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ABSTRACT Autonomous driving is the main application of Internet of Things (IoT) technology in the field
of intelligent transportation. In autonomous driving, self-driving cars will avoid changing lanes in a short
distance. When the self-driving car executes the follow-up instruction, the road smoothness in front of the
car will affect the driving safety and comfort of the car. The real-time acquisition of road information in
front of driving will help the self-driving car adjust driving behavior. However, other vehicles on the road
will lead to the failure of Light Detection And Ranging (LiDAR) detectors to obtain complete road point
cloud data. The incomplete road point cloud data need to be imputated to avoid potential misjudgements
of the road conditions. Currently, little research work specifically focuses on imputating the incomplete
road point cloud data that are caused by obstacle vehicles. In this paper, we propose a fast method to
imputate the incomplete road point cloud data using a Graphics Processing Unit (GPU)-based parallel Inverse
Distance Weighted (IDW) interpolation algorithm to enhance the safety of autonomous driving. To evaluate
the performance of the proposed method, two groups of experiments are conducted. The experimental results
indicate the following: (1) the known point cloud data within 5 meters around the obstacle vehicle are
sufficient to guarantee the imputation accuracy; (2) when the weight parameter of the IDW interpolation
is 4, the efficiency and accuracy of the imputation can be optimally balanced; and (3) it takes approximately
0.6 seconds to imputate the incomplete dataset consisting of 15 million points, while the imputation error is
approximately 5 millimeters. The proposed method is capable of efficiently and effectively imputating the
incomplete road point cloud data that are induced by obstacle vehicles and outperforms other interpolation

algorithms and machine learning algorithms.

INDEX TERMS IoT, self-driving car, path planning, data imputation, interpolation algorithm, GPU.

I. INTRODUCTION

Internet of Things (IoT) is one of the most exciting emerg-
ing technologies. IoT combines various information sens-
ing devices with the Internet to exchange and communicate
information, thus realizing intelligent identification, location,
tracking, monitoring and management of items [1]-[3]. Cur-
rently, the application of the IoT involves fields as intelligent
transportation [4], [5], intelligent medical treatment [6]-[8],
public safety [9]-[11], etc. It effectively promotes the
intelligent development of these fields, and makes the limited
resources allocated more reasonably.
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In intelligent transportation, automatic driving vehicle
is one of the most important solutions to realizing traffic
intelligence. Recently, autonomous driving has received sig-
nificant attention from scientific research institutions and
automobile manufacturing enterprises. It is one of the most
interesting scientific and technological research topics, and
it is also a potential solution to enhancing driving safety,
alleviating traffic congestion [12]-[14], and reducing air
pollution [15]-[18].

Safety is an essential requirement for self-driving
cars [19]-[21]. Environmental perception is the precondition
of high-level intelligent behaviour such as obstacle avoidance
and path planning for self-driving cars. One of the most
important tasks in environmental perception is to collect and
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FIGURE 1. Self-driving car executes follow command on uneven
pavement.

identify road information. The timely acquisition of road
information during driving can provide important informa-
tion for real-time path planning to ensure vehicle safety.
Therefore, the IoT technology is an inevitable problem in the
development of autonomous vehicles.

Effective road detection is challenging for self-driving
cars [22]. In the process of autonomous driving, road recog-
nition depends on GPS, sensors, and high-resolution digital
map guidance [23]. A self-driving car can determine its ori-
entation using GPS coordinates on a high-definition digital
map and combining the environmental data that are obtained
by the digital cameras and LiDAR sensors around the vehicle
to identify the current road conditions.

To obtain timely, accurate, and reliable road information
for decision-making, various cameras and sensors have been
equipped onto self-driving cars to acquire the road data. The
first is the vehicle vision system [24], [25]. An image is
acquired by image acquisition devices, and then converted
into a digital signal according to the pixel distribution, bright-
ness, and colour. Finally, the required information is recog-
nized by extracting the characteristics of the digital signals.
The second is LiDAR [26], [27], which can continuously
collect point cloud data to assess the environment around the
vehicle during the driving process [28]-[30]. The laser beams
in a LiDAR repetitively scan the surrounding environment,
and produce the road point cloud data. In addition, ultrasonic
sensors and infrared sensors are also used in environmental
sensing.

