
Received December 10, 2019, accepted January 8, 2020, date of publication February 3, 2020, date of current version February 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971000

A Novel Lightweight Solo Software Development
Methodology With Optimum Security Practices
SIBONILE MOYO AND ERNEST MNKANDLA
School of Computing, University of South Africa, Florida 119172, South Africa

Corresponding author: Sibonile Moyo (sibonile.moyo@nust.ac.zw)

ABSTRACT The diffusion of software into all areas of life and all forms of business, increases the demand
for high-quality and secure software products. Software development methodologies are designed to improve
the quality of software by incorporating practices that promote quality in the developed software. Software
security is an important facet of software quality, particularly in this era, where most software is deployed
for use over the Internet. Most research on developing high-quality and secure software is normally focused
on teams at the expense of individual developers. In trying to fill this gap, in this paper we propose an agile
secure-software development methodology. We design a methodology that promotes quality and security in
the software products of solo developers. We integrate quality practices with lightweight security practices
to produce agile secure software development practices. We draw quality practices from a solo software
development framework designed in our previous study, while security practices are drawn from existing
lightweightmethodologies.We adapt Keramati andMirian-Hosseinabadi’s algorithm to integrate the two sets
of practices, taking care to maintain an optimum degree of agility in the target methodology. We evaluate the
utility of the resultant methodology through a case study. Results from the case study show that our proposed
methodology can be used to build quality and secure software products without compromising the agility of
the methodology.

INDEX TERMS Agility degree, quality practices, security practice, software development methodology,
software product, software quality, software security, solo developer.

I. INTRODUCTION
Software security is an important characteristic of software
quality, especially in this era, where most software applica-
tions are deployed over the Internet. In this regard, devel-
oping secure software has become a topical research area
among a number of authors [1]–[4], particularly for those
software applications that are designed to handle online trans-
actions [5]–[8]. As most business applications become acces-
sible online, security problems due to code vulnerability have
increased, resulting in loss of personal and financial data to
both individuals and organizations [2]. Web applications in
particular, have been shown to be prone to SQL injection vul-
nerabilities, necessitating the need to design secure software
development practices to counter such threats [8].

Mobile and web applications tend to be popular with
freelance developers due to their small size. Their increased
deployment in business has also seen an increase in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Hui Liu .

number of freelance developers in the software industry. Free-
lance developers are individuals with the sole responsibility
of delivering high-quality software to a client or to a target
market. In this study we also refer to these developers as solo
developers.

A number of lightweight solo software development meth-
ods (SSDMs) [9]–[12] exist. Whereas these methods have
been designed with the aim to produce quality software prod-
ucts, none of the methods found in the literature address the
security aspect of the developed software. This was shown
in our previous work in [13]. A mapping of the quality
framework resulting from the meta-synthesis of the existing
SSDMs against the ISO/IEC 25010 quality model defined
in [14], showed that existing methodologies lack practices to
support software security, among other quality characteris-
tics. This model divides quality characteristics into high-level
and low-level characteristics. Low-vel characteristics are
what can be measured, and high-level characteristics are what
is expected of the software. Table 1 summarizes the mapping
of the quality practices against the quality characteristics.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 33735

https://orcid.org/0000-0003-0408-2341
https://orcid.org/0000-0003-3989-5617
https://orcid.org/0000-0002-3267-6801


S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

TABLE 1. Mapping quality practices against iso/iec 25010 quality characteristics.

As shown in the table, creation of product backlog, use of
a requirements checklist, and creation of a work-breakdown
structure promote functional completeness, which result in
product suitability. Similarly, use of development standards,
automated code review, use of a dummy partner in reviewing
code and test-driven development promote functional cor-
rectness. Functional correctness also contributes to functional
suitability. The rest of the table can be interpreted in the
same manner. Table 1 shows that some quality characteristics
from the quality model are not supported by the framework.
Characteristics not supported include performance efficiency,
portability and security. The view of lack of secure prac-
tices in agile methods, is corroborated by several other
authors [2], [3], [15].

