
Received December 18, 2019, accepted January 15, 2020, date of publication February 3, 2020, date of current version February 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971172

Autonomous Navigation via Deep Reinforcement
Learning for Resource Constraint Edge Nodes
Using Transfer Learning
AQEEL ANWAR AND ARIJIT RAYCHOWDHURY , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Corresponding author: Aqeel Anwar (aqeel.anwar@gatech.edu)

This work was supported in part by the Center for Brain-inspired Computing (C-BRIC), one of six centers in Joint University
Microelectronics Program (JUMP), a Semiconductor Research Corporation (SRC) Program sponsored by Defense Advanced Research
Projects Agency (DARPA).

ABSTRACT Smart and agile drones are fast becoming ubiquitous at the edge of the cloud. The usage
of these drones is constrained by their limited power and compute capability. In this paper, we present a
Transfer Learning (TL) based approach to reduce on-board computation required to train a deep neural
network for autonomous navigation via value-based Deep Reinforcement Learning for a target algorithmic
performance. A library of 3D realistic meta-environments is manually designed using Unreal Gaming
Engine and the network is trained end-to-end. These trained meta-weights are then used as initializers
to the network in a test environment and fine-tuned for the last few fully connected layers. Variation in
drone dynamics and environmental characteristics is carried out to show robustness of the approach. Using
NVIDIA GPU profiler, it was shown that the energy consumption and training latency is reduced by 3.7x
and 1.8x respectively without significant degradation in the performance in terms of average distance
traveled before crash i.e. Mean Safe Flight (MSF). The approach is also tested on a real environment using
DJI Tello drone and similar results were reported. The code for the approach can be found on GitHub:
https://github.com/aqeelanwar/DRLwithTL.

INDEX TERMS Autonomous navigation, transfer learning, deep reinforcement learning, drone.

I. INTRODUCTION
Over the past decade, Unmanned Aerial Vehicles (UAVs)
are emerging as a new form of IoT devices being used in
varied applications such as reconnaissance, surveying, res-
cuing and mapping. Irrespective of the application, navi-
gating autonomously is one of the key desirable features
of UAVs both indoors and outdoors. Several solutions have
been proposed to make drones autonomous in an indoor
environment. There has been significant work towards using
additional dedicated sensing modalities such as RADAR [1]
and LIDAR [2], which provide high accuracy in navigation
and obstacle avoidance, thus enabling autonomous flights
possible. But when the payload, cost and power is taken
into account, such systems are heavy, expensive and power
hungry, making them almost impossible to be used in low cost
Micro Aerial Vehicles (MAVs). Ultrasonic SONAR is a cheap
alternative but suffers from lack of accuracy and reduced

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan .

field of view (FOV). They are also line of sight sensors
that need to function in an array to provide a depth map.
On the other hand, over the last decade, there has been signif-
icant interest in the use of Deep Neural Network (DNN) for
various robotic applications. In recent years, Reinforcement
Learning (RL) has been extensively explored for enabling
a wide array of robotic tasks. The model-free nature of RL
makes it suitable in the problems where little or nothing
is known about the environment. RL has been successfully
implemented in games and has shown beyond human level
performance [3], [4]. However, RL is a data-hungry method
and often requires more data compared to other machine
learning techniques to generate comparable results. The per-
formance of machine learning algorithms depends heavily
upon the complexity of the network and the amount of
meaningful data available for training. For a complex task,
the deeper the Neural Network (NN), the better the per-
formance. Correspondingly, the amount of meaningful data
scales too [5] until the point where the task is not complex
enough given the network architecture and performance starts

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 26549

https://orcid.org/0000-0001-6768-058X
https://orcid.org/0000-0001-8391-0576
https://github.com/aqeelanwar/DRLwithTL
https://orcid.org/0000-0002-9352-0237


A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

FIGURE 1. (left) DRL for autonomous navigation is carried out on a set of
manually generated 3D realistic meta-environments. The learning is
transferred to a new test environment and only last few layers are trained.
(right) The approach is also tested in a real environment using DJI Tello.

degrading [6]. Training a deeper neural network comes with
the cost of increased computation. This makes it a challenge
to be implemented on a limited resource edge node such as
a mobile drone. Simpler NNs with real-time training can be
implemented on edge nodes, but this is achieved only by
compromising the performance of the underlying application.
So, for an acceptable performance, the network should be
deep enough, which comes with:
• Additional compute requirement
• Increased Power consumption
• Increased latency
For a resource constrained edge node (like a light-weight

drone), additional compute resource means adding more
hardware to the drone decreasing its thrust-to-weight ratio,
increased amount of power consumption may drain the bat-
tery quicker rendering the drone useless and increased latency
will affect its response time making it far from being real-
time. Hence these additional requirements are in a direct
contrast with drone’s inherent limitations.