In theory, for autonomous vehicles, the more important
work is to detect the drivable area and avoid the surface
that is occupied by the obstacles. However, in practice,
the autonomous vehicle may try to avoid lane change in a
short distance, because the planning control algorithm of the
autonomous vehicle needs more lane change space than the
normal driver needs for safety reasons [31]. In autonomous
driving, when there are normal driving vehicles in front and
around, a decision of behavioral decision-making is likely to
be a follow-up order; see Figure 1. In this case, the flatness
of the road ahead of the autonomous vehicle becomes an
important factor that restricts the safety and stability of the
autonomous vehicle [32], [33].

The autonomous vehicles realize the environment percep-
tion through the high-precision map combined with LiDAR
and other sensors. But the update cycle of the high-precision
map is approximately once a week, if there are new pot-
holes or bumps on the road, the autonomous vehicles can
only obtain the road information through real-time detection.
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In addition, the real-time detection of the road is more impor-
tant when there is no high-precision map on the strange
road [34]. When the pothole road is occupied by other vehi-
cles, the radar detection results will be affected, which is not
conducive to the safety of automatic driving [35]. Therefore,
it is very important to quickly supplement the road informa-
tion blocked by the vehicles in front to enhance the safety of
autonomous vehicles.

Due to the fast decision-making requirements of
autonomous vehicles, the rapid identification and imputation
of incomplete road information are critical to ensure driving
safety. Most importantly, both the efficiency and accuracy
of the incomplete road information imputation need to be
seriously guaranteed.

However, to the best of the authors’ knowledge, little
work specifically focuses on imputating the incomplete road
information that is induced by obstacles such as vehicles.
Most studies estimate the missing values in time-series data
using various machine learning algorithms and mathematical
algorithms such as the Radial Basis Function (RBF) interpo-
lation, the Support Vector Machine (SVM) regression, and the
k-Nearest Neighbours (kNN) estimation [36]-[39].

In this paper, we propose a fast method to imputate the
incomplete road point cloud data using a GPU-based par-
allel IDW interpolation algorithm to enhance the safety of
autonomous driving. There are two main steps in the pro-
posed method. First, the known point cloud data within a
certain distance around the obstacle vehicle are optimally
identified to reduce the number of scattered points for impu-
tation. Second, a simple and efficient GPU-based parallel
IDW interpolation algorithm is employed to imputate the
incomplete road point cloud data. To evaluate the perfor-
mance of the proposed method, two groups of experiments
are conducted.

The main contributions of this paper can be summarized as
follows.

(1) We propose a fast and effective method to imputate the
incomplete road point cloud data that are induced by obstacle
vehicles to enhance the safety of autonomous driving.

(2) We employ a simple and efficient GPU-based paralell
IDW interpolation algorithm to estimate the missing points in
the incomplete road point cloud data.

The rest of the paper is organized as follows. Section 2
describes the proposed method in detail. Section 3 presents
two benchmark experiments and analyzes the experimen-
tal results. Section 4 discusses and compares the proposed
method with other relevant methods. Finally, Section 5 draws
several conclusions.

Il. METHOD

A. ESSENTIAL IDEAS OF INCOMPLETE ROAD
INFORMATION IMPUTATION

A self-driving car needs to perceive the road information
in the driving process, as shown in Figure 2. The complete
road scene is crucial for real-time path planning. To recon-
struct the three-dimensional real scene of the road, the
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FIGURE 2. Driving scene of self-driving cars.

self-driving car usually scans the road in real-time. After
scanning, the coordinates of the scattered points on the road
surface are obtained, and the road scene can be reconstructed
using the point cloud data.

Howeyver, if there are other vehicles or obstacles in the
direction of driving, their presence will affect the collection
of the road point clouds by LiDAR, resulting in the lack of
road information in the area where the obstacles are located.
To address this problem, we employ the GPU-accelerated par-
allel interpolation algorithm to fast imputate the missing road
point cloud data based on the known road information around
the obstacle, and provide the complete road information for
path planning for the self-driving car in real time. This is
shown in Figure 3. The process of imputating incomplete road
information is illustrated in Figure 4.

