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FIGURE 1. The novel combination of MSAM-feature enrichment cobalt ISEs and Artificial neural network model for detecting phosphate

concentration in eggplant hydroponic solutions.

TABLE 1. Compositions of preparing 200 times concentrated solutions
for eggplant hydroponic culture.

Component Amount per litter
KNO; 202 g
Ca(NO3),.4H,0 472 ¢
MgS0,.7H,0 493 g
NH,NO; 80g
KH,PO, 136 g
H3BO, 286¢g
MnCl,.4H,0 181g
ZnS04.7H,0 022g
CuS04.5H,0 0.051g
Na,;Mo0,4.2H,0 0.12¢g
Iron (Sprint 138 iron chelate) 15¢g

To ensure efficient performance of models and experiments,
the Kennard—Stone algorithm [38] was applied for selecting
samples. One hundred experimental samples were created
randomly. Out of those, 70 samples were used for train-
ing and developing the calibration and verification models
and the rest (30) for testing. The actual concentration val-
ues of the created samples were analyzed at the Laboratory
of Agricultural Informatization Standardization, Ministry of
Agriculture and Rural Affairs, China Agricultural University,
Beijing, China.

B. FABRICATION OF COBALT ELECTRODES AND
SAMPLING PREPARATION

The cobalt metallic material is a selective material reactive
to phosphate in the dihydrogen phosphate ion form [39], [6].
In the present study, cobalt electrodes were immersed into the
sensor chamber (made of ABS-acrylonitrin butadien styren
plastic using 3D-printer), which combined with the elec-
tric pump formed a simple flow injection analysis module.
Accordingly, the phosphate selective electrode was created
from a 99.99% pure, 5 mm diameter cobalt rod (Sigma-
Aldrich, Chemical Company, USA). A length of 5 mm
cobalt rod was soldered to a 1 mm copper wire, as shown
in Figure 2a. The cobalt connected copper wire structure was
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enclosed in an ABS plastic body of 100 mm length, 12 mm
external diameter (similar in diameter with other commercial
ISEs for convenience of installation in the sensor chamber),
and 6 mm internal diameter (created with a 3D-printer).
Epoxy was injected between the cobalt metal and the plastic
to prevent from making contact with other materials. The cop-
per wire was then connected to a Bayonet Neill-Concelman
(BNC) cable. The active electrode surface was prepared by
polishing it on 400 and 1200 grit emery paper and a soft cloth
to obtain a stable reaction. Subsequently, the electrode was
pre-treated with deionized water for about 30 minutes until
the EMF became uniform. This was followed by conditioning
in 0.04 mol. L~ potassium hydrogenphthalate buffer (KHP)
for further 20 minutes [40]. A double-junction reference
electrode (Orion 900200, Thermo Fisher, MA, USA) in the
center of the chamber was combined with the pretreated
cobalt electrodes to obtain the EMF values of each sample.
In this manner, the electrodes were connected to a condition-
ing amplifier based on the INA116 precision instrumentation
amplifiers (Texas Instruments, USA) and acquired by a multi-
channel data acquisition device NI USB DAQ 6218 (National
Instrument Corporation, USA). A sampling procedure was
carried out for all the samples of the data set. First, 40 ml KHP
buffer solution with 0.025M concentration was injected into
the sensor chamber. An electric pump (KLP05-6, Kamoer
Company, China) retained the solution flow to the electrode
surface until the EMF values stabilization (roughly for 2 min-
utes). Then the standard concentration of hydroponic solution
sample was injected into the chamber at a 1:3 ratio and
cycled for 2 to 5 minutes (depending upon the concentration
of the sample) until the potentials of the electrodes were
stable.

A lab program based on LabVIEW (LabVIEW 2017,
National Instrument Corporation, USA) was developed to
monitor the specific stabilized potentials and saved to excel
file as data set for developing the models (Figure 2b). On the
other hand, the direct calibration method (in which the stan-
dard solution was mixed with KHP 0.025M concentration
buffer solution at a 1:3 ratio and the electrodes were immersed
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FIGURE 2. Fabricated cobalt electrodes (a) and the measurement system used in this study (b).

directly into mixture) was also carried out for comparison
purposes [35].

