
Received December 4, 2019, accepted January 10, 2020, date of publication February 3, 2020, date of current version February 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971007

Architectural Resilience in Cloud, Fog and
Edge Systems: A Survey
VICTOR PROKHORENKO 1 AND M. ALI BABAR1,2
1Centre for Research on Engineering Software Technologies, The University of Adelaide, Adelaide, SA 5005, Australia
2Cyber Security Research Centre Ltd, Kingston, ACT 2604, Australia

Corresponding author: Victor Prokhorenko (victor.prokhorenko@adelaide.edu.au)

This work was supported in part by the DST Group and Data61, which is Business Unit of CSIRO Australia. The work of M. Ali Babar
was supported in part by the Cyber Security Research Centre Limited through the Australian Government’s Cooperative Research Centers
Program.

ABSTRACT An increasing number of large-scale distributed systems are being built by incorporating Cloud,
Fog, and Edge computing. There is an important need of understanding how to ensure the resilience of
systems built using Cloud, Fog, and Edge computing. This survey reports the state-of-the-art of architectural
approaches that have been reported for ensuring the resilience of Cloud-, Fog- and Edge-based systems. This
work reports a flexible taxonomy for reviewing architectural resilience approaches for distributed systems.
In addition, this work also presents a capability-based cyber-foraging framework intended to improve the
overall system resilience in the context of a physical node’s capabilities. This survey also highlights the
trust-related issues and solutions in the context of system resilience and reliability. This survey will help
improve the understanding of the current state of system resilience solutions and raise awareness about the
issues related to physical capabilities and trust management in the context of distributed systems resilience.

INDEX TERMS Cloud computing, cyber-foraging, cyber-physical systems, edge computing, system
resilience.

I. INTRODUCTION
Systems based on traditional centralized cloud services archi-
tectures are becoming less efficient with the growth of ser-
vice users and the amount of data required to be processed.
Straightforward expansion of computing power behind cloud
services cannot satisfy the growing performance expectations
caused by the adoption of Internet of Things (IoT) devices and
big data applications. Thus, alternative distributed computing
approaches such as cloudlet-, edge-, fog-based and peer-to-
peer computing are gaining popularity for building mission-
critical systems.

Such systems are expected to be resilient to maintain an
acceptable level of operations in hostile and disadvantaged
environments. Designing and analyzing resilient software
architectures of mission-critical systems are emerging areas
of research and practice. Hence, there is a vital need of
gaining an advanced understanding of various resilience char-
acteristics of architectures for cloudlet, edge- and fog-based
mission-critical systems. Such understanding is expected
to develop and evaluate innovative and unique methods,

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiping Hu .

approaches, and tools for designing and evaluating resilient
architectures of such systems. In addition, a formal resilience
definition and taxonomy is provided in Section III.

Based on a literature review, we have identified several
resilient architectural approaches that can be classified into
three main categories; capacity, trustworthiness and effi-
ciency. Capacity-oriented solutions are primarily targeted to
aid service providers by maximizing the number of users
who can be serviced and minimizing the associated mainte-
nance expenses. Virtualization techniques such as on-the-fly
VM provisioning are a distinct feature of capacity-oriented
approaches. The ease-of-use and affordability of modern
third-party provided services makes it tempting to rely on
them for multitude of tasks. However, military and other
mission-critical scenarios may not accept the risks associated
with sharing classified and private data.

Trustworthy architectures mainly focus on secure node
communication and trust-related issues. The efficiency-
oriented architectures attempt to improve the overall system
operation by overcoming physical limitations inherent in a
system’s individual nodes. Furthermore, resilience is typ-
ically achieved at a higher level by a fault-tolerant node
management such as node failure recovery techniques.

28078 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1012-6216
https://orcid.org/0000-0002-4952-699X

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

Various forms of data and computation offloading are gen-
erally employed by efficiency-based approaches.

A. MAIN CONTRIBUTIONS
This survey has identified a large number of architectural
resilience challenges and solutions for distributed systems.
This work also determines the potentially beneficial areas
for future research. The identified areas include developing a
resilience-oriented architecture framework based on network
node capabilities rather than on capacity, providing a formal
definition for resilience metrics and improving resilience
orchestration techniques.

The proposed capability-based architecture naturally
extends to handle reverse-foraging scenarios such as when
an edge node or a cloudlet may request video feed from end
devices to locate some objects. Developing reliable resilience
metrics is useful in comparing different architectures from the
resilience perspective. Having an efficient run time resilience
orchestration implemented allows to improve the overall sys-
tem resilience and provide a higher level of system service
operation.

The rest of this paper is organized as follows.
An overview of various cloud system architectures is pre-
sented in Section II. General system resilience along with
domain-specific resilience considerations are discussed in
Sections III and IV respectively. Capability-aware resilience
orchestration is examined in Section V. Section VI reviews
the current research efforts with Section VII outlining the
present challenges and opportunities. Lastly, Section VIII
concludes this survey.

II. CLOUD SYSTEM ARCHITECTURES OVERVIEW
The number of inter-connected systems and devices through
Intranet or Internet has been growing exponentially that has
led us to a hyper-connected World. The hyper-connectivity
of the current and increasingly future software systems
poses new challenges for addressing the storage and pro-
cessing needs, mostly in real-time. To address the increas-
ing demands of the storage and processing needs, there are
various technological options available such as cloud-based
computing, cloudlets, edge computing and fog comput-
ing. These technologies are being leveraged for building
and leveraging computing, storage and networking infras-
tructures in various ways to build large-scale distributed
systems.

One of the first problems arising from the growing num-
ber of network nodes was the efficient data delivery. Early
solutions to this problem involve deploying caching proxies
within network boundaries of an organization. This can be
seen as an early attempt to introducing an intermediate edge
layer to optimize system performance. The rationale behind
such an approach assumes that a significant amount of the
same incoming data is requested by multiple network mem-
bers. However, due to the diversity of modern web-based sys-
tems, the interest in generic web caching proxies significantly
decreased. Whilst still used for optimizing data delivery and

FIGURE 1. Key characteristics for cloud-, cloudlet-, edge- and fog-based
system architectures.

distribution, such caching proxies are now mainly used in
specialized cases (e. g., antivirus or operating system update
servers). In contrast to locally deployed proxies, service
providers commonly use Content Delivery Networks (CDN)
to optimize the data delivery to end-users.

Subsequently, the opposite problem of collecting user-
generated content gained attention. Online streaming services
are a notable example of services, which have to solve the
problem of massive user-generated data collection (and pos-
sibly further redistribution). Data collection is complicated
due to large number of users and massive amount of traf-
fic required for high-definition video streams. These high
requirements caused rapid advancement in traditional and
mobile cloud technology, with a wide variety of types of
service architectures being currently offered on the market
and used in practice [1]–[4].

Lastly, in addition to the data collection and distribution
problems, various forms of distributed computing also aim
to solve such challenge as a lack of local resources. Typical
examples of such resources include computational power and
data storage. Generic resource-offloading such as storing a
collection of photos taken by modern smartphones remotely,
may provide satisfactory results in consumer applications.
However, additional requirements arise for high-demanding
real-time and military applications. Notably, in efforts to
minimize the introduced delays cloud computing further
evolved into fog computing [5], [6] and edge computing [7].
Whilst being somewhat different and applicable in different
scenarios [8], these types of architectures share common
requirements such as resilience, availability and efficiency.
Figure 1 highlights typical use cases and key characteristics
of cloud-, cloudlet-, edge- and fog-based architectures.

Cloud computing paradigm provides a convenient and a
cost-effective way for low-powered devices to get access to
nearly unlimited resources such as additional disk storage or
processing power. From the end user perspective, however,
cloud-based systems have two significant disadvantages; they
can increase network latency and can become ‘‘single point
of failure’’. In addition, centralized clouds may also be prone
to cascading failures that cause higher stress on the remaining
operational nodes [133], [134].

VOLUME 8, 2020 28079

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

Cloudlet-based systems attempt to solve performance-
related issues by bringing powerful computing nodes closer to
computing consumers. The proximity of such nodes typically
provides more control and enables cloudlet mobility, which is
particularly useful in field environments. Deploying multiple
cloudlets can also be used to overcome a single point of
failure issue inherent in cloud systems.

Edge computing in general can be seen as a compromised
approach, which also takes node ownership (and thus privacy
aspects) into consideration. Similar to cloudlets, edge nodes
are placed in close proximity of end nodes. Being located
at the boundary of a local network, edge nodes are able to
aggregate data from end nodes and perform some initial pro-
cessing locally, while only accessing the external resources
when necessary. This architecture suits smart homes and
smart metering environments, with no specific node mobility
requirements, but high privacy expectations.

A fog-based system architecture can be interpreted as an
extension of the cloudlet approach with further focus on
improving the overall system resilience. All the network
nodes are kept in close proximity, with more granular task
offloading from end nodes to fog nodes. In the extreme case,
a fog-based network can be treated as a P2P network with
specialized nodes. Naturally, depending on the type of tasks to
be solved by a system and the operating environment various
hybrid approaches may be employed.

Most of military applications are usually designed to oper-
ate in hostile environments, which can be defined based on
certain contextual factors. Resilience of a system is espe-
cially important for systems used in hostile, disadvantaged
and corporate environments [9], [11], [12]. Military systems’
usage scenarios typically assume a worse connectivity for
network nodes or a higher rate of node failures. Another
distinct aspect of cyber-physical systems is the importance
of node capabilities and physical placement. For example,
a car and an airplane differ significantly in their physical
capabilities. Sustaining an acceptable level of operation for
such systems requires constant node capabilities monitoring
and run-time system adjustments to compensate any failures.

This survey is aimed at critically reviewing the relevant
literature on incorporating resilience in designing and imple-
menting software intensive systems with/for cloud-based
technologies such as cloudlets, fog computing, edge comput-
ing and peer-to-peer systems.

In contrast to taxonomies focused on system functionality,
this survey attempts to expose the driving motivations behind
architectural choices. The following diagram (Figure 2) illus-
trates the spectrum of various system architectures based on
node proximity and availability.

According to this spectrum, a central cloud is an approach
to consolidating all available resources in a central location
without paying attention to the distance to user nodes. On the
other end of the spectrum, peer-to-peer networks imply that
no additional investments are required in individual nodes,
with the main idea of placing nodes close to each other.
The following sections discuss the difference between and

FIGURE 2. Various system architectures spectrum.

applicability of various network architectures from the per-
spective of overall system resilience.

A. CLOUD COMPUTING
Centralized cloud-based solutions imply having a powerful
central node, which can aid end-users with some specific
functionality. Whilst from user perspective such a cloud may
be visible as a single entity, cloud services providers may
operate a complicated architecture internally, for example,
with the use of load-balancing techniques.

A well-established terminology is used to refer to dif-
ferent types of cloud services. Common classification
includes a multi-layered stack of Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-
Service (SaaS).

Higher- or lower-level layers such as Business-as-a-
Service or Management-as-a-Service are also commonly
used to refer to more specific cloud services [12]. Commer-
cial cloud solutions aim to lift off the burden of local resource
management from consumers; therefore, substantial efforts
are put into cloud services cost optimization [13].

Notably, the pay-per-use model becomes increasingly pop-
ular, to the extent of offering a per-second charging options
available. Numerous optimization approaches are used by
cloud service providers to reduce the associated cost. For
example, using overprovisioning, virtualization techniques
and dynamic resource provisioning allows servicing more
customers with the same hardware. In addition to tradi-
tional encryption schemes, virtualization improves the over-
all system security by offering strong isolation between
multiple clients which might not necessarily trust each
other [14].

The largest downside of cloud computing is the possible
lack of trust between cloud provider and consumers [15].
Privacy concerns can render the use of cloud services unsuit-
able in some scenarios depending on customer require-
ments or state legislation. Another concern some customers
might have is vendor lock-in issue and a possible data loss.
Whilst not specifically unique to cloud-based systems, the

28080 VOLUME 8, 2020

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

importance of data processed and large number of customers
served requires to pay high attention to the service availability
and resilience [16], [17], [130], [136], [141], [143], [144].