First, we analyse the three-dimensional point cloud data
that are obtained by LiDAR scanning. If there is a lack of
road point cloud data, then it needs to estimate the missing
road point cloud data for real-time path planning to ensure
the safety of self-driving cars.

Before the interpolation of the missing point data, we need
to determine the range and spatial location of the miss-
ing region. It is considered that if all point cloud data in
the scanning area of LiDAR are used for the interpolation
calculation, it will consume more time and thus affect the
decision-making efficiency. Therefore, we use the known
point cloud data set for the interpolation calculation, which
is centred on the missing data area and extended to a cer-
tain range. Different extended ranges may lead to quite dif-
ferent computational efficiencies and accuracies, and thus,
it needs to first determine the suitable parameters of the
expansion through many experiments with different extended
ranges.

After determining the known point cloud data set for inter-
polation, we interpolate the missing area point cloud data
using the IDW interpolation method based on GPU parallel
acceleration. It should be noted that the weight parameter of
the IDW interpolation has a great impact on the interpolation
accuracy. Therefore, the most suitable weight parameter of
the IDW for imputating the missing point cloud data of roads
can be found by calculating the different weight values.
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To evaluate the efficiency and accuracy of the proposed
method, we record all the times of the whole experiment and
test process, calculate the interpolation results and compare
the height of the random point set to determine the Root
Mean Squared Error (RMSE). We use the computational time
to evaluate the interpolation efficiency and the RMSE to
evaluate the interpolation accuracy. The RMSE is defined
via Eq.(1).

2
2.4,

n

RMSE =

ey

where d; is a set of deviations that are between the measured
and true values, and » is the number of calculations.

B. GPU-ACCELERATED PARALLEL IDW
INTERPOLATION ALGORITHM
IDW interpolation is a commonly used interpolation method,
which has a simple form and is only related to the spatial
distance. The IDW interpolation method mainly depends on
the weight of the inverse distance. Weight parameters can be
used to adjust the influence of known points based on the
distance between the interpolation points and known points.
The greater the weight of the inverse distance is, the greater
the influence of the adjacent points on the interpolation
points. Assuming that there are n known points, the weighting
function is shown in Eq.(2).
d(x,x;))7?
(X)) = =" 2
%) = S @
where x is the position of the interpolation point, x; is the
position of the known point, d is the distance between the
two points, and p is the inverse distance weight.
After calculating the weighting function for each known
point to the interpolation point, the value of the interpolation
point is calculated via Eq.(3).

Z@=)" o@au 3)

where z; is the value of the i known point.

In GPU computing, data layouts may strongly affect
the computing efficiency. Therefore, one of the key issues
in developing efficient GPU implementations is to design
an appropriate data layout when manipulating multi-valued
data.Typically, there are two main data layouts in GPU com-
puting, the Array of Structures (AoS) and the Structure of
Arrays (SoA), which are shown in Figure 5. In this paper,
we use the SoA data layout. Because there is no data stagger-
ing, organizing data according to the SoA layout can usually
make full use of the memory bandwidth [40]. In addition,
when high-frequency data access is required, the SoA is
generally more efficient than the AoS, because the continuous
storage of frequently accessed data will significantly improve
access speed.

We use the optimized tiled version to implement the IDW
interpolation [40]-[42]. In this version, the coordinates of the
data points are first transferred from the global memory to the
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(a) Initial road environment

FIGURE 3. lllustration of incomplete road surface imputation.
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FIGURE 4. Process of incomplete road information imputation.

shared memory, and then each thread in the thread block can
access the coordinates that are stored in the shared memory
at the same time. Each thread is responsible for calculating
the distance and inverse weights of the data, and storing all
the calculated weights and the results of the corresponding
weights in two registers. Finally, according to the sum of the
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struct Pt { struct Pt {

float x; float x[N];
float y; float yI[N];
float z; float z[N];
}i }i
struct Pt myPts[N]; struct Pt myPts;
(a) AoS (b) SoA

FIGURE 5. Two common data layouts: AoS and SoA [40].

calculations of each thread, the value of each prediction point
is obtained and transferred back to the global memory.