C. PRE-PROCESSING DATA

1) NORMALIZATION OF DATA

Normalized data inputs allow the model to learn the opti-
mal parameters for each input node rapidly. Additionally,
it is useful to ensure that inputs are within the range of
—1 to 1 to avoid weird mathematical artifacts associated
with floating-point number precision. The inputs and outputs
are normalized such that the values on each channel occupy
the same range before training. Thus, the input vector C;
for the entire suite of training samples can be expressed
as:

C.  — Ymax — Ymin)
e (Cimax - Cmin).

where ymin and ymax are a standard range (normally —1 to
1), which can be set independently for each signal, Cyy i
normalized concentration, Cini, is the minimum value of the
C; vector, and Cjpax is the corresponding maximum value.
The Cj can be inverted to yield the original concentration
value as

(Ci - Ci min) +ymin (1)

(Cimax - Ci min)

—_—— + Cimin
Ymax — Ymin)

Ci= (Cnor - ymin) . (2)
2) MSAM AND DATA FEATURE ENRICHMENT

Standard addition is employed to be the most effective
method for compensating matrix effects [41], potential drift,
and ionic strength [42]. However, extrapolation is an inherent
disadvantage of standard addition method (SAM). Therefore,
in this study, multivariate standard addition method (MSAM)
calibration procedure with one spike was used to substitute
the traditional multiple spikes univariate calibration. In this
approach, a signal received from the blank sample was used
as offset, which could be combined with the spiked signal
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TABLE 2. Forming data set by combining the original cobalt
electrochemistry signal and MSAM-Feature enrichment values.

SNo C Usgr Usgz Uisgs Uises Uper  Upsz Uz Uggg
G Uon U Ups Ups NaN NaN NaN  NaN
Ca Uar Usz Uwuz Uus Umen Upsiz Upeis Upsie

, G Um Uz Ums Uy NaN NaN NaN NaN
Co Uwr Uws Uwps Ups Umsr Uesz Upezs  Upess

100 Co100 Uo1001 Uo1002 Uo1003 Uproos NaN  NaN  NaN  NaN

CxlOO Ux1001 Ux1002 Ux1003 Ux1004- UFE1001 UFE1002 UFE1003 UFE1004

S.No: Sample No; C-Concentration; Usgq, Uisga, Uisgs, Uisga, Upgt,
Uggz, Uggs, Upgy — Potential of electrodes ISE,, ISE,, ISE3, ISE, and
feature enrichment values of them, respectively; NaN- Not a number.

(the signal from standard addition) to enrich the feature of
the sensor, as presented in the following equation:

Urgij = Uyij — Ugj 3)
where i is the number of samples from 1 to 100. j is the
number of ion-selective electrodes from 1 to 4. Ugjj, Uy;j
are the potential of corresponding ISE at the concentration
Co and C; respectively. Upg;j represents the difference value
between Ug;; and Uy;j, which were used to enrich the feature
of the dataset to improve the performance of the model, called
enriched data values. Therefore, using the data set fed into the
models is divided into two scenarios, i) the input of data set
is four columns including Ujsg; to Ujsgs , and ii) the input
of the data set is eight columns, i.e. Ursg to Uisgs, and Upg;
to Uggs. Three models (PLSR, GPR, and ANN) were used
in the experiment with all the data sets to find out the most
appropriate model and evaluate the efficiency of the proposed
method in determining phosphate concentration.

VOLUME 8, 2020
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D. DEVELOPMENT OF DATA FUSION MODEL FOR
PHOSPHATE SENSING

1) PARTIAL LEAST SQUARE REGRESSION

Partial least square regression (PLSR), a stepwise linear
model that extracts latent variables and seems to fit very
well with a lot of spectroscopical problems. In this research,
PLSR was used to predict phosphate concentration via the
sensor signals (original calibration data matrix X) form
cobalt electrodes. Unlike the principal component analysis
regression (PCR) model, the PLSR scores are estimated by
including both sensor signals and concentration information.
Specifically, the PLS calibration phase consists of the follow-
ing inverse model [43]:

Yo = Tavn+e “@
Ta = XTUy 5

where v, (of size Ax1) is the vector of PLS regression coef-
ficients defined in the PLS latent space. T is the truncated
score PLS matrix, the projection of the original data matrix
X onto the space defined by the loadings contained in U,,
calculated by equation (5). Uy is loading matrix which is
estimated by the eigenvectors of the square matrix XX [44].
e is a vector collecting the concentration modeling errors and
the vy, is derived by equation (6)

Vn = TAYn (6)

In PLS, both the loadings (P) and the weight loadings (W)
participate in estimating the calibration score matrix. As in
PCR, they are also truncated to the first (A) column, which
should retain the main portion of both the sensor signals and
concentration variance. The specific expression for the PLS
score matrix is:

—1
Ta = XTWA(PLW,) @)

In the prediction phase, the regression coefficients are
employed to estimate the analyte concentration in a future
sample. A previous step is required to find the test sample
scores, which proceeds by means of the truncated loading
matrices W4 and Pa. The specific PLS expression for the
test sample score vector is:

-1
ta(PRWa) WiIX ®)
and the prediction equation is:
Y =Vata ©)

where y is the predicted analyte concentration in the test
sample, whose sensor signal is the vector x of equation (7).

2) GAUSSIAN PROCESS REGRESSION

The Gaussian Process is an appropriate method for defining
the preferred distribution of flexible regression and classi-
fication models where the functions of regression or class
probability are not limited to simple parametric forms. One
advantage of the Gaussian Process is the wide variety of
its covariance functions, leading to functions with varying
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degrees of smoothness, or different types of continuous struc-
tures, allowing to choose from among them appropriately.
These models can specify one or more input variable distribu-
tions among the functions. If the mean answer is calculated
in a regression model with Gaussian errors, inferences can
be made by the matrix calculations. Here, data systems with
samples of more than one thousand each can be used.

In the regression task, the data set D consisted of N input
vectors xi, x2, . .. xy(signals of dimension D from sensors)
with corresponding continuous outputs yi, y2, ...yx (phos-
phate concentration of samples). The outputs are assumed
to be noisily observed from an underlying functional map-
ping f (x). The object of the regression task is to estimate
f (x) from the data D. The data sets can be corresponded with
a Gaussian process. The median for the Gaussian cycle is
usually assumed to be zero everywhere. In such situations,
the covariance function relates one result to the other. With
the Gaussian noise model, each observation can be associated
with a kenel function, k (x, x) Each observation y can be
connected to the main function through the Gaussian noise
model [45].

y=f ) +N (0, af2) (10)

where N (O, crfz) is the noise of normal distribution function

with mean O and variance ofz. Regression means looking for
f (x). The k (x, x) is calculated as follows:

N2

k(x,x) = afzexp {%] + 028 (x,¥) (D
where § (x, £) is the Kronecker delta function, which is one
if x = x’ and zero otherwise, [ is length-scale. The pre-
dicted values of observations are the same in accordance
with equation (10), but variances vary due to observational
noise process. To prepare the GPR for covariance function,
equation (11) is incorporated in all possible combinations of
these points and findings are summarized in three covariance
matrices:

k(x1,x1)  k(x1,x2) k (X1, Xn)
k(x2,x1)  k(x2,x2) k (x2, Xp)

=|. ) ) (12)
K G x1) K (Xn, x2) k (%n, Xn)

K, = [k Xy, X1) k (X, X2) . . . k (Xs, Xn)] Kis =k (s, X5)
(13)

The diagonal elements of matrix K are in the form of 67 +0.2,
and non-diagonal elements approach zero when the x extends
a large domain [46].

3) NEURAL NETWORK MODEL

There are four layers of neurons (nodes) in the architec-
ture of ANN and MSAM-FE-ANN systems, described in
this paper. These include an input layer, two hidden layers,
and an output layer. The predictor signals are fed into the
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TABLE 3. Types of activation functions used in the neural network.

Name Logistic Tanh Radbas Relu
(sigmoid)
(15) (16) (17) (18)
Equation _ 1 _ 2 fx)y=e™ _{0, x<0
=7 f(x)_mq (x)=e (x) . x50

TABLE 4. The structure of the neural network model for predicting
phosphate concentration.