Simpler NNs require reduced amount of computations and
are possible to be implemented on edge nodes. But for a
complex enough task, these simpler NNs do not performwell.
So, the problem is, for RL related applications how can we
implement a neural network training on resource-constrained
edge nodes with reduced power and latency and without
losing on performance. One direct approach is to use Offline
Training and Deployment i.e. training the NN on cloud and
carrying out inference on the edge nodes. For tasks involving
supervised learning (say classification), this is an effective
solution. But for Reinforcement Learning (RL) related prob-
lems, where there is no clear boundary between the training
and inference phase (i.e. the training slowly transitions into
the inference phase without a clear separating boundary),
this can’t be implemented directly. Reference [7] however
uses an approach where the network is trained on simulated
environments posing RL as supervised learning problem and
then deployed on new unknown environments. This trans-
fer of knowledge without further fine-tuning doesn’t always
work well and is tightly tied to the co-relation or similar-
ity between the train and test environments. The more the
similarity between the training and testing environment the
better the performance and vice-versa. Reference [8] learns
a DNN with regressors using supervised learning to follow a

pre-determined path and fails to perform if the environment
changes.

The contributions of the paper are as follows

• Energy efficient approach for RL based drone
autonomous navigation.

• Python-based programmable framework for drone
related applications.

For the rest of the paper, we will focus on solving
autonomous navigation problem using RL in an energy effi-
cient manner, in simulated indoor environments.

II. RELATED WORK
Since the overall objective is to make Micro Aerial vehi-
cles (MAV) capable enough of carrying out ML training
algorithms, this problem can be approached in either of the
two areas. The first andmore direct approach is tomake better
hardware engines for DNN accelerators [9], [10]. Authors
of [11] design and implement an energy-efficient accelerator
for visual-inertial odometry (VIO) that enables autonomous
navigation of miniaturized robots. Reference [12] demon-
strates a navigation engine for autonomous nano-drones
which is capable of closed-loop end-to-end DNN-based
visual navigation. The other approach is to devise better and
improved algorithms that take lesser amount of computations
(hence energy) for similar performance such as model com-
pression [13], [14]. Reference [15] developed Network Prun-
ing, which begins with a pre-trained model, then the network
parameters which are below a certain threshold are replaced
with zeros forming a sparsematrix, and finally performs a few
iterations of training on the sparse CNN. The downside of this
approach is that the network needs to be iteratively pruned
and re-trainined until the desired compression is achieved.
Moreover, this approach might not be useful for online ML
problems such as RL where re-training the network is not
energy efficient at all. Reference [16] presents SqueezeNet,
a CNN architecture that has 50x fewer parameters than
AlexNet and maintains AlexNet-level accuracy on ImageNet
by exploring the design space of convolutional network. This
tiny network might be problem specific and is not guaranteed
to be complex enough for convoluted task such as end-to-end
autonomous navigation. This paper proposes an approach that
falls in the latter category.

Transfer learning is a well-established approach of trans-
ferring any prior domain knowledge to a new problem or
domain. This is how human brain works, instead of learning
any new problem from scratch, it uses pre-existing knowledge
about prior problems and uses that along with learning new
skill set to solve the problem. Transfer learning has been
widely used in Machine Learning problems to address the
issues of smaller or insufficient amount of data, mitigating
convergence issues, reducing the time/steps required for con-
vergence [17]–[24]. These issues are addressed by learning
a neural network for one task and using the learned weights
as initialization to another network for a different task. The
network weights are then fine-tuned based on the new domain

26550 VOLUME 8, 2020



A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

knowledge (dataset). The most common and simplest exam-
ple of TL is using Imagenet learned weights as initializer for
classification problems.

To the best of our knowledge all the TL papers in the past
discuss TL as tool/approach to address the above-mentioned
issues without worrying much about the computational cost
required to train a deep neural network. In this paper we show
we can use Transfer learning, to segment a deep network into
trainable and non-trainable part reducing the training compu-
tations, for underlying task without compromising too much
on its performance. This reduction is computation directly
translates to reduced training energy leading to an energy
efficient system.

III. BACKGROUND ON REINFORCEMENT LEARNING
In Reinforcement Learning (RL), the agent interacts with the
given environment learning a control policy to achieve the
underline objective. As opposed to Supervised Learning (SL)
where the target labels are static, the labels for value-based
RLmethods are dynamic until the mapping converges. Policy
based RL methods, however, do not have dynamic labels,
but these methods take longer than value-based methods to
converge and have lower data-efficiency. The dynamic nature
of the labels (or Q values) requires constant interaction with
the environment and can’t be done offline. In this paper,
the RL objective is to achieve autonomous flight, taking
actions that lead to a collision free flight of the drone. There
is no predefined start or end position and the goal is to keep
on moving across the environment.

Consider the above-mentioned task of obstacle avoidance.
The agent interacts with the environment E in a sequence of
actions, observations and reward calculations. At each time
instant t , the agent observes the current camera frame st .
It takes an action at from a predefined action space A and
implements it. Implementing the action moves the drone to a
new position where it observes a new camera frame st+1. This
new camera frame along with the action taken will quantify
a reward rt . This reward should be high if the drone moved
in the right direction avoiding the obstacle and low if the
action took it closer to the obstacle, increasing the chance of
collision. Hence each iteration in RL generates a data-tuple
(st , at , rt , st+1). The goal for RL is to learn a control policy
a = π (s) that predicts actions given the state in a such a
way that the long-term reward is maximized. At each time
step t , action at needs to be predicted that eventually leads
the agent to a sequence of states si with rewards ri for i ∈
{t + 1, t + 2, . . .} such that the future discounted return Rt =∑T

i=t γ
i−tri is maximized, where γ ∈ [0, 1] is the discount

factor. At a given time step t , the drone only gets to observe
the current frame st and hence the task of obstacle avoidance
is partially observed. The system can be safely assumed to
be a Markov Decision Process (MDP) where the current state
only depends on the previous state and the action taken.