Ill. RESULT

A. EXPERIMENTAL ENVIRONMENT AND TESTING DATA

1) EXPERIMENTAL ENVIRONMENT

To evaluate the performance of the proposed method for
incomplete road information imputation, two groups of
experiments are conducted on a workstation computer. The
specifications of the workstation are listed in Table 1.

TABLE 1. Specifications of the workstation computer employed for
performing experimental tests.

Specifications Details

CPU Intel Xeon Gold 5118 CPU
CPU Frequency (GHz) 2.30

CPU RAM (GB) 128

CPU core 48

GPU Quadro P6000

GPU memory (GB) 24

CUDA cores 3840

oS Windows 10 Professor
Compiler VS2015 Community
CUDA version v9.0

2) TESTING DATA

The point cloud data obtained by LiDAR is a kind of
three-dimensional data including position and elevation.
We have designed two sets of simulation data sets with the
same data attributes. In addition, we simulated the undula-
tions of the real road surface, making the simulated data set
closer to the actual field data set. To ensure that the method
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TABLE 2. Summary information on testing data.

Dataset Number of known data points Number of missing / interpolation Remarks
on the road points on the road
1 14897392 98604 Uphill Scene
2 14897392 98604 Downhill Scene

proposed in this paper can be applied to the actual acquisition
of field data sets.

To reflect real self-driving scenarios, as shown in Figure 6,
we designed two groups of experiments. The experiment
set up a two-way road with two lanes in each direction,
and the total width of the road is 15 meters. The effective
detection range of the designed LiDAR is 100 meters. We set
up an obstacle vehicle. The vehicle model is simplified as a
cuboid that is 5 meters long, 2 meters wide, and 1.6 meters
tall. In addition, considering that the real road is sloped and
rough, we create two scenes, i.e., the uphill and downhill. The
gradient is 2%. That is, the height difference over a horizontal
distance of 100 meters is 2 meters. We randomly generate
approximately 15 million scattered points to simulate the
point cloud data that are generated by the LiDAR over the
testing road. A 6 millimeter oscillation is applied to the points
on the same horizontal line to simulate the roughness of the
real road surface.

FIGURE 6. Self-driving cars driving on sloped roads.

It should be noted that we specifically remove the points
in the range of the obstacle vehicle’s position to form a radar
scanning blind spot area, ignore the heights of the points,
and consider that the heights of the coordinate points at the
position are unknown. That is, the road surface cloud data of
the other vehicle position in the direction of the self-driving
car are missing. More details of the two used datasets are
presented in Table 2 and Figure 7.

B. EXPERIMENTAL RESULTS

There are two parameters that strongly affect the efficiency
and accuracy of the imputation. The first is the extension
range of the known data point cloud around the obstacle
vehicle. A large extension range will lead to many data
points, while a small range will result in too few data points.
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FIGURE 7. Schematic diagram of testing data.

The second is the weight parameter of the IDW interpolation.
The weight parameter of the IDW is related to the distance
between the known data points and the unknown interpolation
points. The larger the weight is, the greater the influence of
the point near the missing point on the value of the missing
point.

To determine a suitable extension range for the known data
point cloud around the obstacle vehicle and the appropriate
weight parameter of the IDW interpolation, we have car-
ried out several groups of benchmark experiments, and the
experimental results are shown in Table 3 to Table 8. For the
sake of convenience, in those tables, the weight parameter
is represented as P, and the configured range of known data
points is represented as L.

When driving at high speed, self-driving cars need to iden-
tify and respond quickly to the road conditions in the direction
of driving. Therefore, when interpolating an incomplete road
point cloud using the IDW method, both the computational
efficiency and accuracy must be guaranteed.