Whilst cloud-based systems are commonly used to enable
cyber-foraging (in form of data staging or computation
offload) for weak user devices such as mobile phones,
the advances in technology continuously improve the compu-
tational power of these devices. The network bandwidth and
latency issues associated with cloud usage may lead to local
computations beingmore efficient in certain cases. Therefore,
cloudlet-based approach was introduced in order to minimize
network-related overhead.

B. CLOUDLETS
Cloudlet-based approach originates from the efforts to reduce
the latency issue inherent in centralized clouds [18]. Bringing
cloudlet nodes closer to end nodes can lead to signifi-
cant processing improvements [19], [20]. Such optimiza-
tion, however, comes at a cost of more cloudlet nodes to
be employed. Cloudlet instances are typically less power-
ful than a centralized cloud and in compared to clouds,
cloudlets also serve a lower number of nodes. Operating
multi-layered architectures of different cloudlets being con-
nected to a centralized cloud requires introducing fault tol-
erance to improve the overall system resilience in hostile
environments [10], [21].

Optimal cloudlet placement is essential for cloudlet per-
formance and is usually performed at two layers, physical
and logical. Taking the physical layer into consideration is
important for networks consisting of mobile nodes such as
for tactical missions [22]. The logical layer cloudlet place-
ment does not directly rely on physical node locations and is
instead focused on dynamic cloudlet provisioning based on
current demands [3].

Whilst the logical-level placement is well-researched and
highly automated, physical-level placement decision algo-
rithms tend to overlook the physical characteristics (includ-
ing location and moving speed) of network nodes. Deeper
research in this area would be potentially beneficial to
cyber-physical systems, including military infrastructure,
smart cities, smart health and transportation.

From the end device perspective, cloudlet node discovery
issue arises due to the dynamic nature of cloudlet location.
End nodes must be able to dynamically and reliably find the
closest trusted cloudlet. Various protocol-level implementa-
tions such as Bonjour and Avahi, were introduced to achieve
node and service discovery. However, depending on cloudlet
ownership, lack of trust towards a cloudlet may become an
obstacle, leading to self-hosted cloudlets being more suitable
compared to third-party provided ones. Further optimization
steps taken by Edge and Fog computing are discussed in the
next section.

C. EDGE AND FOG COMPUTING
Compared to cloudlet-based systems, both Fog and Edge
computing take a further step toward bringing processing

nodes even closer to end nodes. An obvious advantage of
such optimization lies in the reduced traffic usage and latency.
Both Edge and Fog approaches aim to complete as much
data processing as possible in the immediate proximity of
end nodes. Similar to cloudlets, fog nodes can be con-
nected in a multi-tier hierarchy, with further data processing
being offloaded towards more powerful cloud nodes when
necessary.

At the technical level, Fog and Edge paradigms are quite
similar with some works even referring to them interchange-
ably [23]. However, certain terminology-related disagree-
ments exist with regards to definitions and difference between
Fog and Edge computing [24]–[26]. Moreover, in some
works, a resilience of a system is impractically defined (par-
tially) through the ability of a system to resist various fail-
ures [27]. One of the views is that Fog computing can be
perceived as an extension of cloud computing [28].

The main difference between Fog and Edge approaches is
the emphasis of the special node placement. More specif-
ically, Edge nodes are supposed to be placed at the edge
of a network. In scenarios such as smart house manage-
ment, Edge nodes can be placed within the boundaries
of end-user’s network. For mobile devices, however, Edge
nodes have to be placed within the boundaries of service
providers [29]. This makes Edge computing particularly
suitable in areas similar to cellular networks and smart
transportation [30]–[32], [147]. Fog paradigm does not imply
specific node placement constraints or expectations, instead
Fog nodes can be located anywhere in close proximity of
end nodes, which makes Fog computing useful for IoT based
applications.

Due to being located outside of well-protected service
providers network, Fog nodes may encounter additional secu-
rity and trust issues [33]. Likewise, reliability and fault tol-
erance related challenges and solutions for Fog nodes are
currently heavily researched [34], [35].

In summary, the choice of a system architecture is ini-
tially dictated by its tasks with resilience enhancing tech-
niques applied at a later stage. Currently, global system
adjustments are performed manually as user demands evolve
over time. For example, the Bitcoin network was initially
designed having peer-to-peer architecture. Subsequently,
with the growth of the number of network users and trans-
actions, the overall system performance became insuffi-
cient. One of the proposed generic architectural solutions
to overcome the performance limitations involves intro-
ducing an intermediate layer of more powerful super-
nodes. Possessing higher computational or storage resources,
these super-nodes can essentially be perceived as cloudlets.
Given the constantly changing user demands, automated and
mission-aware system reconfiguration at run time should be
needed.

Besides affecting the overall operating performance,
the selected system architecture can also indirectly affect a
number of other factors such as reliability, availability or
resilience. The following section focuses on the resilience

VOLUME 8, 2020 28081

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

factors affected by the choice of the discussed system archi-
tectures.

III. SYSTEM RESILIENCE
A system’s resilience is characterized and assessed based on
the main purpose that system serves. For example, backup
solutions are intended to be resilient against data loss, but are
not necessarily useful against data leakage.Whilst some liter-
ature uses the terms resilience and reliability interchangeably,
in the context of cloud solutions the reliability is commonly
treated as one of the desired system features. Resilience is the
process required to achieve the desired outcome in the form
of reliability.

Complex distributed systems deal with a variety of issues
which may affect normal system operation; that means
resilient system implementations must address multiple fac-
tors. Depending on the type of services to be provided by a
system such factors may include, but are not limited to weak
(or interrupted) connectivity, limited power, and Advanced
Persistent Threats (APT). In practice, resilience solutions
usually focus on a subset of disruptive factors.

Traditionally two types of faults are considered. Namely,
crashes and byzantine faults with similar solutions used
against both types. Due to the high costs and latency Byzan-
tine Fault Tolerance (BFT) is not currently used within data
centers. Instead, specific fault-oriented solutions are typically
employed in practice. Distributed cloud-based solutions may
encounter faults of both types at all levels, such as storage,
network, malicious actors, and power faults. Based on a
large-scale server fault survey [36] focuses on node place-
ment within a data center clusters and relies on virtualization
techniques in order to achieve recoverability.

Based on this view, the general fault-tolerance mechanism
architecture is supposed to consist of two layers. Namely
the business logic layer which is responsible for normal
system operation and meta-layer, which is responsible for
fault handling and recovery [37], [63], [123]. This allows
more flexible and continuous deployment of fault tolerance
to existing or developed systems. A commonly overlooked
factor is the resilience of the monitoring agents/modules
themselves.

Further fault sub-classification could depend on factors
such as longevity of a fault, which distinguishes between
transient and permanent faults. Some approaches focus on
so-called grey failures instead of fault-stop failures [38].
Rather than focusing on resilience against certain types of ser-
vice disruptions, a purpose-oriented resilience classification
is proposed.

Based on the types of disruptive factors addressed, soft-
ware intensive resilience solutions can be categories in
three large classes as shown in Figure 3 - Capacity-,
Trustworthiness- and Efficiency-oriented.

• Capacity – this means resilience against legitimate sys-
tem uses. Here, the ‘‘capacity’’ refers to the large amount
of data being processed and large number of users
served.

FIGURE 3. Types of resilience.

• Trustworthiness – this means resilience against
unwanted system uses. Typical resilience measures
of this class include encryption, certificates and
trust-oriented approaches.

• Efficiency – this means resilience against physi-
cal restrictions and limitations. Typical examples of
such restrictions are unstable connection links (radio),
low-capacity batteries and natural disasters.

The efficiency of service operation can be considered one
of the main driving forces behind the popularity of distributed
computing in general. Efficiency-oriented approaches aim to
overcome various physical limitations. Typical examples of
such limitations are possible natural disasters, weak connec-
tivity links, device battery capacity, computing power, disk
storage and timing constraints. In cases, when an accept-
able service operation level cannot be achieved using the
locally available resources, cyber-foraging approaches are
used. Cyber-foraging involves using remote node computa-
tional or other resources in situations when local resources
are not adequate for a task. The cyber-foraging can be either
implemented as part of an architecture at system design stage
or introduced to existing legacy systems with specialized
tools [39].

Capacity-oriented solutions attempt to solve the problems
related to the growing number of network nodes, increasing
traffic demands and high computing power requirements.
Modern high-quality image, video and audio processing
services typically face such issues. The terms ‘‘elastic-
ity’’ and ‘‘scalability’’ are commonly used to refer to
such relevant solutions. Conceptually, capacity-oriented solu-
tions focus on increasing a service provider-side resilience,
to increase a service’s ability to maintain acceptable level
of operation under high load. Such types of solutions
try to minimize a service’s maintenance and management
costs.

Lastly, the trustworthiness-related challenges and risks
have also gained significant attention [29]. In addition to
protecting the individual nodes’ operations, the inter-node
communication must also be protected. Loss of control
over the offloaded or shared data also raises trust- and
privacy-related problems [14], [33], [40]. Distinct features

28082 VOLUME 8, 2020

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

of trustworthiness-oriented approaches include the use of
encryption, cryptographic signatures and certificates. The
following sections provide a detailed review of the literature
on each of the categories.

A. TRUSTWORTHINESS
Trust in general is a subjective measure of probability of a
particular node to perform certain operations [41]. A common
approach is to consider trust directional and not necessar-
ily transitive. Furthermore, dynamic and distributed systems
pose additional challenges as the list and locations of net-
work nodes is not known in advance. Overall, trust-related
solutions can be broadly classified into two categories -
trust-ensuring procedures and trust-less operation.

Trust-ensuring procedures aim to abstract trust away to
the underlying layers and maintain further system operation
based on the established trust relations. Various dynamic
rating systems such as trust and reputation management are
typically used to establish such relations [42]. Whilst being
useful in distributed networks with all the nodes belonging
to the same party, this type of approaches may not be suitable
formulti-party networks. Instead, a pseudo-trust can be estab-
lished and used in such scenarios [43]. Themain disadvantage
of trust-establishing solutions is the requirement to either
rely on a pre-shared knowledge about nodes (certificates) or
collect reputation statistics at run-time. An alternative trust-
maintaining approach based on the moving target concept
was proposed in [44].

Trust-less system operation approaches tend to keep sys-
tem operation without relying on the honesty of remote
nodes. Rather than blindly trusting remote nodes, such
approaches attempt to verify the results of remote node com-
putations [45], [46]. The main disadvantage of computa-
tion verification is the increased financial or computational
overhead [47]. Depending on the type of the computations
involved, the technical implementation of the verification
procedure may become impractical [48].

For simple types of services involving only a data offload-
ing component, the trust aspect is typically limited to authen-
tication, encrypting, cryptographically hashing and signing
the offloaded data [49]–[52]. Complicated data processing
becomes challenging when untrusted surrogates are con-
sidered [53], [54]. Privacy cautious users may refuse to
decrypt sensitive data on a surrogate node. A promising
solution for some types of data processing is homomor-
phic encryption [55]. Unfortunately, the currently researched
homomorphic encryption techniques are computationally-
intensive. Therefore, homomorphic encryption is currently
not well-suited for low-powered mobile devices, which are
quite pervasive in an infrastructure built with Edge or Fog
computing.

Additional complications arise when the type of data pro-
cessing required is not known and available for the surrogate
nodes in advance. Generic code execution is commonly used
in such scenarios to achieve greater level of service flexibility.
In addition to the data itself, the end-devices are expected to

provide the data-processing code to surrogate nodes. To min-
imize a possible negative impact, surrogate nodes need to
isolate the received code (typically using virtualization tech-
niques) prior to execution [56].