Given this background, we aim to address this shortcoming
of agile methods, particularly for the solo software devel-
opment environment. In designing a software development
methodology (SDM) that promotes software quality in a solo
environment, we consider the issue of resource constraints,
which is characteristic of this environment. A befitting design
would therefore be that which embeds quality and security
promoting practices into the SDM. Embedding secure soft-
ware development practices into agilemethods is however not
an easy task [15]–[17]. Adding available security promoting
practices to agile methods may compromise the agility of the
resultant method if appropriate measures are not taken. There
is therefore a need to artfully integrate security practices with
agile quality practices without compromising the agility of

33736 VOLUME 8, 2020



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

the resultant SDM. Agility is key for an SSDM as this would
facilitate its uptake, especially by independent developers.

We tackle this challenge to integrate lightweight security
practices with agile quality practices to build an agile solo
software developmentmethodology. In drawing the practices,
we restrict our consideration to the solo development environ-
ment. We pose the following main question for the purpose:

How can existing secure software development practices
be integrated with lightweight quality software develop-
ment practices to build a secure solo software development
methodology (Secure-SSDM), without compromising the
resulting methodology’s agility?

To help answer this main question, we further pose the
following sub-questions:

Q1: What quality and lightweight security practices exist
for agile software development?

Q2: How can the lightweight security practices and agile
quality practices be integrated into a software development
methodology without compromising the agility of the resul-
tant practices?

Q3: How can the utility of the resulting methodology be
evaluated?

In pursuing answers to the questions above, we first derive
SSDM core quality practices and security practices that can
be executed by an individual from the literature. Then we
compute agility degrees for these independently. After that
we formulate a compatibility matrix to ease the integration
process. We then use a modified version of Keramati and
Mirian-Hosseinabadi’s algorithm [15] to integrate the secu-
rity practices and the quality practices taking care to main-
tain the agility of the resultant practices. We conclude by
evaluating the utility of the proposed Secure-SSDM through
a case study. In the following sections of the paper we dis-
cuss this process of designing and evaluating the proposed
Secure-SSDM. Section II discusses efforts made by other
researchers to build quality and secure-lightweight method-
ologies. Section III discusses the methodology used to design
the proposed Secure-SSDM and overviews the resulting
methodology. Section IV evaluates the Secure-SSDM, and
discusses threats to validity, while Section V presents the
conclusion and recommendations for future work.

II. RELATED WORK
Solo software development has attracted the attention of a
number of researchers. This stems from the increase in the
number of software projects that can be undertaken by an
individual working alone [12]. In a bid to improve the quality
of software by these developers, research has sought to design
lightweight methods that can be used by these individuals in
building quality into their software products. Ramingwong,
Ramingwong and Kusalaporn [12], scaled down Scrum prac-
tices to produce Solo-Scrum. In this scaled down version
the developer takes on all the Scrum roles and designs the
expected intermediate artefacts like the product backlog and
sprint backlog. Since the daily meetings characteristic of
the scrum team are not necessary in a solo environment,

the developer holds meetings with the product owner at three-
day intervals. To evaluate the utility of Solo-Scrum, a case
study was used. In this case study, a solo developer applied
the methodology in developing a web-based application. Per-
ceptions of both the developer and project participants were
collected for the evaluation purpose.

González-Sanabria, Morente-Molinera and
Castro-Romero [18] designed DeSoftIn, a methodology for
use by independent developers in an academic setting. The
authors synthesized quality practices from identified agile
methods for the purposes of guiding students working on
individual projects. They incorporated a number of quality
practices including a requirements checklist that is used to
capture requirements. The checklist is color-coded during
development to keep track of developer progress. At the
implementation, stage, the developer tests the software prod-
ucts for compliance with quality and security standards.
While the authors provide quality practices for improving
the quality of the software products, they do not discuss
security practices to be used to build security into the product.
They however acknowledge the importance of security in the
developed software.

Several researchers [15], [17], [19], [20] have tackled the
problem of improving software quality through introducing
traditional security practices into lightweight methods. The
authors in [20] extend the agile development methodology
(ADM) by incorporating security practices in the stages of
the methodology. In the initiation phase developers and the
users work together to identify software security risks. For
each identified risk, the probability and impact of the risk is
derived based on the user’s perspective. This is used to rank
the risks. Goals for mitigating the risks are then formulated
and presented as security user stories. Users choose which
threats to mitigate in a given iteration. On implementing
the functional and security user stories, developers produce
software to comply with security requirements of the user.
This work is similar to ours in that we also incorporate
security practices at each stage of the development process.
It differs in that in their case the development environment
is team-based and the authors use a risk-based approach for
security analysis, while we do not. Further, to minimize costs
in a solo development environment we do not perform the
security assurance reassessment of implemented modules at
the end of every iteration.