Each of the state-action pair is assigned a Q-value
Q(s, a). This Q-value quantifies the expected discounted
return achieved by taking an action a at a state s i.e.

FIGURE 2. Block diagram for the TL based approach to DRL.

Q(s, a) = Eπ [Rt |st = s, at = a]. The idea is to learn these
mapping from all the possible states to all the available
actions in the action space. This expression when simplified,
yields the following Bellman optimality equation

Q(s, a) = r + γmaxa′Q(s
′, a′) (1)

Bellman equation is used to update the Q-values during
training. The training data consists of states as input and their
corresponding Q values as target output. Once the mapping is
effectively learned, it ensures that in a given state st selecting
an action at = maxa′Q(st , a′) i.e predicting the action with
the largest Q value will result in maximizing the future dis-
counted reward Rt .

In Deep Reinforcement learning (DRL), this mapping from
states to Q-values s −→ Q(s, a) is done by learning a Neural
Network and hence requires a lot of training iterations before
it can converge. Learning to avoid obstacles from monocular
RGB images is a complex task and requires deeper neural
networks. Training these deep neural networks usually adds
to the latency and energy requirements.

IV. TL BASED PROPOSED APPROACH
In this paper we discuss Transfer Learning (TL) based
approach targeting real-time and energy efficient learning
without compromising on the algorithmic performance. We
propose a two-phase approach to the problems related to DRL
which combines offline and online learning using Transfer
Learning and fine-tuning. The idea is that if we train a NN for
an RL application (say autonomous navigation) in a variety of
indoor environments collectively, we can use this knowledge
using TL training a smaller part of NN for similar applica-
tion in a similar (but different/unseen) test environment. The
top-level block diagram of the approach can be seen in Fig. 2.
In the Offline phase, one single network is trained on a set
of training environments (called meta-environments) using
DRL. These environments serve as a library of environment
for the underlying problem. This offline training phase is

VOLUME 8, 2020 26551



A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

FIGURE 3. Perception based probabilistic action space As.

carried out on server (and not on edge-nodes) where we
assume no strict restriction on the compute engine. Once
we have effectively trained a network on the meta environ-
ments collectively, we use these meta-weights as initializa-
tion during the online training phase. In the online training
phase, a different test environment is used for training (fine-
tuning). The training computations need to be carried out
in the edge nodes (we don’t implement anything on hard-
ware, rather we provide the compute statistics and compare
them with training the network end-to-end). In this phase,
the training is only carried out on a part of the network.
The network is divided into non-trainable and trainable part
and only the weights of the trainable part are updated. The
segmentation of the network is a compromise between the
performance (obstacle avoidance) and the number of training
computations. Training the convolution (CONV) layer takes
up much more computation as compared to that of Fully Con-
nected (FC) layer. Also, CONV layers capture the top-level
features of the underlying problem such as edge detection,
blurring and sharpening and as we go deeper into the network,
the features becomemore and more specific to the underlying
problem. Hence including the CONV layers within the the
non-trainable part of the network makes much more sense.
The trainable part of the network consists of the last few
FC layers. The number of layers in the trainable part of the
network is a parameter (called train type) that we vary during
the experimentation. The variation of these train types is done
by keeping the following two parameters in mind:

• Similar performance: For the reduced trainable size
of the network, we ideally want it to perform simi-
lar to that of training the entire network (end-to-end
training or e2e). The higher the similarity between the
meta-environments and the test environment, the better
the performance while training a smaller number of NN
layers.

• Reduced Training Computations: With the reduced
trainable weights, we want the training computations
to be significantly lower to that of e2e train type. This
reduced computation will make the approach practical
to be used on resource constraint edge-nodes.

V. PYTHON-BASED PROGRAMMING FRAMEWORK
To carry out experimentation of the proposed approach, a con-
figurable programming framework was developed Fig. 4.

FIGURE 4. Python based training framework for drone related
applications.

TABLE 1. Weights and FLOP for each train type.

FIGURE 5. Modified Alexnet used for training.

The framework is developed in Python and is module-wise
programmable. This framework is mainly targeted at goal
oriented RL problems for drones but can also be extended
to other problems. The engine interfaces with Unreal gaming
engine using AirSim to create the complete platform. Unreal
engine [25] is used to create 3D realistic environments for
the drones to be trained in. Different levels of detail are
added to make the environments look as realistic as possible.
These simulated environments are interfaced with the frame-
work using AirSim [26]. AirSim is an open source plugin
developed by Microsoft that interfaces Unreal Engine with
Python. It provides basic python functionalities controlling
the sensory inputs and control signals of the drone. The
custom framework is built onto the low-level python modules
provided by AirSim creating higher level python modules for
the purpose of drone RL applications.

A. PERCEPTION BASED PROBABILISTIC ACTION SPACE
Perception based discrete action space As of size N × N is
used. In this action space the agent navigates by controlling
the yaw and pitch expanding over all three coordinates. These
angles are calculated by making use of the horizontal and
vertical field-of-view (FOVs) of the front facing camera. The
camera image at time t , st is divided into N × N grid. Each
window in the grid corresponds to an action in the action
space. The action selection is simply the choice of the bin
which is then transformed into velocity commands vt for the
drone. This velocity command results in moving along the
line connecting the current position to the position where
the window becomes the entire camera frame by r meters.
Varying the pitch φ only results the agent moving to one of

26552 VOLUME 8, 2020



A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

FIGURE 6. 3D floor plan and screen-shots of the 8 meta environments used for offline training phase.