The trust issues are twofold: on the one hand, the end
devices may not fully trust surrogate nodes. On the other
hand, surrogate nodes may not trust the code supplied by
end devices. Authentication, code signing and social-based
techniques can be used to address lack of trust [57], [58].
These approaches imply that some form of registration is
required for end-user devices to be able to use surrogate
nodes. Techniques addressing this type of lack of trust have
not been extensively investigated.

For example, encrypting, hashing or cryptographically
signing the offloaded data may be adequate to protect data
from untrusted surrogate nodes. However, a possible loss of
the offloaded data becomes a threat. Unlike typical commer-
cial solutions that use data backup systems behind the scene,
a malicious surrogate could intentionally delete the uploaded
data. Similarly, such a malicious surrogate may also modify
the data processing routines and return invalid or fake results.
Therefore, formal computation result verification procedures
might be required to allow the use of untrusted surrogate
nodes.

In contrast to publicly accessible services, using self-
owned systems (where both the end and edge devices belong
to the same party) allows to minimize trust issues. Therefore,
although possibly being more expensive to maintain than
third-party owned services, self-owned systems may be more
suitable for military environments. Whilst inter-surrogate
communication is expected to be encrypted, some approaches
do not explicitly state this requirement [9], [59].

B. CAPACITY
Network systems used in high-load environments must pro-
vide resilience against massive legitimate system work-
loads (such as DoS and DDoS attacks). Therefore, some
approaches focus on maximizing the number of users or
amount of data that can be serviced simultaneously. Sys-
tem survivability is mainly achieved by implementing fault-
tolerance and redundancy [60]. The techniques common to
such approaches include dynamic Virtual Machine (VM)
management, on-demand VM provisioning and load balanc-
ing [61]. In addition to minimizing the associated running
costs [59], [62], these techniques make it possible to imple-
ment highly scalable services. By utilizing virtualization
techniques, some solutions may improve the overall surviv-
ability of a system [20]. Rather than focusing on the service
or application level, some approaches attempt to achieve
resilience at network level [63]–[65].

In simple cases, an intermediate edge layer may be intro-
duced to implement system service load-balancing [66].
More complex architectures, however, may utilize an addi-
tional layer (in form of cloudlets or special edge nodes) for
computations [9]. Given the distributed and mobile nature of
modern networks, surrogate node discovery itself becomes

VOLUME 8, 2020 28083

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

crucial to allow optimal calculations or data offloading [67].
Specific surrogate node placement may also be used to sim-
plify the discovery process.

Depending on the type of the services provided, surrogate
nodes may either perform a predefined type of data process-
ing or allow arbitrary code execution [9]. Such flexible data
processing is commonly achieved by optimizing VM deploy-
ment and delivery. In addition to ease of use and low costs,
VM-based approaches also provide code isolation.

Whilst providing more flexibility, arbitrary code execution
on a remote surrogate node raises a number of security-related
issues. However, the capacity-oriented solutions [68]–[70]
for improving the overall system resilience usually do not
take security into consideration. The approaches falling in the
capacity category are focused on service providers’ interests
such as minimizing operational costs or increasing service
coverage, and are well-suited for publicly accessible type of
services.

System’s QoS (Quality of Service) is somewhat similar to
efficiency-oriented resilience, however, some key differences
can be pointed out. Most notably, QoS-based approaches
assume at least some level of system operation being avail-
able, rather than attempting to conduct recovery procedures.
The main purpose of QoS policies is to prioritize various
system functions with sacrificing less important ones if nec-
essary. A comprehensive review of various resilience prioriti-
zation frameworks in the context of communication networks
is presented in [11]. In this regard, QoS approaches are similar
to graceful degradation approaches.

C. EFFICIENCY
The solutions falling into the category of efficiency address
resilience from the perspective of the limitations of physical
environment and end devices, i.e., mobile and sensor devices.
Such solutions attempt to maintain an acceptable level of sys-
tem operation despite changes in the physical environment.
These changes may also be related to system nodes them-
selves. Typical examples include hardware failures and low
battery levels. In other words, efficiency-oriented resilience
approaches attempt to utilize the available resources in an
efficient manner in order to achieve a system’s goals.
Popular class of such solutions offload data or calcula-

tions to remote surrogate nodes due to certain limitations
of end devices [21], [71]. Depending on the type of com-
putation required to be offloaded, application, module or
function-level offloading may be implemented [72], [73].
CPU processing power, disk storage and other resources are
typically considered by cyber-foraging implementations [74].
However, with the battery capacity improvements signifi-
cantly lagging behind the growth of CPU power, the end
device battery level and consumption gains high atten-
tion [75]–[77]. Interestingly, efficiency-oriented approaches
typically do not explicitly take the limitations of the surrogate
nodes into consideration [78].

Due to the inherent network latencies and cyber-foraging
overhead, computation and data offloading is typically

performed only when it is estimated to be efficient [79], [80].
Note that recent advances in communication technologies
may make computation offloading more practical and afford-
able. For instance, the high bandwidth provided by 5G tech-
nology is likely to lead to wider adoption of cyber-foraging.
The priority of the assessed properties is based on a solution,
system configuration or user preferences [81]. For example,
a system’s usermay prefer to get computation results as fast as
possible, regardless of the battery charge level. A special util-
ity function is used to decide whether or not cyber-foraging
is beneficial under certain conditions. Whilst the resources
consumed by the utility function may be negligible, such
resources consumption are rarely considered.

Cyber-foraging in general assumes that, albeit subopti-
mal, offloaded computations can be performed locally in
case of surrogate failure. Therefore, resilience approaches
commonly include fallback tactics to complete computations
locally [81]. In contrast to traditional cloud-based systems
(with nodes only differing in their capacity), complex systems
used in military, rescue or industrial operations may consist
of nodes that have different physical capabilities [82], [83].
Having nodes with different capabilities leads to some tasks
being impossible to complete on certain nodes. For example,
obtaining a video stream is only possible from the nodes that
have a video camera attached to them.

Based on this distinction between node capacity and capa-
bility, cyber-foraging can be classified into two categories –
optimistic and forced. Optimistic cyber-foraging essentially
assumes that offloading may improve end-user experience,
but is not strictly required for system functioning. Forced
cyber-foraging can be viewed as an integral part of system
operation. Therefore, advanced resilience tactics are required
to tolerate forced cyber-foraging failures, as local fallback
may not be possible. Such sophisticated resilience tactics
include re-routing the requests further to other capable sur-
rogates when possible [35].

An important component of these tactics is the surrogate
node placement and discovery [10]. Apart from improving
the network latency, the surrogate discovery can be simpli-
fied with an optimal node placement. Compared to classic
Cloud-based systems, Cloudlet-, Edge- and Fog-based sys-
tems purport to improve the reachability of surrogates at the
expense of introducing the node discovery process.

Lastly, a special case of reverse foraging (when a cloudlet
initiates a request to one or more end nodes) can be refor-
mulated in terms of system workflow reconfiguration. As a
part of a universal distributed system architecture framework,
system workflows are discussed in more detail in Section 5B.
The next section focuses on context-specific resilience solu-
tion approaches.

IV. LAYER-SPECIFIC RESILIENCE
Whilst universal resilience metrics suitable for arbitrary
systems have not yet been developed, various specialized
metrics are commonly used in domain- and layer-specific
scenarios [106]. Depending on the type of systems, resilience

28084 VOLUME 8, 2020

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

FIGURE 4. Resilience layers.

may be achieved at different layers against different types of
potential issues. System resilience is achieved through imple-
menting preventive and restorative measures against various
faults. Thus, the term ‘‘fault-tolerance’’ is sometimes used
to refer to resilience solutions. However, ‘‘faults’’ may have
different nature at different layers of a distributed system and
constitute only a subset of resilience threats. An overview of
various resilience implementations layers identified through
this survey is shown in Figure 4.

Faults at the physical layer include such events as power
loss, hardware failures and natural disasters. Therefore,
resilience solutions focused at physical layer mainly aim
to address these types of faults. Common techniques used
against physical faults are redundancy (including load-
balancing) and backups. Whilst a significant portion of man-
ual labour is still required to recover from severe physical
failures, software automation is used to simplify some of
the monitoring, reporting and restorative steps. Likewise,
a set of preventative measures can be implemented in a
system at design time in order to improve a system’s over-
all resilience. Notable examples of such measures include
SSD wear-levelling, RAM error correction approaches [84],
RAID disk configurations and use of uninterruptible power
supply units. Interestingly, similar preventative measures can
also be taken against malicious actions rather than hardware
failures [139].

Network layer faults disrupt communication between sys-
tem nodes. Hence, node reachability is a resilience metric
for network-level faults. Reachability fault can either be per-
manent or temporary, which can be expressed in terms of
traffic-related degradation [60]. Various quantitative network
metrics such as frequency of failures, average outage duration
or packet loss rate can be used to determine a system’s overall
survivability at network level [85].

For depending on network topology, the probabilistic
approaches such as churn rate can be used to measure a
system’s overall fault-tolerance [86], [87]. The main recovery
technique used at the network level involves dynamically
rerouting nodes communication [88], [89], [137]. Wireless
networks pose additional challenges related to the nature of
data transmission medium. Thus, wireless-specific protocol-
level resiliency improvement techniques are being proposed
for this type of scenarios [90].

Unlike network-level faults which affect the routing of
node communication, protocol-level faults alter node com-
munication contents [91]. Protocol-level resilience solutions

assume that a communication channel exists, albeit unstable
in terms of bandwidth or latency. Primary principles behind
protocol-level resilience implementations are graceful degra-
dation and error-tolerant data coding. Graceful degradation
is typically used in audio/video transmission and involves
reducing data bitrate to accommodate for lower bandwidth
available. A promising technique which may become poten-
tially achievable with Machine Learning (ML) would be to
achieve bitrate reduction by switching to a different type
of communication such as transmitting textual representa-
tion instead of video. Domain-specific lossless noise-resistant
and error-correcting data coding techniques are used in
cases when partial degradation is not acceptable. Whilst
protocol-level resilience solutions mainly lie in the communi-
cation and signal processing domains, local caching/buffering
techniques enable a service to operate in the absence of a
connection can also be implemented to improve protocol-
level resilience.

Lastly, service-level faults highly depend on the nature
of service provided by a system. Implementing resilience
for web-based applications may be significantly different
compared to IPTV-system resilience. For instance, improving
resilience against Denial-of-Service attacks for web applica-
tions can be implemented through graceful degradation by
serving static pages as opposed to complex dynamic content.
Naturally, this type of solution would not be reasonable for
video streaming. A combination of peer-to-peer architecture
and adaptive bitrate coding can be used instead in order
to achieve resilience for video streaming systems. Having
an in-depth knowledge of the provided services makes it
possible to efficiently implement redundancy and graceful
degradation [92]–[95].

Some resilience solutions focus on layer-agnostic issues
such as human errors, performance or system security in gen-
eral. Typical measures against human errors include pre-run
verification and validation [96]. Cryptographic primitives
such as encryption, signing and authentication are tradition-
ally used to prevent unauthorized and malicious misuse of a
system [97]. Dynamic resource usage optimizations such as
cyber-foraging or on-demand VM provisioning are generally
used to address a system’s performance resilience.

A summary of the threats and their corresponding
resilience-improving techniques is outlined in Table I.
Despite domain-specific resilience monitoring and manage-
ment being implemented and used in individual systems,
a comprehensive and universal architecture-level solution is
yet to be developed. Some resilience implementations aim to
achieve overall system resilience by focusing on the resilience
of the lower levels only [98].

Layer-based resilience encapsulation is quite common,
with the Internet itself being a vivid example. Physical-level
resilience is managed by individual node administrators,
network-level resilience is achieved through multiple routes,
data checksums are used to accomplish protocol-level
resilience. Thus, in simple scenarios, individual services can
rely on the existing resilience measures implemented at lower

VOLUME 8, 2020 28085

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

TABLE 1. Resilience threats and solutions.