Parameter Values
Number of hidden layers 1,2
Hidden layer size 5 to 60
Hidden layer transfer function f(x) tansig, logsig, radbas
Output layer transfer function purelin
Learning method Levenberg-Marquardt (LM)
Learning rate 0.001; 0.002
Max number of epochs 1000
Training goal 10°°

input layer and transmitted to the hidden layers and output
layer through the weighted connections and the transfer func-
tions [47]. Figure 3 illustrates the simple multilayer structure
of an ANN and the neuron [48]. The input variable x; con-
nects to each single input node and each input node trans-
mits a weight value W;; to the hidden layer. Subsequently,
these input-weight products are added and the sum is passed
through an activation function a;;, to determine whether and
to what extent that signal should progress further through the
network to affect the ultimate outcome. Figure 3b depicts the
principle of a neuron in the neural network, and equation (14)
is the mathematical expression of the i/ neuron:

yi = f(z Wi Xi —|—bi> (14)

1

where x; is the input information of neuron i, wjj is the
network connection weight, f is the activation function, b; is
the bias, and yj is the output value. The regular learning rule
is to use a gradient descent algorithm to constantly adjust the
weight and threshold of the network through backpropaga-
tion, in order to minimize the error square sum of the network.

To avoid local minima and overfitting, the
Levenberg—Marquardt algorithm was used for training the
network. We adopted some functions as the transfer (acti-
vation) function (table 3) for neural network [49]. The main
network parameters (number of layers and nodes in the hid-
den layer, transfer function, learning algorithm, and learning
rates) were subjected to various trials to find out the best
fitting condition. The network structure parameters were set
as in table 4. The number of neurons in the hidden layer
was set in the range of 5 to 60 to consider the effect of
number of neurons in the hidden layer on the training results.
Considering that the neural network prediction results have a
certain volatility, each neural network with different neurons
in the hidden layers was trained several times. The best
observed values of two performance indices were used to
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FIGURE 3. Neural network structure diagram (a) and the neuron (b).

define the suitable number of neurons in the hidden layers,
determined to be 25, 35 nodes for hidden layer 1 and hidden
layer 2 respectively.

4) PREDICTION PERFORMANCE INDICES

To compare the effectiveness of data fusion techniques in
predicting phosphate concentration, two prediction perfor-
mance indices were estimated, i.e. the root mean square
error (RMSE) and determination coefficient (R?). The smaller
the values of RMSE, the closer the predicted value is to the
true value, which means better prediction accuracy. Besides
that, the closer R? value is to unity, the better the machine
learning prediction is. RMSE is calculated using the follow-
ing formula:

1 -
RMSE = \/Z > i 5) (15)

where n is the total number of data in the training set or test
set, y; is the actual phosphate concentration value, and ; is
the predicted phosphate concentration value.

R? is an index that measures the degree of agreement
between the test data and the fitting function and is calculated
as per equation (16).

Y (i — i)’
Zi (}71' - 5’!’)2

where y; is the average value of the test set.

REP=1-— (16)

IIl. RESULTS

A. COBALT ELECTRODE REACTION

As shown in Figure 4, four cobalt electrodes were
used to detect phosphate concentrations in the range
of 6-1350 mg.L~! using the direct calibration method [50].
The Nikolsky-Eisenman equation calibration plot showed the
logarithmic relationship between the phosphate concentra-
tion and electrode EMF. In this manner, the determination
coefficient (R2) ranged from 0.68 to 0.71, which cannot
be employed as that of actual sensors. The signs on the
graph also show that a considerable variation in the reac-
tions occured with the polished surface of electrodes. The
cobaltous oxide layer on the cobalt electrodes formed and
deviated during exposure to the sample solution. This caused
changes in the state of electrode conditioning and required

VOLUME 8, 2020
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FIGURE 4. Direct calibration plots of cobalt-electrode response to PO,
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FIGURE 5. Standard addition calibration plots of cobalt-electrode
response to PO, concentrations.

a normalization process. This problem could be reduced by
using automated measuring and conditioning equipment hav-
ing a buffering solution to stabilize the oxidation surface for
a long time [51].

Figure 5 illustrates the calibration plots of four electrodes
based on the standard addition method. In this approach,
the R> was 0.77 to 0.80, which was higher than that of
the direct calibration technique (Fig 4). The improvement
of detecting coefficient of electrodes in this manner could
be due to the reason that the ISEs’ surfaces were being
re-conditioned in each sample by the buffer solution (KHP)
during the first step of sampling phase [52]. Nevertheless,
these achievements still do not fulfill the requirements of an
actual measurement system. Thus, to enhance the efficiency
of electrodes, three models including PLSR, GPR, and ANN
were deployed.