FIGURE 7. 3D floor plan and screen-shots of the 3 test environments used for online training phase. (from left to right) Cloud, Condo and Twisty.

the vertical bins while varying the yaw θ onlymoves the agent
along the horizontal bins. Given the vertical and horizontal
FOV (FOVv and FOVh) these angles are calculated as follows

θi =

(
FOVh
N 2 × (i− (N 2

− 1))/2)
)

φj =

(
FOVv
N 2 × (j− (N 2

− 1)/2)
)

where i, j ∈ {0, 1, . . . , (N 2
− 1)/2} is the (i, j) bin location as

shown in Fig 3.
In all these actions, the agent moves forward by a constant

distant of r = 0.5m. Moreover, the control associated with
the action space is probabilistic. A uniform random noise
ε ∼ uniform(−b, b) is added to these deterministic yaw and
pitch angles making them probabilistic and robust to slight
control variations where b = 1

15 is empirically selected.
The maximum difference in final position under this prob-

abilistic space for the same action is ∼ 0.1m and can be seen
in Fig 3.

B. NETWORK ARCHITECTURE
Deep Neural Network is used to map the state to their cor-
responding Q values based on a modified Alexnet architec-
ture [27]. This architecture takes as input an RGB frame of
size 227 × 227 × 3 and outputs N 2 number of Q-values
corresponding to each action in the action space. The network
architecture can be seen in Fig 5. In order to help deep
reinforcement learning converge better a dueling nature of the
network [28] was used where we train two streams of FC net-
work to estimate the state value function V (st ) and advantage
function A(st , at ) separately which can be seen in the figure.
Training approach used DoubleDQN [29] and Prioritized
Experience Replay (PER) [30] to avoid the over-fitting nature
of Bellman Equation and aid faster learning respectively.

VOLUME 8, 2020 26553



A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

FIGURE 8. Variation in action space As. Right: Rotated Left: Dilated.

The complete network is trained during the offline phase
while for the online phase a part of the network is used
for training. Extra FC layers are added to the network to
quantify the effect of training certain number of layers in the
online phase. A Parameter train type is defined based on the
number of layers that are trained. We evaluate the training
for 3 different train types denoted by lastp and compared to
the baseline of training the network end-to-end (e2e) where
p ∈ {2, 3, 4} denotes the number of FC layers trained from
the end.

The idea behind these train types is that training fewer
number of layers will result in reduced computational cost.
The details for these train type (number of weights, amount
of Floating Point Operations FLOP) can be seen in Table 1.
For modified Alexnet architecture, training the lastp layers
for p ∈ {2, 3, 4} results in significant reduction in the num-
ber of floating point operations required. This reduction in
computations is directly co-related to the amount of energy
required for training and is reported quantitatively in the
Section VII-B.

C. SIMULATED 3D ENVIRONMENTS
We manually designed all the 3D indoor environments used
for experimentation. These environments were built using
an open source gaming engine called Unreal Engine [25].
The designed environments contain a large variety of lighting
conditions, hallway sizes and structures such as long, broad,
narrow, sharp turns and circular hallways. Indoor furniture
objects with various sizes were used to furnish these environ-
ments. The walls were textured with various patterns includ-
ing metal, wood, marble, concrete and wallpapers. These
patterns were selected randomly from a pool of 40 textures
to create a diverse data set. Learning a network on this wide
variety of indoor environments will help us generalize it
to other rendered environments. The more the variation of
parameters in the simulation, the better the network is able
to generalize the problem. The floor plan and screenshots of
the 8 meta-environments can be seen on Fig. 6.

VI. EXPERIMENTATION
The idea is to show that once the network was trained on
meta environments, this knowledge can be used to help train

Algorithm 1 Offline Training Phase Algorithm
Input: Set of N meta environments: Emeta =

{E0,E1, ...,EN , }

Output:Weights of neural network θmeta
Initialization: Behaviour network: Qθ (s) = N(s; θ ), Tar-
get network: Qθ ′ (s) = N(s; θ ′), ntarget : Target network
update interval, nbatch: mini-batch size for training, ntrain:
Train Interval, Dreplay, env = 0, m : Environment switch
interval
for t ∈ {1, 2, 3, . . . ,max_steps} do

if mod(t,m) = 0 then
saved_state[env]← (st , pt )
env← mod((env+ 1),N )
(st , pt )← saved_state[env]
Ecurrent ← Eenv
position_agent(Ecurrent , pt )

else
st ← get_state(Ecurrent , pt )

Sample an action at from current policy using ε-greedy
pt+1← move_agent(Ecurrent , pt , at )
st+1← get_state(Ecurrent , pt+1)
rt ← get_reward(st , at , st+1, pt+1)
Store the tuple (st , at , st+1, rt ) in Dreplay
if mod(t, ntrain) = 0 then

Sample a mini-batch of size nbatch from Dreplay
Train the Behaviour network: Qθ (s) = N(s; θ )

if mod(t, ntarget ) = 0 then θ ′← θ

θmeta← θ

FIGURE 9. DRL training block diagram.

another network for a similar but different problem. The sim-
ilarity of the problem is kept by having the same object, i.e.
autonomous navigation, while the ‘different’ part is achieved
by changing/varying the environment and action space. This
is done to show that this learning approach is robust to
variation in environment and agent’s control dynamics. The
complete training block diagram can be seen in Fig. 9.