FIGURE 5. System resilience orchestration process.

levels. In contrast, complicated workflows inherent in highly
distributed cyber-systems, may require a system to be aware
of lower-level failures. A holistic universal resilience solution
must coherently address failures occurring at every layer.
An extensible resilience orchestration approach based on
individual node capabilities and overall system goals is dis-
cussed in the following section.

V. RESILIENCE ORCHESTRATION
A system needs to be continuously monitored to detect
possible system service level degradation for taking correc-
tive actions. The monitoring and response procedures highly
depend on a system’s architecture and the types of provided
services. Therefore, a flexible system architecture definition
method should be developed in order to implement a uni-
versal orchestration approach. Figure 5 illustrates the pro-
posed design- and run-time components of system resilience
orchestration.

During the system design phase, a general system archi-
tecture is defined based on the available resources and the
type of services to be provided. During a system’s opera-
tions, the monitoring and corresponding restorative response
procedures are continuously carried out. Externally imposed
service changes such as new resources become available, may
occur at any time during a system’s operation. An efficient
orchestration must be able to adapt to run-time changes and
reconfigure a system as required. The following subsections
discuss design-time architecture definition and run-time sys-
tem adaptation phases.

A. SYSTEM ARCHITECTURE DEFINITION
Commercial applications normally tend to solve a specific
user problem with cloud-based computing. The solution to

each specific problem may require a different system archi-
tecture. Typical solutions provided for the scenarios involving
modern smartphones are well-suited for user data acquisition
and redistribution. Some works explicitly state that upon a
successful data processing, the results need to be returned
back to mobile devices [99].

However, mobile devices may not always require the
results from the processed data. For example, the data
acquired by drones is required to be sent to a ship not
because the ship has a more powerful computer on board,
but because the ship has some physical capabilities (missiles)
which drones lack. Regardless of where the computations
take place, physical capabilities strongly affect the flow of
data in cyber-physical systems.

A universal framework designed to define the overall sys-
tem architecture is currently not available. The two key com-
ponents of such a framework are the formal definitions of the
available resources and a formal task (mission) description.
In some cases, accomplishing a given mission with the pro-
vided resources may not be possible. In those cases, a generic
framework may also be useful to identify and recommend the
minimal set of resources required to be added to the pool of
available ones.

An example formal definition of a synthetic system mis-
sion and resources available is shown in Figure 6. In con-
trast to pure software systems, cyber-physical systems are
likely to have a richer set of mission-critical capabilities (as
opposed to commonly used set of CPU power, memory and
network speed). Analyzing the available resources and a sys-
tem’s tasks can essentially produce a set of recommendations
for physical investments into certain (possibly new) nodes.
Broadly speaking cloud-, cloudlet-, edge- and fog-computing
are generic attempts to invest into physical capabilities of
certain nodes only. Instead of demanding each smartphone
to be replaced with a faster CPU only a small number of
powerful nodes are placed within a system. Such solutions
aim to solve a system’s tasks with minimal investment.

A preliminary static analysis can be conducted based on
the formal definitions alone; whether or not the mission goals
can be achieved with the available resources. This analysis
can potentially lead to a set of system optimization recom-
mendations such as alternative investment options or specific
system node placement. Given that the nature of a mission
and the available resources may change at arbitrary points
in time, the dynamic system adaptation and reconfiguration

28086 VOLUME 8, 2020

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

FIGURE 6. Format system resources and mission definition.

must also incorporate such analysis and provide updated
recommendations at run time. The next section discusses the
run-time system resilience orchestration framework aspects.

B. RUN-TIME SYSTEM ADAPTATION AND
RECONFIGURATION
A system is expected to address failure recovery and dynamic
adaptation issues for effective orchestration. Failure recovery
mechanisms include graceful degradation techniques to keep
a system at least partially operational while the recovery steps
are being taken. Provided a system’s operational level metrics
are formally defined and continuously measured at run time,
some of the steps can be taken proactively. For example,
in cases when a critically high system load is detected, a sys-
tem may choose to spawn additional VMs to improve the
system’s overall performance.

System heterogeneity may pose additional technical issues
as low-level protocol implementations must be compatible
across different nodes. These challenges may be further
aggravated when multi-party systems are taken into consider-
ation. Therefore, a set of universal agreements and protocols
must be defined to allow effective interoperability. Theoreti-
cal system stability ensuring approaches have been proposed
at abstract level [100]. Whilst some domain-specific attempts
such as SNMP have been implemented, a comprehensive
bidirectional (for data acquisition and control) capability-
aware protocol implementation is yet to be developed.

It is relatively easier to implement a single control center
system architecture, which can be a single point-of-failure.
More specifically, in situations when the control center node
becomes unavailable, the rest of the system’s nodes may
also become completely inoperable. Data caching and local
fallback techniques are commonly used to counter potential
failures of a central cloud. Such techniques, however, depend
solely on node connectivity factor and may not always be
suitable in highly distributed systems consisting of nodeswith
different capabilities.

System nodes capabilities define data- and work-flows in
a system. Figure 7 highlights a typical workflow based on

FIGURE 7. System workflow phases.

node capabilities and roles. Maintaining system resilience
comprises of keeping each phase operational. Obviously not
all events can be counteracted; for example, if a specific
sensor node fails, there might be no spare nodes available that
possess the same physical capabilities. However, recovery
procedures such as electing a new node responsible for certain
decisions, in case the original node fails can greatly improve
a system’s overall survivability.

Possessing a deeper understanding of the underlying sys-
tem workflow is critical for cyber-physical systems where
different nodes may considerably differ in their capabilities.
For example, losing connectivity to a node with a powerful
CPU may lead to slower processing times, whereas losing
connectivity to a node with a video camera may render a
surveillance system completely ineffective. Capability-based
analysis of system operation is currently performed implicitly
by system administrators and requires considerable amount
of manual labor. Thus, there is a need of further research in
the area of system orchestration automation. The next section
overviews the current research efforts in design- and run-time
components of system resilience orchestration.

VI. CURRENT RESEARCH EFFORTS
Some techniques, while not specifically targeting a system’s
resilience, may in fact increase the overall resilience as a side-
effect. For instance, local caching and computation can be
implemented in order to improve user experience (by min-
imizing network-related latency), however, this would also
mean that a system may remain operational even if a cloudlet
is not reachable by a client node.

In fact, various system improvements tend to be introduced
to achieve resilience against some specific issues under cer-
tain conditions. A common example is introducing an encryp-
tion layer to an existing system. Whilst rarely positioned as a
resilience measure in general, encryption obviously improves
a system’s global resilience by allowing a system to operate
in presence of malicious nodes. The classification of system
resilience improvement research directions discussed in this
section is presented in Figure 8.

System resilience improvement approaches can be catego-
rized into design-time and run-time. Design-time approaches

VOLUME 8, 2020 28087

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

FIGURE 8. System workflow phases.

focus on the initial system configuration which include
general architecture (such as a single centralized cloud vs.
multiple cloudlets) and embedded trust (such as a central
authority). Run-time system orchestration approaches tend to
rely less on the initial system configuration and are instead
operating under an assumption that the system configuration
may change drastically at any time.

A. DESIGN-TIME
Design-time decisions define the general system operation
and aim to solve major problems of node placement and
node collaboration. Given some existing set of resources,
an optimal node placement must be selected. This place-
ment depends on node capabilities/roles and varies from
fully-centralized to fully-distributed (Figure 2). However,
users’ demands and system requirements may change signif-
icantly during system operation.

Unfortunately, there is not much attention being paid to for-
malizing and automating architectural decisions. Automat-
ing the node placement and resource redistribution task
requires a profound knowledge of a systemmission. A higher-
level understanding of service availability currently used by
software availability monitoring tools is not adequate for
cyber-physical systems containing nodes with vastly different
capabilities.

The second problem required to be solved at design time is
efficient node collaboration. In addition to the technical def-
inition of low-level network protocols, a trusted relationship
must be established between system nodes. Some research
efforts are focused on implementing trust as part of a sys-
tem’s architecture. An opposite approach of implementing a
system’s operation independent of initial trust at run time is
discussed in Section 6B.

It has already been stated that a central authority-based
trust management is prone to a single point-of-failure prob-
lem. Thus, resilient solutions need to maintain trust in a
distributed manner. The key properties of trust are subjectiv-
ity, observability and dynamic nature [101]. Whilst trust is
generally not considered transitive, it is possible to introduce
conditional transitiveness for certain scenarios [41]. A com-
mon feature inherent to design-time trust-based approaches
is some prior knowledge embedded in a system such as root
certificates or a list of bootstrap servers. Distributing this

prior knowledge between system nodes becomes challenging
for highly dynamic systems, where a node can join or leave
a system at any time. Hence, various run-time trust manage-
ment techniques have been proposed.

B. RUN-TIME
The two key problems that need to be addressed during
a system’s operation are trust establishing and adapting to
environment or mission changes. Establishing at least some
form of trust between system nodes is requiredwhen no initial
trust such as a central authority, is embedded in a system
architecture. Moreover, due to a possibly dynamic nature of
a system, it becomes crucial to continuously maintain the
established trust during a system’s operation.

1) TRUST-LESS OPERATION
Before identification, authentication and authorization pro-
cedures can be carried out between system nodes, the nodes
must be able to locate each other. This step is known as node
or service discovery and various protocol-level solutions have
been developed. Extending these discovery mechanisms to
take node physical capabilities into account would signifi-
cantly improve their applicability to cyber-physical systems.
Once a participating node has been discovered, the trust
aspect must be addressed. There are two general approaches
to managing trust-related issues in systems with no inherent
trust embedded. First is to actually establish some form of
trust at run tie and second is to operate in a trust-less manner.

A common technique to introduce pseudo-trust to a system
is to assign a reputation to participating nodes, based on
their previous activity and recommendations of other nodes.
Some works explicitly do not distinguish between trust and
reputation management [42]. Trust-establishing mechanisms
typically assume that network layer guarantees data delivery
and attempt to address following issues; asymmetric nature
of trust, selfish nodes refusing to participate and collusion of
malicious nodes [43].

In contrast to establishing trust at run-time, trust-
less approaches attempt to take advantage of even com-
pletely untrusted nodes. This is achieved either through
homomorphic encryption or computation verification. Using
homomorphic encryption, however, does not prove that com-
putation itself was performed properly as a malicious node
may return fake or incomplete results. Increasing resilience
against such malicious and unreliable nodes is achieved
through computational verification.

Assuming that malicious nodes operate independently,
a simple majority voting can be implemented by cross-
checking the results originating from different nodes [47].
An obvious downside of such approach may be an increased
cost of operation for pay-per-use services. Naturally,
the result checking procedure must be significantly cheaper
than performing computation itself [45], [46]. Despite the
high computational cost (and consequently increased power
requirements) associated with result verification, there are
promising recent advances in this area [48].

28088 VOLUME 8, 2020

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

Perhaps the largest disadvantage of trust-less approaches
is high cost of error. More research in this area is required to
improve a system’s resilience in hostile environments.

The discussed solutions address the issues of trust of end
nodes towards surrogate nodes. However, trust issue is two-
fold. On one hand, end-nodes may not trust data or result
integrity. On the other hand, surrogate nodes performing the
computation may not trust the code provided by end nodes.
Thus, various code isolation techniques such as virtualization
are commonly applied to surrogate nodes.

2) DYNAMIC ADAPTATION
There may be significant changes in a system’s environment
that necessitate adaptation to the changes, which can be
categorized into scale-oriented and mission-oriented. Scale-
oriented changes include node and resource variations. For
instance, if some surrogate nodes fail, the overall compu-
tational power of a system decreases. The key principles
behind handling scale-oriented changes are fault tolerance
achieved through redundancy and graceful degradation. Tak-
ing advantage of new nodes and resources makes it possible
to optimize a system’s performance [102]–[104]. If a node
and its associated resource fail, the required resources can be
acquired from newly added nodes using load-balancing.