We compare the accuracy and efficiency of different IDW
interpolation weights (P) and extension ranges (L), as shown
in Figure 8 and Figure 9. It is found that with the increase of L,
the number of known points and the interpolation accuracy
increase, but the computational efficiency decreases accord-
ingly. In addition, we find that when the weight of the IDW
is 4, the calculation efficiency is relatively high. Its efficiency
is higher than that when the weights are 3 and 5 but slightly
lower than that when the weight parameter is 2.

Therefore, we choose to set the weight parameter to 4 for
the IDW interpolation. Moreover, the influence of differ-
ent extension ranges of the known data point cloud on the
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TABLE 3. Experimental results of two groups of testing data when L=1.

Running time (/ms) RMSE(/mm)
Dataset P=> P=3 P=4 P=5 P=2 P=3 P=4 P=5
1 138 148 140 144 57.79 56.32 54.87 53.43
2 155 151 150 157 57.67 56.18 54.72 53.32
TABLE 4. Experimental results of two groups of testing data when L=2.
Running time (/ms) RMSE(/mm)
Dataset —p—> P=3 P=4 P=5 P=2 P=3 P=4 P=>5
1 222 259 217 227 51.03 46.13 42.03 38.79
2 225 227 222 231 50.92 46.02 41.92 38.68
TABLE 5. Experimental results of two groups of testing data when L=3.
Running time (/ms) RMSE(/mm)
Dataset —p_7 P=3 P=4 P=5 P=2 P=3 P=4 P=5
1 334 347 342 370 41.95 33.38 27.38 23.55
2 334 324 332 341 41.79 33.20 27.20 23.43
TABLE 6. Experimental results of two groups of testing data when L=4.
Running time (/ms) RMSE(/mm)
Dataset —p—7 P=3 P=4 P=>5 P=2 P=3 P=4 P=>5
1 520 540 466 472 32.20 20.29 13.87 10.46
2 478 486 478 483 32.13 20.11 13.88 10.41
TABLE 7. Experimental results of two groups of testing data when L=5.
Running time (/ms) RMSE(/mm)
Dataset —p—7 P=3 P=1 P=5 P=2 P=3 P=14 P=5
1 654 668 658 682 24.39 10.67 5.08 3.54
2 660 658 657 664 24.10 10.81 5.00 3.63
TABLE 8. Experimental results of two groups of testing data when L=6.
Running time (/ms) RMSE(/mm)
Dataset —p—> P=3 P=4 P=>5 P=2 P=3 P=4 P=>5
1 847 849 844 897 17.59 6.57 4.01 4.01
2 849 842 842 844 17.61 7.76 4.30 4.11

interpolation efficiency and accuracy is analysed, and the
results are shown in Figure 10.

We find that the computational efficiency and accuracy
have opposite trends. In Figure 10, it is found that the error
can be controlled only when the extension range is 5 meters
or 6 meters. When the range is less than 5 meters, there are too
few points that are involved in the interpolation to reflect the
road condition characteristics of the location. Thus, the error
is large. The errors in the cases when the ranges are 5 meters
and 6 meters are on the same magnitude, and the values of
the errors are close to each other. However, when the range
is 5 meters, the computational efficiency is much higher than
that when the range is 6 meters.

Therefore, we suggest that when imputating the incomplete
road point cloud data to enhance the safety of self-driving
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cars, the weight parameter of the IDW interpolation algorithm
is recommended to be 4, and the extension range of the known
data point cloud around the obstacle vehicle should be set as
5 meters.

IV. DISCUSSION

A. COMPARISON WITH OTHER METHODS

In the proposed method for incomplete road information
imputation, we employ the GPU-accelerated parallel IDW
algorithm to estimate the missing road point cloud. In this
subsection, we will analyse the advantages of using the
parallel IDW algorithm by comparing it with (1) machine
learning algorithms such as the kNN algorithm and (2) other
interpolation algorithms such as RBF and Moving Least
Squares (MLS).
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1) COMPARISON WITH MACHINE LEARNING ALGORITHMS