A. ENVIRONMENTAL VARIATION
Environmental variation was carried out by designing 3 test
environments (named Cloud, Condo and Twisty) with vari-
ation in the floor plan, lighting and textures as that of used
in the meta environments. The floor plans and snapshots at
different locations of these test environments can be seen in
the Fig 7. These environments were designed with a vary-
ing degree of similarity to the environments in the used for
meta-training and will be discussed in next section.

26554 VOLUME 8, 2020



A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

FIGURE 10. Return across environment and action space combination.

B. ACTION SPACE VARIATION
Action space variation was carried out by defining 2 other
action spaces alongwith the one used during themeta training
phase. The actual action space was dilated and rotated to
generate two other action spaces. The explanation of these
action spaces can be seen in Fig 8. The dilated action space
was created by dilating the yaw and pitch angles in the
original action space by 20%, while the rotated action space
rotates the original action space by 25% for both pitch and
yaw. Both of these action spaces were made probabilistic by
introducing noise in the angles (pitch and yaw) as explained
in the previous section.

VII. EXPERIMENTAL RESULTS
In this section we evaluate the proposed approach and
quantify the algorithmic performance and computational
cost for each train type across different test environments.
Experimentation was carried out on a workstation with
GTX1080 GPU. As mentioned in the previous section, a list
of 20 experimentation was carried out by varying the environ-
ment and action space. The list of combination used during
experimentation is shown in Fig 11.
For each of these combinations, the agent was initialized

at three different initial position randomly chosen prior to
learning. A dueling network was learned using DDQN and
PER. The network was first trained end-to-end updating all
the weights of the network for 150,000 steps and the return
was recorded. The algorithm used for offline training phase
can be seen in Algo 1. This return serves as a baseline setting
a threshold for subsequent train types (last4, last3 and last2).
For these train types, the network was trained for either at
most 300,000 steps or until the return matched that of e2e
train type.

FIGURE 11. Training combination used across the environment and
action space variation.

A. ALGORITHMIC PERFORMANCE
The return graph for all these combinations has been plotted
in Fig 10. The return graph reported/plotted is the moving
average of the actual return graph to make it more meaning-
ful. It can be seen that in all the cases, train type last4, and for
some cases others, were able to match the return obtained for
the train type e2e. It should be noted that variations in action
space didn’t bar the network to achieve the required return.
The only difference that it made was the time/steps required
to achieve that return. It took slightly longer to achieve the
desired return.

1) TEST ENVIRONMENT 1 - CLOUD
This environment had a smooth floor plan (no sharp edges)
and all the wall textures used in this environment were cho-
sen from the 40-texture pool used in the construction of
meta environment. Amount of learning transferred frommeta
environments to this test environment should be significant
due its greater similarity to meta environments. This can
be seen in the return graph for this environment as shown
in Fig 10. Not only did all the train types were able to reach
the desired return value, but they also did it in almost equal
number/amount of iterations/time.

VOLUME 8, 2020 26555



A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

FIGURE 12. Mean safe flight (MSF) across different environment for different action spaces.

TABLE 2. Mean safe flight (MSF).

2) TEST ENVIRONMENT 2 - CONDO
The floor plan of this environment had turns similar to that
of meta environment. 75% of the textures used for the walls
were chosen from the 40 textures pool used during the design
of the meta environments. Rest of the 25% textures were
the ones that were never used in the meta environments.
The idea is to evaluate the robustness of the approach to
variation in the environment characteristics. The idea is to
evaluate the performance of the approach to unseen textured
environment. The return graph for different train types can
be seen in Fig 10. It can be seen that except for the train type
last2, all the other train types were able to achieve the desired
return value. Since this environment has lesser similarity with
meta environment as compared to that of Cloud environment,
the train type last4 and last3 took longer to achieve the desired
return value.

3) TEST ENVIRONMENT 3 - TWISTY
Half or the textured used in this environment was new and
had never used in the design of meta environments. The floor
plan has sharp turns and narrower hallways as compared
to other environments. Only train type last4 was able to
achieve the desired return threshold, while last 3 performed
better than last 2. The respective return graph can be seen
in Fig 10.

Mean Safe Flight (MSF) was used to meaning-fully quan-
tify the performance of the learned networks in the respective
environment. MSF is the average distance traveled by the
agent, in meters, before a collision. For each of the learning
combination, the network was initialized with the learned
weights and the agent was initialized randomly at 10 dif-
ferent locations within the environment. In order to have a
fair comparison, the agent was placed exactly the same way
(in terms of position and orientation) across all the train types.
In each of the cases, the distance traveled by the agent before

collision was recorded and averaged out to generate the MSF.
These actual MSF values can be seen in the table 2 and
the normalized MSF value for each environment is plotted
in figure 12. Th right most column ‘meta’ or ‘no’train’ shows
the MSF values achieved by the network initialized with
meta-weights without fine-tuning. It can be seen that for
all the cases, the MSF achieved by the train type last4 is
at least 97% that of achieved by end-to-end training. MSF
achieved by all the train types co-relates with their return
values.