Mission changes originate from a system’s owners and
reflect new goals. These changes may occur independent of
a system’s scale, thus requiring some resource redistribu-
tion to be conducted. Currently, such resource redistribution
techniques largely overlook physical node capabilities and
are mostly focused on dynamic VM provisioning. However,
abstracting physical node capabilities through a virtualization
layer, restricts the applicability of such solutions to purely
software domain.

Table 2 provides a classification of the reviewed resilience
solutions based on the implemented resilience’s type and
architectural level. Note that due to being out of software
domain, physical-level resilience solutions such as elec-
tronic locks, security guards, physical resource protection and
video surveillance are not considered here. As can be seen
in Table 2, the efficiency- and capacity-oriented approaches
are more popular than the trustworthiness-oriented solu-
tions. Similarly, service-level solutions are more popular than
lower-level protocol- and network-based ones.

Whilst hybrid solutions covering different resilience
aspects and layers are somewhat common, none of the
reviewedwork addresses all of the resilience types and layers.
Thus, additional research is required to develop a compre-
hensive and efficient resilience solution. Another potentially
beneficial area of improvement is the extension of node capa-
bilities considered by the reviewed work.

With the growing adoption of cyber-physical systems, the
awareness of physical node capabilities becomes increasingly
important. For example, attempting to request a live video
feed from a node with no camera attached is pointless. There-
fore, it may be technically impossible to achieve new system
goals with the existing resources. These complications lead

FIGURE 9. System resilience orchestration components.

to the necessity of more research to be conducted in the area
of run-time system mission-related changes to develop more
robust and flexible system resilience orchestration.

VII. CHALLENGES AND OPPORTUNITIES
At a higher abstraction level, achieving system resilience
requires addressing multiple system-wide aspects such as
formal resilience metrics, capability-aware resource manage-
ment and mission definition. At a lower abstraction level,
individual node communication must be extended to take
individual node capabilities into consideration. Enhancing
currently existing cyber-foraging techniques to acknowledge
physical node capabilities during the utility function calcula-
tion can be highly beneficial in IoT scenarios. Further details
on the related challenges are discussed in this section.

A. FORMAL RESILIENCE ORCHESTRATION
System resilience is commonly defined in terms of a system’s
ability to provide an ‘‘acceptable level of operation’’ under
certain conditions [105]. Unfortunately, strict resilience met-
rics are not universally defined [106], [132], [142]. Once the
operation level degrades below a pre-set threshold, various
restoration procedures must be carried out until the desired
level of operation is achieved. Large-scale cloud systems
might require additional steps in order to pinpoint the exact
location of a fault [107].

An efficient system resilience orchestration must be
derived from a formal system node capabilities and system
tasks definitions (Figure 9). At a higher level, the resilience
orchestration can be perceived as a continuous two-phase
process, analysis phase and action phase. The analysis phase
is active and is responsible for three main tasks:

• Determining whether the current system goals are
achievable using currently available resources;

• Locating critical system nodes (those possessing
mission-critical capabilities);

• Providing investment recommendations to make a sys-
tem goals reachable.

The orchestration switches to the action phase in case
changes in either a system’s requirements or the available
node capabilities occur during a system’s operation. The
purpose of the action phase is to:

VOLUME 8, 2020 28089

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

TABLE 2. Resilience solutions summary.

• Carry out recovery procedures in case the defined sys-
tem requirements cannot be met with the current system
nodes configuration;

• Adapt to the changes in the available resources and a
system’s goals;

• Report failures when system recovery is not possible.

Capability-based architecture is also useful in handling
traditional cyber-foraging and reverse foraging in a uniform
manner. For example, a command center may request the
available drones to send their video feeds to a powerful surro-
gate node for further processing. Video processing results are
then sent back to the command center, which may take a deci-
sion to order certain nodes to attack the detected target. The
order of actions in this process is dictated by the capabilities
of the participating nodes and a system’s mission. Once the
basic system operation is achieved with the existing resources
and capabilities, a node’s dynamic capability can be used for
reconfiguration to improve a system resilience and reliability.

Due to various run-time events, a system’s service level
may severely degrade. A resilient system may either make

disastrous events unlikely (through redundancy) or minimize
the impact of such events (run-time adaptation). With the
advances of large distributed networks consisting of mobile
devices, it has become possible to combine both approaches
for providing redundancy for the selected nodes at run-time
based on a system’s state.

In addition to the external events affecting a system’s
operation level, the nature of a system’s mission itself may
change at run-time. To achieve such level of flexibility, the
proposed framework is expected to allow dynamic changes
to the system’s workflow definition. Whilst partial algorithm
and protocol level implementations are proposed for some
system architectures and specific scenarios [108], a universal
extensible approach is yet to be developed. An integral part
of the proposed framework is the notion of node capabilities,
which can be used to drive individual node communications.

B. CAPABILITY-AWARE CYBER-FORAGING
A common assumption behind cyber-foraging approaches is
that end-point nodes and surrogate nodes only differ in terms

28090 VOLUME 8, 2020

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

of capacity [39]. Offloading data is performed because a
surrogate node has more disk space; offloading of computa-
tion is expected to utilize more processing power available
to surrogate nodes and saving battery life of an end-point
node.

This simplistic view of cyber-foraging can be extended
to consider more aspects such as node roles and capabili-
ties. For example, an end device may communicate with a
remote server not because of lack of computational resources
or other capabilities, but because the remote server pos-
sesses some important information. In this scenario, a remote
server has a different role (authority), leading to the necessity
for end-point devices to send requests to a server. Com-
plex cyber-physical systems such as military equipment dis-
tributed across a certain territory may contain nodes vastly
differing in their physical capabilities (and roles). Therefore,
cyber-foraging decisions must be taken based on the available
capabilities in addition to the available capacity.

One of the commonly raised issues is the calcula-
tion of offload choices (known as utility function) [109].
As opposed to always offloading, some computations to a
nearest cloudlet, it may become more effective to perform
the computations locally under certain conditions. Therefore,
the proposed approaches tend to make this type of decisions
automatically at run time [110]–[112]. However, the under-
lying benchmarks are generally taken under laboratory con-
ditions and may not necessarily reflect the real-world usage
scenarios [79]. Thus, defining an optimal utility function
suitable for different environments is still largely an unsolved
problem. Some approaches may, therefore, take offloading
choice based on user preferences [81], [113].

Whilst a multitude of significant factors such as battery
charge level and communication delays are commonly taken
into consideration, perhaps in efforts to simplify the utility
function computation, some approaches tend to dismiss some
seemingly less important factors.

Notable examples include encryption-related delays,
the battery charge required tomaintain the connectivity whilst
waiting for a response and the time required to compute
the value of the utility function itself. However, taking such
secondary factors into consideration may become useful.
The factors commonly assessed by cyber-foraging utility
functions are presented in Figure 10.

The reviewed literature predominantly associates cyber-
foraging only with the computational capabilities of sur-
rogate nodes. Physical node capability-aware resilience is
currently somewhat under-researched. Some existing works
completely overlook device capabilities [146]. Achieving
resilience in both IoT and CPS (Cyber-Physical Systems)
domains is typically done on node level [138], [140]. Dis-
tinctive features of CPS and IoT systems relevant to resilience
include service-critical device capabilities. In such systems,
different hardware failures may have vastly different out-
comes in terms of system operation. For instance, in contrast
to worsened network conditions, a failed video camera may
render the whole video surveillance system ineffective. This

FIGURE 10. Factors affecting cyber-foraging decisions.

significantly complicates automated system operation recov-
ery and future adaptation for complex CPS and IoT systems.

A considerable number of CPS and IoT resilience studies
focus on data exchange, without taking physical data sources
into consideration [131], [137], [145]. Notable exceptions
include focusing on physical environment-affecting node
capabilities in order to evaluate overall system safety in CPS
domain [135]. Due to the high importance of data typically
circulating within IoT and CPS systems, resilience against
malicious nodes also gains significant attention [143].

Perhaps extending a semantic web-oriented ontology lan-
guage such as OWL [114] to focus on physical device capa-
bilities would potentially be beneficial.

VIII. CONCLUSION
Our review has enabled us to conclude that there has
been more research on the software systems resilience
compared with the resilience of cyber-physical systems.
There are several well researched and deployed techniques
such as load-balancing, failover nodes, node discovery and
centralized trust management. However, the rapidly rising
adoption of IoT-based systems, which heavily rely on the
diversity of physical nodes’ capabilities, poses challenges
leading to more cyber-physical resilience-oriented gaining
attention [138], [147].

There is an important need of gaining a deeper understand-
ing of nodes capabilities and roles for efficient resilience
orchestration in modern cyber-physical distributed systems.
Similarly an increased attention is being paid to power
requirements and mobility aspects. It is likely that more
and more devices’ characteristics will become increasingly
important with the adoption of IoT. Thus, a more struc-
tured and extensible formal approaches need to be devel-
oped to achieve highly flexible and capability-aware system
resilience orchestration. Such improvements can be benefi-
cial in scenarios involving a multitude of extremely different
nodes such as military and rescue operations.

There is a need of further research in the area of trust-
worthy collaborations among different systems. Dynamic
systems comprising of nodes belonging to different parties
(perhaps not fully trusting each other) raise additional trust-
and security-related questions to be answered.

VOLUME 8, 2020 28091

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

REFERENCES
[1] B. P. Rimal, E. Choi, and I. Lumb, ‘‘A taxonomy and survey of cloud

computing systems,’’ in Proc. 5th Int. Joint Conf. INC, IMS IDC, 2009,
pp. 44–51.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘Above
the clouds: A berkeley view of cloud computing,’’ Dept. EECS, Univ.
California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2009-28, 2009,
vol. 17.

[3] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, ‘‘A survey of mobile
cloud computing: Architecture, applications, and approaches,’’ Wireless
Commun. Mob. Comput., vol. 13, no. 18, pp. 1587–1611, Dec. 2013.

[4] R. K. Lomotey and R. Deters, ‘‘Architectural designs from mobile cloud
computing to ubiquitous cloud computing–survey,’’ in Proc. IEEE World
Congr. Services, Jun. 2014, pp. 418–425.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its
role in the Internet of Things,’’ in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput., 2012, pp. 13–16.

[6] OpenFog Architecture Overview, OpenFog Consortium Architecture
Working Group, Fremont, CA, USA, Feb. 2016.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision
and challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[8] K. Dolui and S. K. Datta, ‘‘Comparison of edge computing implemen-
tations: Fog computing, cloudlet and mobile edge computing,’’ in Proc.
Global Internet Things Summit (GIoTS), Jun. 2017, pp. 1–6.

[9] K. Ha, G. Lewis, S. Simanta, and M. Satyanarayanan, Cloud Offload in
Hostile Environments. Pittsburgh, PA, USA: School of Computer Sci-
enceCarnegie Mellon Univ., 2011.

[10] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and
K. Ha, ‘‘The role of cloudlets in hostile environments,’’ IEEE Pervas.
Comput., vol. 12, no. 4, pp. 40–49, Oct. 2013.

[11] P. Cholda, A. Mykkeltveit, B. Helvik, O. Wittner, and A. Jajszczyk,
‘‘A survey of resilience differentiation frameworks in communication
networks,’’ IEEE Commun. Surveys Tuts., vol. 9, no. 4, pp. 32–55,
4th Quart., 2007.

[12] Y. Jadeja and K. Modi, ‘‘Cloud computing-concepts, architecture
and challenges,’’ in Proc. Int. Conf. Comput., Electron. Electr. Tech-
nol. (ICCEET), 2012, pp. 877–880.

[13] M. Al-Ayyoub, M. Al-Quraan, Y. Jararweh, E. Benkhelifa, and S. Hariri,
‘‘Resilient service provisioning in cloud based data centers,’’ Future
Gener. Comput. Syst., vol. 86, pp. 765–774, Sep. 2018.

[14] S. Pearson and A. Benameur, ‘‘Privacy, security and trust issues arising
from cloud computing,’’ in Proc. IEEE 2nd Int. Conf. Cloud Comput.
Technol. Sci., Nov. 2010, pp. 693–702.