Figure 6 shows the results of the test sample obtained
through the prediction of the two hidden layers with 12 and
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FIGURE 7. Calibration and test sample prediction results with MSAM -
PLSR analysis performed using the enriched data.

18 nodes and Tanh and the Logistic function ANN model
with the data set from the direction calibration method. The
RMSE obtained for the test sample was 170 mg. L~! with
an R? of 0.78, although the result was slightly better than
that obtained using the linear calibration model (Figure 4).
Thus, the procedure was still not satisfactory for determining
phosphate component in the hydroponic system.

B. PERFORMANCE OF THE PROPOSED MODELS
As mentioned earlier, we attempted to develop prediction
models through data fusion. First, the raw cobalt EMF data
acquired through a multivariate standard addition method
were pre-processed to produce the feature enrichment data.
Then the PLSR, GPR, and ANN models were employed for
the fusion methods.

Figures 7, 8, and 9 depict the performances of the devel-
oped models for predicting samples. As shown in Figure 7,
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O Training result: y = 1.01x - 5.6, R* = 0.97, RMSE = 60
® Testing result: y = 0.95x + 1.76, R? = 0.95, RMSE = 80
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FIGURE 8. Calibration and test sample prediction results with MSAM -
GPR analysis performed using the enriched data.

O Training result: y = 0.97x - 7.56, R? = 0.98, RMSE = 50
@ Testing result: y = 1.02x + 9.65, R? = 0.96, RMSE = 66
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FIGURE 9. Calibration and test sample prediction results with MSAM -
ANN analysis performed using the enriched data.

the calibration model of fusing data model developed by
PLSR technique had a slope of 1.1 and an R? of 0.93. The
predicted results of the test samples had a slope of 1.16 and
an intercept of 81.23, with an R? of 0.92 and an RMSE
of 115 mg. L~!. Whereas, the fused database GPR model
demonstrated slightly better results (as shown in Figure 8),
where the slope of the calibration phase was 1.01 and the R?
value was 0.97. The testing prediction results of the GPR cali-
bration model achieved R? of 0.95 and RMSE of 80 mg. L™ .
The results of GPR model using the difference of kernel
(covariance) functions are presented in table 5. The squared
exponential kernel gave better results than the other four.
The graphs revealed that performances of both the PLSR
and GPR improved compared to those of cobalt electrode
EMF data.

Figure 9 shows the best fit of developed ANN model with
a slope of 0.97, an offset of 7.56, an R? 0f 0.98, and an RMSE
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TABLE 5. Types of kernel functions used in GPR model.

Kernel
. Squared Matern | Matern | Rational
functions Exponential
exponential 3/2 5/2 | quadratic
Prameters
RMSE | Training 60 38 72 72 69
results | Testing 80 91 100 99 96
Training 0.974 0.98 0.96 0.96 0.965
R? results
Testing 0.95 0.94 0.93 0.93 0.936

TABLE 6. The structures of the neural network model for predicting
phosphate concentration.

Hidden 1 Hidden 2 Training Testing
Number Number Learning results results
of Activation of Activation rate
Nodes function Nodes function RMSE| R? |RMSE | R?
20 Logsig 30 Tansig 0.001 68 (095 88 [0.94
60 Radbas 30 |Tansig 0.001 45 1098 95 [0.93
50 Radbas 40  |Logsig 0.002 43 1098 90 [0.94
25 Logsig 30  [Radbas 0.001 70 10.95 100 |0.92
25 Tansig 35 Logsig 0.001 50 [0.98| 66 |0.96
30 Tansig 45 Radbas 0.002 65 1095 92 10.92

of 50 mg. L~". The slope of predicted results of the developed
model with the test samples was 1.02, a residual of 9.65, with
an R? of 0.96 and an RMSE of 66 mg. L™!. Table 6 exhibits
the results of the ANN model, in both the training and testing
phases, under each proposed training condition. The Tanh
and Logistic were two functions through which the model
acquired the best results, where the parameters were 25 and
35 neurons for the first and second hidden layers and the
learning rate was 0.001.