Fig 13 shows the images captured from the front facing
camera of the drone during flight across the three different
simulated test environments. For each environment, the RGB
image of the camera (on the left) and the 5 × 5 network
predicted action space (on the right) has been shown. Each of
the bin in the predicted action space represents the normalized
Q values (across all the predictions). The darker (blue) bins
corresponds to smaller values while lighter (yellow) corre-
sponds to higher Q values. Moving in the direction of darker
bins will increase the probability of collision.

B. COMPUTATIONAL COST
To measure the resources used during training, for each of
the train type, a set of GPU parameters were recorded. These
computational parameters were collected using NVIDIA’s
profiling tools (nvidia-smi [31] and nvprof [32]) and
include
• Runtime: Time in seconds taken to train the neural
network for K iterations

• DtoDMemcpy: Amount of data transferred (in MBs)
within the GPU cores

• GPU Mem: Amount of GPU Memory used
• GPU Load: Power consumption of GPU in Watts
• Energy/iter: Energy consumption per training
iteration

Runtime and GPU load corresponds to latency and power
required for training, while DtoDMemcpy and GPU Mem
governs the hardware resources required. These parameters
give a quantitative way of understanding how these different
train types directly affect the edge node resources. In order
to calculate these parameters, for each train type, the neural
network was trained for K = 500 number of iterations on a
collected dataset. These GPU parameters have been tabulated

26556 VOLUME 8, 2020



A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

FIGURE 13. Images captured from front facing camera of the drone during flight in simulated environments. On the right of each block is the
action space probability where blue corresponds to lower and yellow higher probability. The red dot corresponds to the action taken. From
left to right: Cloud, Condo and Twisty environment.

VOLUME 8, 2020 26557



A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

TABLE 3. GPU parameters for different train types.

FIGURE 14. GPU parameters for the 4 different train types.

in Table 3 and their normalized values have been plotted
in Fig. 14. The energy per iteration in the table is calculated
from the power consumed by the GPU, total run-time, and the
number of iterations.

Energy/iter =
GPU load(%)× max GPU load × Runtime

number of iterations

It can be seen that for all the train types the time required to
train the network (latency) was reduced to less than 60% as
compared to that of e2e while reducing the energy consump-
tion to less than 30%. The reduced latency directly dictates
the speed of the drone during training. For a given speed
of the drone, the corresponding distance traveled between
two sequentially acquired frames, and the drone distance
threshold for obstacles (a measure of clutter in the environ-
ment), we can calculate the minimum number of Frames per
Second (FPS) required for collision avoidance. For a drone to
have a higher speed, it needs to be able to processmore frames
in a given amount of time (i.e. support higher FPS). The
drone will only be able to support that speed if the underlying
computational system can process the dictated FPS (which is
inverse of the per frame latency). So, the maximum speed
of the drone will be limited by the latency of the system.
Hence the latency improvement of last2 vs e2e in Fig 14
directly corresponds to an improvement of maximum sup-
ported theoretical speed (based purely on the training pass
and ignoring other latency sources) of about 1.8 times from
e2e to last2. Using the lower train types not only reduces
the latency but also requires less operating power. Since it
was reported in Fig 12 that the algorithmic performance
(in terms of MSF) for these different train types was com-
parable to e2e learning, reduced hardware, power and time
requirement makes it favorable to be implemented on edge
nodes.

FIGURE 15. Action space of Tello drone for real environment.

FIGURE 16. Snapshots and the layout of the Hallway arena used as test
real environment.

C. EXPERIMENTAL VERIFICATION WITH DJI
DRONE IN REAL ENVIRONMENT
In this section, the result of implementing the proposed
approached on a real drone in a real environment is reported
and is compared with other baseline algorithms. A low cost
DJI Tello drone was used for this real-time experimentation.
DJI Tello does not have the computational power to carry out
the required processing on-board. Hence, a workstation/cloud
equipped with a core i7 processor and GTX1080 GPU was
used for training. TensorFlowwas used as theML platform to
carry out the neural network computation on the workstation.

For the proposed approach, the offline training was car-
ried out on the same set of simulated meta-environments
(Fig 7) and modified AlexNet network (Fig. 5) as discussed
in previous section. The action space, however, was modified
to contain only three actions. These actions include going
forward by 0.5m, rotating clock-wise by 45 degrees, and
rotating counter clock-wise by 45 degrees and can be seen
in Fig. 15. The action space did not include any actions that
corresponds to changing the drone altitude. Once the network
was trained for the three-action action space on the simu-
lated meta-environments, the learned weights were used as
initializers for the network to be trained in a real environment.
For this purpose a hallway environment of an engineering
building was used that contains glass walls and corridors
∼ 1.5m wide and can be seen in Fig 16. Using the baseline
deep reinforcement learning algorithm in a real environment
is time-consuming. Hence the approach discussed in [33] was
used. Using this approach, an expert user collects a set of
data-points in the real environment. These expert data-points

26558 VOLUME 8, 2020



A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

FIGURE 17. Action predictions by the network for the Hallway environment.