[15] P. S. Hada, R. Singh, and M. Manmohan, ‘‘Security agents: A mobile
agent based trust model for cloud computing,’’ Int. J. Comput. Appl.,
vol. 36, pp. 12–15, Dec. 2011.

[16] O. Osanaiye, K.-K.-R. Choo, and M. Dlodlo, ‘‘Distributed denial of
service (DDoS) resilience in cloud: Review and conceptual cloud DDoS
mitigation framework,’’ J. Netw. Comput. Appl., vol. 67, pp. 147–165,
May 2016.

[17] R. Jhawar andV. Piuri, ‘‘Fault tolerance and resilience in cloud computing
environments,’’ in Computer and Information Security Handbook. New
York, NY, USA: Morgan Kaufmann, 2013, pp. 125–141.

[18] Z. Yang, B. Y. Zhao, Y. Xing, S. Ding, F. Xiao, and Y. Dai, ‘‘Amaz-
ingStore: Available, low-cost online storage service using cloudlets.’’ in
Proc. IPTPS, vol. 10, 2010, p. 2.

[19] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, ‘‘On the computation
offloading at ad hoc cloudlet: Architecture and service modes,’’ IEEE
Commun. Mag., vol. 53, no. 6, pp. 18–24, Jun. 2015.

[20] S. Echeverria, G. A. Lewis, J. Root, and B. Bradshaw, ‘‘Cyber-foraging
for improving survivability of mobile systems,’’ in Proc. IEEE Mil.
Commun. Conf. (MILCOM), Oct. 2015, pp. 1421–1426.

[21] L. Tawalbeh, N. Alassaf, W. Bakheder, and A. Tawalbeh, ‘‘Resilience
mobile cloud computing: Features, applications and challenges,’’ in Proc.
5th Int. Conf. e-Learn. (ECONF), Oct. 2015, pp. 280–284.

[22] G. Lewis, S. Echeverria, S. Simanta, B. Bradshaw, and J. Root, ‘‘Tactical
cloudlets: Moving cloud computing to the edge,’’ in Proc. IEEE Military
Commun. Conf., Oct. 2014, pp. 1440–1446.

[23] M. Firdhous, O. Ghazali, and S. Hassan, ‘‘Fog computing: Will it
be the future of cloud computing?’’ in Proc. 3rd Int. Conf. Informat.
Appl. (ICIA), 2014, pp. 1–8.

[24] L. M. Vaquero and L. Rodero-Merino, ‘‘Finding your way in the fog:
Towards a comprehensive definition of fog computing,’’ SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, Oct. 2014.

[25] S. Yi, Z. Hao, Z. Qin, and Q. Li, ‘‘Fog computing: Platform and
applications,’’ in Proc. 3rd IEEE Workshop Hot Topics Web Syst. Tech-
nol. (HotWeb), Nov. 2015, pp. 73–78.

[26] S. Yi, C. Li, and Q. Li, ‘‘A survey of fog computing: Concepts, applica-
tions and issues,’’ in Proc. Workshop Mobile Big Data, 2015, pp. 37–42.

[27] K. A. Delic, ‘‘On resilience of IoT systems: The Internet of Things (ubiq-
uity symposium),’’ Ubiquity, vol. 2016, pp. 1–7, Feb. 2016.

[28] F. Al-Doghman, Z. Chaczko, A. R. Ajayan, and R. Klempous, ‘‘A review
on fog computing technology,’’ in Proc. IEEE Int. Conf. Syst., Man,
Cybern. (SMC), Oct. 2016, pp. 1525–1530.

[29] R. Roman, J. Lopez, andM.Mambo, ‘‘Mobile edge computing, Fog et al.:
A survey and analysis of security threats and challenges,’’ Future Gener.
Comput. Syst., vol. 78, pp. 680–698, Jan. 2018.

[30] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile edge
computing-A key technology towards 5G,’’ ETSI White Paper, vol. 11,
pp. 1–16, 2015.

[31] A. Ahmed and E. Ahmed, ‘‘A survey onmobile edge computing,’’ inProc.
10th Int. Conf. Intell. Syst. Control (ISCO), Jan. 2016, pp. 1–8.

[32] M. T. Beck, M. Werner, S. Feld, and S. Schimper, ‘‘Mobile edge com-
puting: A taxonomy,’’ in Proc. Int. Conf. Adv. Future Internet (AFIN),
Lisbon, Portugal, Nov. 2014, pp. 48–54.

[33] S. Yi, Z. Qin, and Q. Li, ‘‘Security and privacy issues of fog computing:
A survey,’’ in Proc. WASA, 2015, pp. 685–695.

[34] F. Popentiu-Vladicescu and G. Albeanu, ‘‘Software reliability in the
fog computing,’’ in Proc. Int. Conf. Innov. Electr. Eng. Comput. Tech-
nol. (ICIEECT), Apr. 2017, pp. 1–4.

[35] A. Dubey, G. Karsai, and S. Pradhan, ‘‘Resilience at the edge in cyber-
physical systems,’’ in Proc. 2nd Int. Conf. Fog Mobile Edge Com-
put. (FMEC), May 2017, pp. 139–146.

[36] R. Jhawar andV. Piuri, ‘‘Fault tolerance and resilience in cloud computing
environments,’’ inComputer and Information Security Handbook, 3rd ed.
Amsterdam, The Netherlands: Elsevier, 2017, pp. 165–181.

[37] M. Stoicescu, J.-C. Fabre, and M. Roy, ‘‘Architecting resilient computing
systems: A component-based approach for adaptive fault tolerance,’’
J. Syst. Archit., vol. 73, pp. 6–16, Feb. 2017.

[38] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, ‘‘Gray failure: The achilles’ heel of cloud-scale systems,’’ inProc.
16th Workshop Hot Topics Operating Syst., 2017, pp. 150–155.

[39] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb, ‘‘Simpli-
fying cyber foraging for mobile devices,’’ in Proc. 5th Int. Conf. Mobile
Syst., Appl. Services, 2007, pp. 272–285.

[40] Z. Yan, P. Zhang, and A. V. Vasilakos, ‘‘A survey on trust management
for Internet of Things,’’ J. Netw. Comput. Appl., vol. 42, pp. 120–134,
Jun. 2014.

[41] A. Abdul-Rahman and S. Hailes, ‘‘A distributed trust model,’’ in Proc.
Workshop New Secur. Paradigms, 1997, pp. 48–60.

[42] H. Li and M. Singhal, ‘‘Trust management in distributed systems,’’ Com-
puter, vol. 40, no. 2, pp. 45–53, Feb. 2007.

[43] L. Lu, J. Han, Y. Liu, L. Hu, J.-P. Huai, L. Ni, and J. Ma, ‘‘Pseudo
trust: Zero-knowledge authentication in anonymous P2Ps,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 19, no. 10, pp. 1325–1337, Oct. 2008.

[44] M. Villarreal-Vasquez, B. Bhargava, P. Angin, N. Ahmed, D. Goodwin,
K. Brin, and J. Kobes, ‘‘An MTD-based self-adaptive resilience approach
for cloud systems,’’ in Proc. IEEE 10th Int. Conf. Cloud Com-
put. (CLOUD), Jun. 2017, pp. 723–726.

[45] P. Laud and A. Pankova, ‘‘Verifiable computation in multiparty protocols
with honest majority,’’ Cryptol. ePrint Arch., Tech. Rep. 2014/060, 2014.
[Online]. Available: http://eprint.iacr.org

[46] R. Gennaro, C. Gentry, and B. Parno, ‘‘Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,’’ in Advances in
Cryptology-CRYPTO 2010, 2010, pp. 465–482.

[47] R. Canetti, B. Riva, G. Rothblum, ‘‘Verifiable computation with two
or more clouds,’’ in Proc. Workshop Cryptogr. Secur. Clouds, Zürich,
Switzerland, Mar. 2011.

[48] B. Parno, J. Howell, C. Gentry, and M. Raykova, ‘‘Pinocchio: Nearly
practical verifiable computation,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2013, pp. 238–252.

[49] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanarayanan, ‘‘Data
staging on untrusted surrogates,’’ Proc. FAST, vol. 3, pp. 15–28, 2003.

28092 VOLUME 8, 2020

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

[50] M. Alizadeh, S. Abolfazli, M. Zamani, S. Baharun, and K. Sakurai,
‘‘Authentication in mobile cloud computing: A survey,’’ J. Netw. Comput.
Appl., vol. 61, pp. 59–80, Feb. 2016.

[51] A. Vishwanath, R. Peruri, and J. He, ‘‘Security in fog computing through
encryption,’’ Int. J. Inf. Technol. Comput. Sci., vol. 8, no. 5, pp. 28–36,
May 2016.

[52] Z. Priscakova and I. Rabova, ‘‘Model of solutions for data secu-
rity in cloud computing,’’ 2013, arXiv:1307.3766. [Online]. Available:
https://arxiv.org/abs/1307.3766

[53] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, ‘‘Security, privacy
and trust in Internet of Things: The road ahead,’’ Comput. Netw., vol. 76,
pp. 146–164, Jan. 2015.

[54] R. Neisse, G. Steri, I. N. Fovino, and G. Baldini, ‘‘SecKit: A model-
based security toolkit for the Internet of Things,’’ Comput. Secur., vol. 54,
pp. 60–76, Oct. 2015.

[55] I. Stojmenovic and S. Wen, ‘‘The fog computing paradigm: Scenarios
and security issues,’’ in Proc. Federated Conf. Comput. Sci. Inf. Syst.,
Sep. 2014, pp. 1–8.

[56] L. Rudolph, ‘‘A virtualization infrastructure that supports perva-
sive computing,’’ IEEE Pervas. Comput., vol. 8, no. 4, pp. 8–13,
Oct. 2009.

[57] M. H. Ibrahim, ‘‘Octopus: An edge-fog mutual authentication
scheme,’’ Int. J. Netw. Secur., vol. 18, no. 6, pp. 1089–1101,
Nov. 2016.

[58] F. Bao and I.-R. Chen, ‘‘Dynamic trust management for Internet of Things
applications,’’ in Proc. Int. Workshop Self-Aware Internet Things, 2012,
pp. 1–6.

[59] S. Di and C.-L. Wang, ‘‘Error-tolerant resource allocation and payment
minimization for cloud system,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 6, pp. 1097–1106, Jun. 2013.

[60] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, ‘‘Resilience and survivability in communica-
tion networks: Strategies, principles, and survey of disciplines,’’ Comput.
Netw., vol. 54, no. 8, pp. 1245–1265, Jun. 2010.

[61] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for
VM-based cloudlets inmobile computing,’’ IEEEPervas. Comput., vol. 8,
no. 4, pp. 14–23, Oct. 2009.

[62] Y. Sun, J. White, S. Eade, and D. C. Schmidt, ‘‘ROAR: A QoS-oriented
modeling framework for automated cloud resource allocation and opti-
mization,’’ J. Syst. Softw., vol. 116, pp. 146–161, Jun. 2016.

[63] A. Schaeffer-Filho, P. Smith, A. Mauthe, D. Hutchison, Y. Yu, and
M. Fry, ‘‘A framework for the design and evaluation of network resilience
management,’’ in Proc. IEEE Netw. Oper. Manage. Symp., Apr. 2012,
pp. 401–408.

[64] P. Smith, A. Schaeffer-Filho, A. Ali, M. Schöller, N. Kheir, A. Mauthe,
and D. Hutchison, ‘‘Strategies for network resilience: Capitalising on
policies,’’ in Proc. AIMS, pp. 118–122, 2010.

[65] C. Alcaraz, J. Lopez, and K.-K.-R. Choo, ‘‘Resilient interconnection
in cyber-physical control systems,’’ Comput. Secur., vol. 71, pp. 2–14,
Nov. 2017.

[66] M. Verma, N. Bhardwaj, and A. K. Yadav, ‘‘Real time efficient scheduling
algorithm for load balancing in fog computing environment,’’ Int. J. Inf.
Technol. Comput. Sci., vol. 8, no. 4, pp. 1–10, Apr. 2016.