Machine learning algorithms are widely used in various
fields [43], [44]. By training known datasets, machine
learning algorithms can estimate missing data. However,
most machine learning techniques are computationally more
expensive than interpolation algorithms [37], [45]. The com-
monly used machine learning algorithms for missing value
estimations include the SVM, k-means, and deep neural net-
works. These algorithms are all executed iteratively. For large
amounts of data, these methods cannot meet the requirements
for computational efficiency. Among the machine learning
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algorithms, only lazy learning methods such as the kNN algo-
rithm are quite competitive with respect to efficiency [46].
The kNN is one of the simplest machine learning algo-
rithms. As a lazy learning algorithm, it does not need iterative
calculations, and it only needs the corresponding weight to
estimate the missing data. In this paper, we search k known
points near each of the missing points as the computing data
set. The Gauss weight is used to calculate the value of each
missing point. The estimated results are listed in Table 9.
With the increase of &, the time that is required for the kNN
estimation exponentially increases, as shown in Figure 11.
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TABLE 9. Experimental results of estimating missing data using kKNN.
Running time (/s) RMSE(/mm)
Dataset -0 £=200 £=500 £=1000 k=100 k=200 £=500 £=1000
1 0.926 4.024 19.430 64.140 4.198 4.247 4.351 4.476
2 0.895 3.874 18.752 58.695 4.338 4.396 4514 4.657
Dataset 1 algorithm is more suitable for estimating the missing data
607 Dataset 2 of road points than the commonly used machine learning
algorithms.
— 40 -
z 2) COMPARISON WITH OTHER
§ INTERPOLATION ALGORITHMS
= Other commonly used interpolation algorithms for estimat-
201 ing missing data include the MLS, RBF, adaptive IDW, and
Kriging algorithms. Among them, the MLS needs to con-
struct a matrix to solve when approximating the known data
04 points [36]. If all the known point data are used to construct
. . . . . the matrix, the matrix will be too large to be stored. Therefore,
0 200 400 600 800 1000

k

FIGURE 11. The computational efficiency of different k values
(k represent the number of nearest neighbors).

Among them, most of the time is spent on searching the k
nearest points around each of the missing points. Because
the global trend of the data set that is used in the experiment
is flat, the error when estimating the results is small, even
if k is very small when using the kNN regression method.
In fact, 100 or even 1000 known points near each missing
point are not enough to reflect the real situation of the whole
road surface. If intending to reflect the actual road conditions,
k must be set to a larger number. However, this will become
computationally much more expensive, as shown in Table 9.

Therefore, we suggest that in autonomous driving appli-
cations, the GPU-accelerated parallel IDW interpolation
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it is necessary to search the k nearest points to the missing
points using the kNN method to solve them. However, a sim-
ilar problem will occur as in the kNN regression method.
Le., a large value of k will result in unsatisfactory compu-
tational efficiency.

RBF interpolation is one of the interpolation methods that
can achieve satisfactory accuracy. The commonly used radial
basis function is a Gauss function. When calculating it, it is
also necessary to construct a matrix and solve it using the
Gauss elimination method. The RBF interpolation method
is obviously not applicable to a large number of data points
that are produced by the LiDAR detector of the self-driving
car. Similarly, the Kriging method needs to solve a system
of linear equations when calculating the weights, which is
not suitable for estimating a large number of missing points.
The adaptive IDW (AIDW) method is an improved version
of the IDW algorithm [42]. The essential idea behind the
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AIDW is to adaptively calculate the inverse distance weight.
In the adaptation process, k points around each missing point
need to be searched, and k values must be set to a larger
number to reflect the actual road conditions. However, this
will obviously encounter the same problems as the kNN
regression method.

Although more complex algorithms can produce more
accurate results, they usually require higher computational
costs [47]. In the application of autonomous driving, rapid
environmental awareness and decision making are the most
important technical problems. The parallel IDW interpolation
based on GPUs is more efficient than other commonly used
interpolation algorithms, and it also provides satisfactory
interpolation accuracy.