FIGURE 18. Performance comparison across baseline algorithms.

are made a mandatory part of the experience replay from
which the data-points are sampled for training. Moreover
data-aggregation techniques are used when the drone vir-
tually crashes to aid the data-collection. Only the last two
layers of the network were updated during training, while the
weights in the rest of the layers were kept static.

Once the networkwas trained for the last 2 layers, the drone
was placed at different initial positions and the performance
of the network was observed. MSF was used as the perfor-
mance metric. Fig 17 shows the control actions predicted by
the network for the given camera frames. The performance of
the proposed approach is also compared with the following
baseline algorithms.
• Straight-line (SL) controller: Always predicts moving
forward, providing qualitative idea of the complexity of
the arena [7]

• Left-Right-Straight (LRS) controller: Supervised
approach to classify images with respect to the actions
required to be taken [34]

• Self-supervised (SS) controller: 11,500 videos of var-
ious indoor environments are used to train a network
to classify images as safe or crash. A handcrafted
algorithm is designed to take suitable actions avoiding
obstacles [35].

All of these baselines have the same three-actions action
space. The MSF in meters for the proposed and baseline

algorithms in the Hallway environment can be seen in Fig. 18.
It can be seen that the proposed approach (DRLwitTL) per-
forms better as compared to the other baseline algorithms.
Moreover, DRLwithTL performs almost similar to that of
NavREn-RL which corresponds to the e2e train type i.e.
training the entire network. The important point to note is the
amount of energy used for to carry out the proposed and base-
line algorithms. It can be seen that the energy consumption
was reduced by a factor of x3.

VIII. CONCLUSION
This paper implements a Transfer learning approach to reduce
the amount of resources required to train a deep neural net-
work for RL problem by training the network on a set of
rich and diverse meta environments, transferring the domain
knowledge to test environments and training the last few
fully connected layers only. The algorithmic performance of
this network measured in terms of Mean Safe Flight was
similar to training the network end-to-end while reducing the
latency and energy consumption by 1.8 and 3.7 times respec-
tively. The reduction in these parameters can make it possi-
ble for DRL training to implemented resource constrained
edge nodes. Moreover, the approach was tested on a real
environment using a low-cost drone and the showed similar
performance when compared across different baselines.

REFERENCES
[1] Y. Kwag and J. Kang, ‘‘Obstacle awareness and collision avoidance radar

sensor system for low-altitude flying smart UAV,’’ in Proc. 23rd Digit.
Avionics Syst. Conf., Feb. 2005. vol. 2, p. 12–D.

[2] A. S. L. Raimundo, ‘‘Autonomous obstacle collision avoidance system for
uavs in rescue operations,’’ Ph.D. dissertation, Dept. Inf. Sci. Technol.,
Univ. Inst. Lisbon, Lisbon, Portugal, 2016.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, ‘‘Mastering the game of go with deep neural networks
and tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

VOLUME 8, 2020 26559



A. Anwar, A. Raychowdhury: Autonomous Navigation via DRL for Resource Constraint Edge Nodes Using TL

[5] Y. Bengio, I. J. Goodfellow, and A. Courville. (2015). Deep Learning,
Book in Preparation for Mit Press.[Online]. Available: http://www.iro.
umontreal.ca/bengioy/dlbook

[6] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, and G. Dulac-Arnold, ‘‘Deep
Q-learning from demonstrations,’’ Apr. 2017, arXiv:1704.03732. [Online].
Available: https://arxiv.org/abs/1704.03732

[7] F. Sadeghi and S. Levine, ‘‘CAD2RL: Real single-image flight without
a single real image,’’ Nov. 2016, arXiv:1611.04201. [Online]. Available:
https://arxiv.org/abs/1611.04201

[8] K. Amer, M. Samy, M. Shaker, and M. ElHelw, ‘‘Deep convolu-
tional neural network-based autonomous drone navigation,’’ Mar. 2019,
arXiv:1905.01657. [Online]. Available: https://arxiv.org/abs/1905.01657

[9] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of
deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[10] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars, ‘‘DeftNN: Addressing bottlenecks for
DNN execution on GPUs via synapse vector elimination and near-compute
data fission,’’ inProc. 50th Annu. IEEE/ACM Int. Symp.Microarchitecture,
2017. pp. 786–799.

[11] H. Rebecq, T. Horstschaefer, and D. Scaramuzza, ‘‘Real-time visual-
inertial Odometry for event cameras using keyframe-based nonlinear opti-
mization,’’ in Proc. Brit. Mach. Vis. Conf., vol. 3, 2017, pp. –13.

[12] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and
L. Benini, ‘‘A 64-mW DNN-based visual navigation engine for
autonomous nano-drones,’’ IEEE Internet Things J., vol. 6, no. 5,
pp. 8357–8371, Oct. 2019.

[13] Z. Jia, J. Thomas, T. Warszawski, M. Gao, M. Zaharia, and A. Aiken,
‘‘Optimizing dnn computation with relaxed graph substitutions,’’ in Proc.
2nd Conf. Syst. Mach. Learn. (SysML), 2019.

[14] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, ‘‘Exploiting
linear structure within convolutional networks for efficient evaluation,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1269–1277.

[15] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and con-
nections for efficient neural network,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 1135–1143.