[67] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and
H.-I. Yang, ‘‘The case for cyber foraging,’’ in Proc. 10th Workshop ACM
SIGOPS Eur. Workshop, Beyond PC (EW10), New York, NY, USA, 2002,
pp. 87–92.

[68] Y. Simmhan, R. Barga, C. van Ingen, M. Nieto-Santisteban, L. Dobos,
N. Li, M. Shipway, A. S. Szalay, S. Werner, and J. Heasley, ‘‘GrayWulf:
Scalable software architecture for data intensive computing,’’ in Proc.
42nd Hawaii Int. Conf. Syst. Sci., 2009, pp. 1–10.

[69] S. Di and C.-L. Wang, ‘‘Dynamic optimization of multiattribute resource
allocation in self-organizing clouds,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 3, pp. 464–478, Mar. 2013.

[70] G. A. Lewis, S. Echeverría, S. Simanta, B. Bradshaw, and
J. Root, ‘‘Cloudlet-based cyber-foraging for mobile systems in resource-
constrained edge environments,’’ in Proc. Companion Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 412–415.

[71] S. Goyal and J. Carter, ‘‘A lightweight secure cyber foraging infras-
tructure for resource-constrained devices,’’ in Proc. 6th IEEE Workshop
Mobile Comput. Syst. Appl., Apr. 2005, pp. 186–195.

[72] S.-H. Hung, J.-P. Shieh, and C.-P. Lee, ‘‘Migrating android applications
to the cloud,’’ Int. J. Grid High Perform. Comput., vol. 3, no. 2, pp. 14–28,
2011, doi: 10.4018/jghpc.2011040102.

[73] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, ‘‘Towards an
elastic application model for augmenting the computing capabilities of
mobile devices with cloud computing,’’Mobile Netw. Appl., vol. 16, no. 3,
pp. 270–284, Jun. 2011.

[74] N. Fernando, S. W. Loke, and W. Rahayu, ‘‘Mobile cloud computing:
A survey,’’ Future Generat. Comput. Syst., vol. 29, no. 1, pp. 84–106,
2013.

[75] J. H. Ahnn and M. Potkonjak, ‘‘mHealthMon: Toward energy-efficient
and distributed mobile health monitoring using parallel offloading,’’
J. Med. Syst., vol. 37, p. 1, Oct. 2013.

[76] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
‘‘Energy consumption inmobile phones: Ameasurement study and impli-
cations for network applications,’’ in Proc. 9th ACM SIGCOMM Conf.
Internet Meas. Conf., 2009, pp. 280–293.

[77] Y.-W. Kwon and E. Tilevich, ‘‘Reducing the energy consumption of
mobile applications behind the scenes,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance, Sep. 2013, pp. 170–179.

[78] G. A. Lewis and P. Lago, ‘‘A catalog of architectural tactics for cyber-
foraging,’’ in Proc. 11th Int. ACM SIGSOFT Conf. Qual. Softw. Archit.,
2015, pp. 53–62.

[79] G. Lewis and P. Lago, ‘‘Architectural tactics for cyber-foraging: Results
of a systematic literature review,’’ J. Syst. Softw., vol. 107, pp. 158–186,
Sep. 2015.

[80] G. A. Lewis, ‘‘Software architecture strategies for cyber-foraging sys-
tems,’’ Ph.D. dissertation, Carnegie Mellon Univ., Pittsburgh, PA, USA,
2016.

[81] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, ‘‘ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,’’ in Proc. IEEE INFOCOM, Mar. 2012,
pp. 945–953.

[82] B. Green, M. Krotofil, and D. Hutchison, ‘‘Achieving ICS resilience and
security through granular data flow management,’’ in Proc. 2nd ACM
Workshop Cyber-Phys. Syst. Secur. Privacy, 2016, pp. 93–101.

[83] W. Knowles, D. Prince, D. Hutchison, J. F. P. Disso, and K. Jones,
‘‘A survey of cyber security management in industrial control systems,’’
Int. J. Crit. Infrastruct. Protect., vol. 9, pp. 52–80, Jun. 2015.

[84] S. Mittal and M. S. Inukonda, ‘‘A survey of techniques for improv-
ing error-resilience of DRAM,’’ J. Syst. Archit., vol. 91, pp. 11–40,
Nov. 2018.

[85] D. Chen, S. Garg, and K. S. Trivedi, ‘‘Network survivability performance
evaluation: A quantitative approach with applications in wireless ad-hoc
networks,’’ in Proc. 5th ACM Int. Workshop Modeling Anal. Simulation
Wireless Mobile Syst., 2002, pp. 61–68.

[86] A. Binzenhöfer and K. Leibnitz, ‘‘Estimating churn in structured P2P
networks,’’ in Proc. 20th Int. Teletraffic Conf. Manag. Traffic Perform.
Converged Netw. Springer-Verlag, 2007, pp. 630–641.

[87] W. Najjar and J.-L. Gaudiot, ‘‘Network resilience: A measure of network
fault tolerance,’’ IEEE Trans. Comput., vol. 39, no. 2, pp. 174–181,
Feb. 1990.

[88] J. P. G. Sterbenz, E. K. Çetinkaya, M. A. Hameed, A. Jabbar, S.
Qian, and J. P. Rohrer, ‘‘Evaluation of network resilience, survivabil-
ity, and disruption tolerance: Analysis, topology generation, simulation,
and experimentation,’’ Telecommun. Syst., vol. 52, no. 2, pp. 705–736,
Feb. 2013.

[89] M. Menth and R. Martin, ‘‘Network resilience through multi-topology
routing,’’ in Proc. 5th Int. Workshop Design Reliable Commun.
Netw. (DRCN), Jan. 2006, pp. 271–277.

[90] A. Burns, J. Harbin, L. Indrusiak, I. Bate, R. Davis, and D. Griffin, ‘‘Air-
Tight: A resilient wireless communication protocol for mixed-criticality
systems,’’ in Proc. IEEE 24th Int. Conf. Embedded Real-Time Comput.
Syst. Appl. (RTCSA), Aug. 2018, pp. 65–75.

[91] A. Mohr, E. Riskin, and R. Ladner, ‘‘Unequal loss protection: Grace-
ful degradation of image quality over packet erasure channels through
forward error correction,’’ IEEE J. Sel. Areas Commun., vol. 18, no. 6,
pp. 819–828, Jun. 2000.

[92] C.-S. Yang and M.-Y. Luo, ‘‘Realizing fault resilience in Web-server
cluster,’’ in Proc. ACM/IEEE SC Conf. (SC), 2000, p. 21.

[93] V. Dialani, S. Miles, L. Moreau, D. De Roure, andM. Luck, ‘‘Transparent
fault tolerance for Web services based architectures,’’ Euro-Par, vol. 2,
pp. 889–898, Aug. 2002.

[94] M. Florins and J. Vanderdonckt, ‘‘Graceful degradation of user interfaces
as a design method for multiplatform systems,’’ in Proc. 9th Int. Conf.
Intell., vol. 4, 2004, pp. 140–147.

VOLUME 8, 2020 28093

http://dx.doi.org/10.4018/jghpc.2011040102

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

[95] C. Shelton, P. Koopman, andW.Nace, ‘‘A framework for scalable analysis
and design of system-wide graceful degradation in distributed embedded
systems,’’ inProc. 8th Int. WorkshopObject-Oriented Real-TimeDepend-
able Syst. (WORDS), Oct. 2003, pp. 156–163.

[96] L. Keller, P. Upadhyaya, and G. Candea, ‘‘ConfErr: A tool for
assessing resilience to human configuration errors,’’ in Proc. IEEE
Int. Conf. Dependable Syst. Netw. FTCS DCC (DSN), Jun. 2008,
pp. 157–166.

[97] E. Shi and A. Perrig, ‘‘Designing secure sensor networks,’’ IEEEWireless
Commun., vol. 11, no. 6, pp. 38–43, Dec. 2004.

[98] K. Benson, ‘‘Enabling resilience in the Internet of Things,’’ in Proc. IEEE
Int. Conf. Pervas. Comput. Commun. Workshops (PerCom Workshops),
Mar. 2015, pp. 230–232.

[99] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, ‘‘Cloud-based
augmentation for mobile devices: Motivation, taxonomies, and open
challenges,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 337–368,
1st Quart., 2014.

[100] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, ‘‘Engineering
resilient collective adaptive systems by self-stabilisation,’’ ACM Trans.
Model. Comput. Simul., vol. 28, no. 2, pp. 1–28, Mar. 2018.

[101] D. Gambetta ‘‘‘Can we trust trust?’’’ in Trust: Making and Breaking
Cooperative Relations, D. Gambetta, Ed, Electron. ed. Oxford, U.K.:
Department of Sociology, Univ. Oxford, 2000, ch. 13, pp. 213–237.

[102] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
‘‘DataStager: Scalable data staging services for petascale applications,’’
Cluster Comput., vol. 13, no. 3, pp. 277–290, Sep. 2010.

[103] R. Prabhakar, S. S. Vazhkudai, Y. Kim, A. R. Butt, M. Li, and
M. Kandemir, ‘‘Provisioning a multi-tiered data staging area for extreme-
scalemachines,’’ inProc. 31st Int. Conf. Distrib. Comput. Syst., Jun. 2011,
pp. 1–12.

[104] Z. Zhang, C. Wang, S. S. Vazhkudai, X. Ma, G. G. Pike, J. W. Cobb, and
F. Mueller, ‘‘Optimizing center performance through coordinated data
staging, scheduling and recovery,’’ in Proc. ACM/IEEE Conf. Supercom-
put., 2007, p. 55.

[105] P. Smith, D. Hutchison, J. P. Sterbenz, M. Schöller, A. Fessi,
M. Karaliopoulos, C. Lac, and B. Plattner, ‘‘Network resilience: A sys-
tematic approach,’’ IEEE Commun. Mag., vol. 49, no. 7, pp. 88–97,
Jul. 2011.

[106] M. Novak, S. N. Shirazi, A. Hudic, T. Hecht, M. Tauber, D. Hutchison,
S. Maksuti, and A. Bicaku, ‘‘Towards resilience metrics for future cloud
applications,’’ in Proc. 6th Int. Conf. Cloud Comput. Services Sci., vol. 1,
2016, pp. 295–301.

[107] L. Mariani, C. Monni, M. Pezze, O. Riganelli, and R. Xin, ‘‘Localizing
faults in cloud systems,’’ in Proc. IEEE 11th Int. Conf. Softw. Test.,
Verification Validation (ICST), Apr. 2018, pp. 262–273.

[108] A. Marnerides, C. James, A. S. Filho, S. Y. Sait, A. Mauthe, and
H. Murthy, ‘‘Multi-level network resilience: traffic analysis, anomaly
detection and simulation,’’ J. Commun. Technol., Special Issue
Next Gener. Wireless Netw. Appl., vol. 2, no. 2, pp. 345–356,
Jun. 2011.

[109] K. Kumar andY.-H. Lu, ‘‘Cloud computing formobile users: Can offload-
ing computation save energy?’’ Computer, vol. 43, no. 4, pp. 51–56,
Apr. 2010.

[110] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, ‘‘Cuckoo: A computation
offloading framework for smartphones,’’ in Proc. Mobile Comput., Appl.,
Services, 2nd Int. ICST Conf. (MobiCASE), M. Gris and G. Yang, Eds.
Berlin, Germany: Springer, 2012, pp. 59–79.

[111] H.-H. Chu, H. Song, C. Wong, S. Kurakake, and M. Katagiri, ‘‘Roam,
a seamless application framework,’’ J. Syst. Softw., vol. 69, no. 3,
pp. 209–226, Jan. 2004.

[112] Y.-S. Chang and S.-H. Hung, ‘‘Developing collaborative applicationswith
mobile cloud-a case study of speech recognition,’’ J. Internet Services Inf.
Secur., vol. 1, pp. 18–36, 2011.