B. LIMITATIONS OF THE USE OF POINT CLOUD

DATA PRODUCED BY LIDAR

The main tasks of the environmental perception of
self-driving cars include extracting road information, detect-
ing obstacles, and calculating the positions of obstacles
relative to vehicles. By scanning road information, LiDAR
sensors can obtain high-precision road point cloud informa-
tion map. However, LiDAR scanning is sensitive to weather
conditions. In rainy, foggy, or snowy weather, the perfor-
mance of LiDAR is not ideal. In addition, LiDAR cannot
detect small obstacles, such as traffic signs that are 60 meters
away. Because they occupy a lower scanning angle than
the resolution of the LiDAR, the LiDAR cannot detect such
obstacles.

C. LIMITATIONS OF THE EMPLOYED GPU IN THIS PAPER
IDW interpolation algorithm has good parallelism. In the
actual situation, the CPU evenly distributes the calculation
work to the GPU, and our work is mainly performed in the
GPU. Therefore, our focus is mainly on GPU performance.
In order to solve the shortcomings of the performance of a
single GPU, the use of multiple GPUs has been proposed.
Many scholars and enterprises have conducted research on
multi-GPU interconnect technology [48]-[50]. The most rep-
resentative of them are CrossFire [51] proposed by AMD
and NVLink [52] and SLI [53] technology developed by
NVIDIA.

NVIDIA has developed special processors for autonomous
driving. NVIDIA DRIVE AGX Xavier [54] delivers 30 TOPS
of performance while consuming only 30 watts of power.
More importantly, NVIDIA recently introduced NVIDIA
DRIVE AGX Orin [55], a highly advanced software-defined
platform for autonomous vehicles and robots. The plat-
form is powered by a new system-on-a-chip (SoC) called
Orin, which consists of 17 billion transistors. The Orin SoC
integrates NVIDIA’s next-generation GPU architecture and
Arm Hercules CPU cores, as well as new deep learning
and computer vision accelerators that, in aggregate, delivers
200 TOPS of performance. Besides, NVIDIA DRIVE AGX
Pegasus [54] achieves an unprecedented 320 TOPS of deep
learning with an architecture built on two NVIDIA Xavier
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processors and two next-generation TensorCore GPUs. This
energy-efficient, high-performance Al computer runs an
array of deep neural networks simultaneously and is designed
to safely handle highly automated and fully autonomous
driving.

The computing capability of the single GPU (Quadro
P6000 [56]) that we used in this paper is 12 TFLOPS. The
computing resources on autonomous vehicles are more pow-
erful than the workstation that we use. In practical situations,
the calculation time required by the method used in this paper
can meet the requirements of autonomous driving, and it
can be applied to the real-time environmental perception of
autonomous driving.

V. CONCLUSION

In this paper, we have proposed a fast method, which uses
a GPU-based parallel IDW interpolation algorithm to impu-
tate the incomplete road point cloud datas obtained by IoT
technology to enhance the safety of autonomous driving. Two
groups of benchmarks have been conducted to evaluate the
performance of the proposed method. We have found that:
(1) the known point cloud data within 5 meters around the
obstacle vehicle are sufficient to guarantee the imputation
accuracy; (2) when the weight parameter of the IDW inter-
polation is 4, the efficiency and accuracy of the imputation
can be optimally balanced; and (3) it takes approximately
0.6 seconds to imputate the incomplete dataset consisting
of 15 million points, while the imputation error is approxi-
mately 5 millimeters. The proposed method is capable of effi-
ciently and effectively imputating the incomplete road point
cloud data that are induced by obstacle vehicles, and outper-
forms other interpolation algorithms and machine learning
algorithms.
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LIST OF ABBREVIATIONS
AIDW Adaptive Inverse Distance Weighted
AoS Array of Structure
GPS Global Positioning System
GPU Graphics Processing Unit

IDW Inverse Distance Weighted
IoT Internet of Things

kNN k-Nearest Neighbor

LiDAR Light Detection And Ranging

MLS Moving Least Squares

RBF Radial Basis Function

RMSE Root Mean Square Error

SoA Structure of Array

SoC System-on-a-chip

SVM Support Vector Machine

TFLOPS  Trillion Floating-point Operations Per Second
TOPS Trillion Operations Per Second
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