[16] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and <0.5MB model size,’’ Feb. 2015, arXiv:1602.07360. [Online].
Available: https://arxiv.org/abs/1602.07360

[17] M. E. Taylor and P. Stone, ‘‘Transfer learning for reinforcement learn-
ing domains: A survey,’’ J. Mach. Learn. Res., vol. 10, pp. 1633–1685,
Jul. 2009.

[18] F. L. Da Silva and A. H. R. Costa, ‘‘Transfer learning for multiagent
reinforcement learning systems,’’ in Proc. IJCAI, 2016, pp. 3982–3983.

[19] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[20] K. Weiss, T. M. Khoshgoftaar, and D. Wang, ‘‘A survey of transfer learn-
ing,’’ J. Big Data, vol. 3, no. 1, p. 9, 2016.

[21] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, ‘‘A survey on deep
transfer learning,’’ in Proc. Int. Conf. Artif. Neural Netw. Springer, 2018,
pp. 270–279.

[22] D. George, H. Shen, and E. Huerta, ‘‘Deep transfer learning: A new deep
learning glitch classification method for advanced LIGO,’’ Jun. 2017,
arXiv:1706.07446. [Online]. Available: https://arxiv.org/abs/1706.07446

[23] M. E. Taylor and P. Stone, ‘‘Cross-domain transfer for reinforce-
ment learning,’’ in Proc. 24th Int. Conf. Mach. Learn. (ICML), 2007,
pp. 879–886.

[24] Y. Du, ‘‘Improving deep reinforcement learning via transfer,’’ in Proc. 18th
Int. Conf. Auto. Agents MultiAgent Syst., 2019, pp. 2405–2407.

[25] Unreal Engine. Accessed: Dec. 2, 2019. [Online]. Available:
https://www.unrealengine.com/en-us/

[26] S. Shah, D. Dey, C. Lovett, and A. Kapoor, ‘‘Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,’’ in Field Service
Robotics. Springer, 2018, pp. 621–635.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[28] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, ‘‘Dueling network architectures for deep reinforce-
ment learning,’’ Nov. 2015, arXiv:1511.06581. [Online]. Available:
https://arxiv.org/abs/1511.06581

[29] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. 13th AAAI Conf. Artif. Intell., Feb. 2016,
pp. 2094–2100.

[30] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized expe-
rience replay,’’ Nov. 2015, arXiv:1511.05952. [Online]. Available:
https://arxiv.org/abs/1511.05952

[31] NVIDIA System Management Interface. Accessed: Dec. 12, 2019.
[Online]. Available: https://developer.nvidia.com/nvidia-system-
management-interface

[32] NVIDIA Visual Profiler. Accessed: Dec. 12, 2019. [Online]. Available:
https://developer.nvidia.com/nvidia-visual-profiler

[33] M. A. Anwar and A. Raychowdhury, ‘‘NavREn-Rl: Learning to fly in real
environment via end-to-end deep reinforcement learning using monocular
images,’’ in Proc. 25th Int. Conf. Mechatronics Mach. Vis. Pract. (M2VIP),
Nov. 2018, pp. 1–6.

[34] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, ‘‘Learning monocular reactive UAV control
in cluttered natural environments,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 2013, pp. 1765–1772.

[35] D. Gandhi, L. Pinto, and A. Gupta, ‘‘Learning to fly by crashing,’’
Apr. 2017, arXiv:1704.05588. [Online]. Available: https://arxiv.org/abs/
1704.05588

AQEEL ANWAR received the bachelor’s degree
in electrical engineering from the University of
Engineering and Technology (UET), Lahore, Pak-
istan, in 2012, and the master’s degree in electrical
and computer engineering from the Georgia Insti-
tute of Technology, Atlanta, GA, USA, in 2017,
where he is currently pursuing the Ph.D. degree
in electrical and computer engineering under the
supervision of Dr. A. Raychowdhury. He is work-
ing towards shifting machine learning (ML) from

cloud to edge nodes by improving energy efficiency of current state-of-the-
art ML algorithms and designing efficient DNN accelerators. His research
interests lie at the junction of machine learning and hardware design.

ARIJIT RAYCHOWDHURY (Senior Member,
IEEE) received the Ph.D. degree in electrical and
computer engineering from Purdue University,
West Lafayette, IN, USA, in 2007. His industry
experience includes five years as a Staff Scien-
tist with the Circuits Research Laboratory, Intel
Corporation, Portland, OR, USA, and a year as an
Analog Circuit Researcher with Texas Instruments
Inc., Bengaluru, India. He joined the Georgia Insti-
tute of Technology, Atlanta, GA, USA, in 2013,

where he is currently anAssociate Professor with the School of Electrical and
Computer Engineering and holds an ON Semiconductor Junior Professor-
ship. He has published over 100 articles in journals and refereed conferences.
He holds more than 25 U.S. and International patents. His research interests
include low-power digital- and mixed-signal circuit design, device–circuit
interactions, and novel computing models and hardware realizations. He was
a recipient of the Dimitris N. Chorafas Award for Outstanding Doctoral
Research, in 2007, the Best Thesis Award from the College of Engineering,
Purdue University, in 2007, the Intel Labs Technical Contribution Award,
in 2011, the Intel Early Faculty Award, in 2015, the NSF CISE Research
Initiation Initiative Award (CRII), in 2015, and multiple best paper awards
and fellowships.

26560 VOLUME 8, 2020