[113] J.Matthews,M. Chang, Z. Feng, R. Srinivas, andM.Gerla, ‘‘PowerSense:
Power aware dengue diagnosis on mobile phones,’’ in Proc. 1st ACM
Workshop Mobile Syst., Appl., Services Healthcare, 2011, p. 6.

[114] S. Bechhofer, ‘‘OWL: Web ontology language,’’ in Encyclopedia of
Database Systems. Boston, MA, USA: Springer, 2009, pp. 2008–2009.

[115] A. Bahtovski and M. Gusev, ‘‘Cloudlet Challenges,’’ Procedia Eng.,
vol. 69, pp. 704–711, 2014.

[116] O. Babaoglu, M. Marzolla, and M. Tamburini, ‘‘Design and implemen-
tation of a P2P Cloud system,’’ in Proc. 27th Annu. ACM Symp. Appl.
Comput., 2012, pp. 412–417.

[117] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos,
‘‘Highly resilient peer-to-peer botnets are here: An analysis of Gameover
Zeus,’’ in Proc. 8th Int. Conf. Malicious Unwanted Softw., Oct. 2013,
pp. 116–123.

[118] E. Damiani, D. C. Di Vimercati, S. Paraboschi, P. Samarati, and
F. Violante, ‘‘A reputation-based approach for choosing reliable resources
in peer-to-peer networks,’’ in Proc. 9th ACM Conf. Comput. Commun.
Secur., 2002, pp. 207–216.

[119] R. Choubey, R. Dubey, and J. Bhattacharjee, ‘‘A survey on cloud com-
puting security, challenges and threats,’’ Int. J. Comput. Sci. Eng., vol. 3,
pp. 1227–1231, Nov. 2011.

[120] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, ‘‘Edge-centric
computing: Vision and challenges,’’ ACM SIGCOMMComput. Commun.
Rev., vol. 45, no. 5, pp. 37–42, 2015.

[121] I. Stojmenovic, S. Wen, X. Huang, and H. Luan, ‘‘An overview of
Fog computing and its security issues,’’ Concurrency Computat., Pract.
Exper., vol. 28, no. 10, pp. 2991–3005, Jul. 2016.

[122] P. Zhao, T.-L. Huang, C.-X. Liu, and X. Wang, ‘‘Research of P2P archi-
tecture based on cloud computing,’’ in Proc. Int. Conf. Intell. Comput.
Integr. Syst., Oct. 2010, pp. 652–655.

[123] N.-U.-H. Shirazi, S. Simpson, S. Oechsner, A. Mauthe, and D. Hutchison,
‘‘A framework for resilience management in the cloud,’’ Elektrotech.
Inftech., vol. 132, no. 2, pp. 122–132, Mar. 2015.

[124] W. Zhao, ‘‘BFT-WS: A byzantine fault tolerance framework for Web
services,’’ in Proc. 11th Int. IEEE EDOC Conf. Workshop, Oct. 2007,
pp. 89–96.

[125] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Principles and
Paradigms. Upper Saddle River, NJ, USA: Prentice-Hall, 2007.

[126] D. Menasce, ‘‘QoS issues in Web services,’’ IEEE Internet Comput.,
vol. 6, no. 6, pp. 72–75, Nov. 2002.

[127] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, ‘‘A measurement study of
a large-scale P2P IPTV system,’’ IEEE Trans. Multimedia, vol. 9, no. 8,
pp. 1672–1687, Dec. 2007.

[128] S. Dustdar and L. Juszczyk, ‘‘Dynamic replication and synchronization
of Web services for high availability in mobile ad-hoc networks,’’ Service
Oriented Comput. Appl., vol. 1, no. 1, pp. 19–33, Apr. 2007.

[129] S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, ‘‘The extended
cloud: Review and analysis of mobile edge computing and fog from a
security and resilience perspective,’’ IEEE J. Sel. Areas Commun., vol. 35,
no. 11, pp. 2586–2595, Nov. 2017.

[130] M. Zhang, J. Bi, K. Gao, Y. Qiao, G. Li, X. Kong, Z. Li, and H. Hu,
‘‘Tripod: Towards a scalable, efficient and resilient cloud gateway,’’ IEEE
J. Sel. Areas Commun., vol. 37, no. 3, pp. 570–585, Mar. 2019.

[131] C. Alcaraz, ‘‘Cloud-assisted dynamic resilience for cyber-physical con-
trol systems,’’ IEEE Wireless Commun., vol. 25, no. 1, pp. 76–82,
Feb. 2018.

[132] Y. Wu, Y. Fang, B. Liu, and Z. Zhao, ‘‘A novel service deploy-
ment approach based on resilience metrics for service-oriented sys-
tem,’’ Pers. Ubiquit Comput., vol. 22, nos. 5–6, pp. 1099–1107,
Oct. 2018.

[133] J. Wang, S. Pambudi, W. Wang, and M. Song, ‘‘Resilience of IoT
systems against edge-induced cascade-of-failures: A networking per-
spective,’’ IEEE Internet Things J., vol. 6, no. 4, pp. 6952–6963,
Aug. 2019.

[134] H. Wang, H. Shen, and Z. Li, ‘‘Approaches for resilience against cascad-
ing failures in cloud datacenters,’’ in Proc. IEEE 38th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jul. 2018, pp. 706–717.

[135] S. A. Timashev, ‘‘Cyber reliability, resilience, and safety of physical
infrastructures,’’ IOP Conf. Ser., Mater. Sci. Eng., vol. 481, Mar. 2019,
Art. no. 012009.

[136] X. Sun, P. Liu, and A. Singhal, ‘‘Toward cyberresiliency in the context of
cloud computing [resilient security],’’ IEEE Secur. Privacy, vol. 16, no. 6,
pp. 71–75, Nov. 2018.

[137] D. M. Senejohnny, S. Sundaram, C. De Persis, and P. Tesi, ‘‘Resilience
against misbehaving nodes in asynchronous networks,’’ Automatica,
vol. 104, pp. 26–33, Jun. 2019.

[138] J. S. Mertoguno, R. M. Craven, M. S. Mickelson, and D. P. Koller, ‘‘A
physics-based strategy for cyber resilience of CPS,’’ inProc. SPIE, Auton.
Syst., Sensors, Process. Secur. Vehicles Infrastruct., Baltimore,MD,USA,
vol. 11009, May 2019, Art. no. 110090E, doi: 10.1117/12.2517604.

[139] D. R. Matos, M. L. Pardal, G. Carle, and M. Correia, ‘‘RockFS: Cloud-
backed file system resilience to client-side attacks,’’ in Proc. 19th Int.
Middleware Conf., New York, NY, USA, 2018, pp. 107–119.

28094 VOLUME 8, 2020

http://dx.doi.org/10.1117/12.2517604

V. Prokhorenko, M. A. Babar: Architectural Resilience in Cloud, Fog and Edge Systems: Survey

[140] A. Lukina, A. Tiwari, S. A. Smolka, L. Esterle, J. Yang, and R. Grosu,
‘‘Resilient control and safety for cyber-physical systems,’’ in Proc.
IEEE Workshop Monitor. Test. Cyber-Phys. Syst. (MT-CPS), Apr. 2018,
pp. 16–17.

[141] Y. Liu, X. Li, and L. Xiao, ‘‘Service oriented resilience strategy for
cloud data center,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur.
Companion (QRS-C), Jul. 2018, pp. 269–274.

[142] I. Linkov and A. Kott, ‘‘Fundamental concepts of cyber resilience: Intro-
duction and overview,’’ in Cyber Resilience of Systems and Networks, I.
Linkov and A. Kott, Eds. Champlain, IL, USA: Springer, 2019, pp. 1–25.

[143] S. Javaid, H. Afzal, M. Babar, F. Arif, Z. Tan, and M. A. Jan, ‘‘ARCA-
IoT: An attack-resilient cloud-assisted IoT system,’’ IEEE Access, vol. 7,
pp. 19616–19630, 2019.

[144] P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu, R. Buyya, and
R. Ranjan, ‘‘Emergent failures: Rethinking cloud reliability at scale,’’
IEEE Cloud Comput., vol. 5, no. 5, pp. 12–21, Sep. 2018.

[145] K. E. Benson, G. Wang, N. Venkatasubramanian, and Y.-J. Kim, ‘‘Ride:
A resilient IoT data exchangemiddleware leveraging SDN and edge cloud
resources,’’ in Proc. IEEE/ACM 3rd Int. Conf. Internet-Things Design
Implement. (IoTDI), Apr. 2018, pp. 72–83.

[146] R. Alguliyev, Y. Imamverdiyev, and L. Sukhostat, ‘‘Cyber-physical sys-
tems and their security issues,’’ Comput. Ind., vol. 100, pp. 212–223,
Sep. 2018.

[147] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, ‘‘Fog
computing for the Internet of Things: A survey,’’ ACM Trans. Internet
Technol., vol. 19, no. 2, p. 18, 2019.

VICTOR PROKHORENKO received the Ph.D.
degree in computer science from the University
of South Australia. He is currently a Researcher
with the Centre for Research on Engineering Soft-
ware Technologies (CREST), The University of
Adelaide. He has more than 14 years of experi-
ence in software engineering with main areas of
expertise including investigation of technologies
related to software resilience, trust management,
and big data solutions hosted within OpenStack
private cloud platform.

M. ALI BABAR is currently a Professor with the
School of Computer Science, The University of
Adelaide. He is an Honorary Visiting Professor
with the Software Institute, Nanjing University,
China. He is the Director of Cyber Security
Adelaide (CSA), which incorporates a node of
recently approved the Cyber Security Cooperative
Research Centre (CSCRC), whose estimated bud-
get is around A$140 Millions over seven years
with A$50 Millions provided by the Australia

Government. In the area of Software Engineering education, he led the
University’s effort to redevelop a Bachelor of Engineering (software) degree
that has been accredited by the Australian Computer Society and the Engi-
neers Australia (ACS/EA). Prior to joining The University of Adelaide,
he spent almost seven years in Europe (Ireland, Denmark, and U.K.) working
as a Senior Researcher and an Academic. Before returning to Australia,
he was a Reader of software engineering with Lancaster University. He has
established an Interdisciplinary Research Centre, Centre for Research on
Engineering Software Technologies (CREST), where he leads the research
and research training of more than 20 (12 Ph.D. students) members. Apart
from his work having industrial relevance as evidenced by several R&D
projects and setting up a number of collaborations in Australia and Europe
with industry and government agencies, his publications have been highly
cited within the discipline of Software Engineering as evidenced by his
H-index is 46 with 8240 citations as per Google Scholar on January 20,
2020. He leads the theme on Platform and Architecture for Cyber Security
as a Service with the Cyber Security Cooperative Research Centre. He has
authored/coauthored more than 220 peer-reviewed publications through pre-
mier Software Technology journals and conferences.

VOLUME 8, 2020 28095

	INTRODUCTION
	MAIN CONTRIBUTIONS

	CLOUD SYSTEM ARCHITECTURES OVERVIEW
	CLOUD COMPUTING
	CLOUDLETS
	EDGE AND FOG COMPUTING

	SYSTEM RESILIENCE
	TRUSTWORTHINESS
	CAPACITY
	EFFICIENCY

	LAYER-SPECIFIC RESILIENCE
	RESILIENCE ORCHESTRATION
	 SYSTEM ARCHITECTURE DEFINITION
	 RUN-TIME SYSTEM ADAPTATION AND RECONFIGURATION

	CURRENT RESEARCH EFFORTS
	DESIGN-TIME
	RUN-TIME
	TRUST-LESS OPERATION
	DYNAMIC ADAPTATION

	CHALLENGES AND OPPORTUNITIES
	FORMAL RESILIENCE ORCHESTRATION
	CAPABILITY-AWARE CYBER-FORAGING

	CONCLUSION
	REFERENCES
	Biographies
	VICTOR PROKHORENKO
	M. ALI BABAR