The results of three calibration models (PLSR, GPR,
and ANN) based on enriched data sets fed from MSAM and
expanding feature pre-process are summarized in table 7.
In the case of PLS, when the number of electrodes was
adjusted (from 1 to 4) with or without the feature enrich-
ment (FE) signals, the best results were obtained, especially
when four electrodes’ signals and four enriched features were
used. They produced an R? 0£0.93, an RMSE of 106 mg. L=,
and a validation R? of 0.92, and corresponding RMSE
of 115 mg. L™'. The best results in GPR were those of
preprocessing using four electrodes and four FE signals. The
GPR results had an R? of 0.97 and an RMSE of 60 mg. L~ in
the calibration phase, and in the validation phase, the R? and
RMSE were 0.95 and 80 mg. L™! respectively. These were
slightly higher than the R* and RMSE of the PLSR model.
The results of ANN model, when the number of electrodes
changed from one to four, had significant variations too.
The prediction of the MSAM-ANN model achieved good
results while using three electrodes with FEs. Especially, with
number of data feature was eight (four electrodes and four
FEs), the best results was obtained with an R2 of 0.96 and
RMSE of 66 mg. L~!. It was quite satisfying as with this
approach, the proposed model could be employed for the
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TABLE 7. A comparison of the results of a combination number of
electrode inputs (ISEs) with feature enriched data inputs (FE) and the
used models; chosen item (iJ), unchosen item (-).

Models Training Testing
Number of Inputs
Electrodes results results
ISEs | ISEs+FE |PLSR| GPR|ANN | RMSE | R2 |RMSE | R2
- - 151 087 | 132 | 0.85
1 - - 111 | 091 135 | 0.86
- - 90 0.93 145 | 0.86
- - - 149 (0.879| 129 | 0.86
- - - 108 | 092 | 124 | 0.88
- - - 106 | 092 | 140 | 0.89
2 - - 144 ] 088 | 127 | 0.87
- - 93 0.94 | 133 | 0.88
- - 71 0.97 | 137 ]0.896
- - - 143 | 088 | 114 | 0.89
- - - 102 10.927| 108 [0.907
- - - 110 [ 092 | 121 | 0.90
3 - - 134 1 089 | 108 | 0.90
- - 95 0.93 100 | 0.92
- - 60 0.97 87 0.94
- - - 123 | 090 | 132 | 0.89
- - - 84 0.95 93 0.93
- - - 86 0.95 90 0.94
4 - - 106 | 0.93 115 ] 0.92
- - 60 0.97 80 0.95
M ] - - M 50 0.98 66 0.96

actual sensors. These results suggest that the MSAM and
the FE pre-processing stage would play an essential role in
improving the performance of the models in developing the
cobalt electrochemistry fusion data for detecting phosphate
in a hydroponic solution.

IV. DISCUSSIONS

In this study, we employed the two measurement techniques
and three fusion methods to develop a more accurate pre-
diction model through fusing cobalt electrochemistry data.
In the direct calibration technique, the results of the cobalt
electrode exhibited low repeatability. The highest determina-
tion coefficient (R?) of the linear regression model was 0.71,
which is similar the results obtained in previous studies [35],
which reported a high possibility of alteration in oxidation
layer (CoO) formation on the cobalt electrodes. To combat
this issue, a buffering solution is used to maintain the oxi-
dation layer over a long period [53] or the normalization is
used based on two, three, or even multiple points. However,
this needs to keep prepared the standard solution at all times
for fitting the nonlinear data [54], which is a disadvantage
of this method. Thus, in this study, we used merely cobalt
electrochemistry raw data.

In the MSAM technique, the multivariate standard addition
procedure for sampling and pre-processing data of cobalt
electrochemistry were carried out. At first in the sampling
procedure, the electrodes were kept in contact with the KHP
buffer solution flow. This was significant as it not only made
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electrodes work stably but also reduced the fluctuation of
electrodes potential by changing the states of the electrode
conditioning [36]. Using MSAM reduces the conjunction
potential and drift potential of electrodes [42], and the ionic
strength [20], [55]. Figure 5 shows that the distributions of
electrodes potentials were more correlative with the phos-
phate concentration than those of direction method sampling
(figure 4), especially in a high range of concentration in which
the electrode reaction with phosphate was more stable [36].
The combination of MSAM and electrodes potential in KHP
solution is required for enriching the data information from
physical sensor data (depicted in table 2). That is called
feature enrichment (FE). In previous research, FE normally
was used for image processing and text classification etc. that
used complicated algorithm and took more time in process-
ing [55], [56].

PLSR and GPR, reported in previous studies [20],
[571-[59], were used to process enriched data and contributed
towards the improvement in phosphate sensing performance.
Although the enriched data improved the performance of the
models significantly (see table 7), they also increased the
nonlinearity. Therefore, the performance of PLSR has been
improved slightly (compare the efficiency of PLSR between
four ISEs signals only and four ISEs signals plus four FEs
signals in combination). Table 7 also demonstrates that when
the number of electrodes was less, the performance of GPR
model was better than that of ANN, and ANN was slightly
over fitted (at two electrodes). However, when the number
of electrodes is sufficient, the performance of ANN is bet-
ter [47]. This can be explained by the generalization ability
of ANN that needs the data set big enough, whereas the GPR
can work well with small and nonlinear data. To evaluate
the performance of ANN the main parameters were adjusted
in several cases. The results of proposed ANN were signifi-
cantly better than those of the PLSR and GPR. Thus, we can
employ only four electrodes and combine MSAM, FE, and
ANN to determine the phosphate concentration closer to the
requirements of the real hydroponic system.

The proposed models were calibrated to predict phosphate
in range 6 to 1350 mg. L~'. This allowed observing the
abnormal phosphate ions changes in the nutrient solution at
a regular concentration within 100 to 500 mg. L~! range,
as well as in the applicable hydroponic nutrient solutions.
Moreover, the wide-range measurement of the models would
fulfill the requirements of an automated control nutrient sys-
tem even when the phosphate concentration changes to a
large extent (tens to thousands of mg. L™!) due to possible
technical issues e.g., pump, valve errors etc. [35].

In this study, we used four cobalt electrodes, MSAM and
FE techniques, and the data fusion method. Therefore, the
proposed system is not only easy to deploy in the field but also
can predict the phosphate concentrations rapidly (in a few
minutes) except for long conditioning and preparation time.
Furthermore, the materials used in this study are common,
easy to fabricate with low cost. These contribute towards
reducing the system cost that detect nutrient concentration in
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the hydroponic solution. The proposed method is also useful
in measuring equipment for examining soil and wastewater
pollution where phosphate contamination is in large quan-
tity [60], [61].

V. CONCLUSION

In this paper, we have presented the combination of MSAM
sampling and data fusion method to develop PLSR, GPR and
ANN models for determining phosphate ion concentrations
in an eggplant nutrient solution. The following are the main
findings in our research.

The MSAM was used to collect the samples of phosphate
concentration solution for preparing the data set to develop
the data fusion models. The MSAM based sampling showed
that it improved the detecting efficiency of four cobalt elec-
trodes. This reduced the cost of the measurement system and
improved quality as well. The expansion of the sensor data
features based on MSAM was proposed, where the models
were fed more information about the data to predict more
accurately. Furthermore, feature enrichment was quite simple
due to the zero-order of the electrodes signal and the results
showed that it was relatively significant in this scenario.

Three models including PLSR, GPR and ANN were used
to fuse the enriched feature data to improve the models
performance. The calibration sample results showed that
the PLSR and GPR models provided better performances
(R? of 0.925 and 0.97, respectively) than the models without
data fusion. The results of measuring the test samples for
verification showed R? values of 0.92 and 0.95. Nevertheless,
the ANN prediction model achieved better results than the
other two models. The calibration phase of the model showed
an R? of 0.98 and RMSE of 50 mg. L™! and the test phase
showed an R? value of 0.96 and RMSE of 66 mg. L™!.

The results obtained in this work revealed that combining
MSAM-FE and fusion method facilitated the effective detec-
tion of phosphate. Furthermore, the proposed approach can be
used for monitoring phosphate in a closed hydroponic nutri-
ent solution rapidly and effectively. This method is expected
to be used in future for developing low-cost and more accurate
sensors for a variety of fields.
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