In [19] the authors consider the possibility of introduc-
ing traditional software development security practices into
agile methods. The authors analyze the compatibility of the
traditional security practices with agile practices. They con-
clude that compatible and independent security practices are
readily integratable with existing agile methods. They recom-
mend automation supported by knowledge management for
partially automatable practices. For the mismatch practices,
they suggest designing a new set of agile security practices
or applying traditional security practices at least two times
within the agile development process. We consider these
authors as some form of feasibility study. It differs from

VOLUME 8, 2020 33737



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

ours in that we propose a method that incorporates existing
practices into the life cycle. The authors’ work is important
for our purposes in that it points out the feasibility of building
a secure agile software development methodology.

Keramati and Mirian-Hosseinabadi [15] developed an
algorithm that is used to identify security practices for the
purposes of integrating these with agile practices. Tomaintain
the agility of the resulting practices, the algorithm computes
an agility degree for the identified security practice, after
which the practice is integrated, if and only if, it meets a
certain agility threshold. The team or organization wishing
to introduce security practices into its agile development
processes in this case determines the agility threshold. The
team conducts a thorough analysis of its environment and its
capabilities to handle security practices in order to come up
with its agility threshold value. The use of a threshold value,
while not applicable as is in this paper, can be adapted to
put a lower limit on the agility degrees of practices so as
to determine those practices that are integratable and those
that are not. We therefore adopted these authors algorithm to
integrate quality and security practices drawn from existing
methodologies to produce secure agile practices.

Fisa-XP [17] is a framework designed through combining
eXtreme Programming (XP) practices with secure develop-
ment practices. The security practices are drawn from Open
Web Application Security Project (OWASP)’s Comprehen-
sive Lightweight Application Security Process (CLASP). The
authors of Fisa-XP use a modified version of the algorithm
in [15] to identify appropriate security practices from CLASP
which they integrate with XP practices. They also devel-
oped Tisa-XP, an automated tool, which they use for the
purposes of integrating the quality and security practices.
This automated tool serves as a knowledge base to help
ease the integration process. Tisa-XP also provides an inbuilt
tutorial to assist developers with the integration. The utility
of Tisa-XP was evaluated through a case study carried out
in a software development organization. After using the tool,
developers were asked to comment on its ease of use, time
saving aspect of the tool and whether it was interesting to
use. The responses were in support of the tool.

Case studies have been widely used in software engineer-
ing to demonstrate the usability of the resulting software
development methodologies in a live setting. Besides the
authors cited in [17] above, Hamid andWeber [21] used a case
study carried out in an industry setting, to evaluate theirmodel
driven methodology’s utility in developing secure software.
The authors demonstrated the feasibility of their approach
through its application in a metrology environment. Partic-
ipants perception of the methodology were collected through
a survey conducted at the end of the case study. An online
questionnaire was used to collect these anonymously. Percep-
tions collected from the participants confirmed the model’s
ease of use and its applicability in the industry. In addition to
using expert evaluation, Quiñones, Rusu and Rusu [22] used a
case study to show the utility of their methodology in devel-
oping usability heuristics. The methodology was applied in

various environments in different case studies for the purpose.
Similarly, the perceptions of the participants in the different
case studies were collected through a survey after the case
study. While the responses from the participants indicated
that the methodology was difficult, participants opined that it
was usable in their environment and they indicated that they
would use it in the future. These examples have shown the
popularity of case studies in evaluating new methods.

Case studies are used normally to evaluate an artifact in
its natural setting. They are appropriate in evaluation cases
where the boundary between the environment and the artifact
is not clear. This is true for software development methodolo-
gies where a number of variables have an impact on the suc-
cess of the software project. Evaluating a software develop-
ment methodology in its intended setting helps to determine
the acceptability of themethodology by its intended audience.
The Secure-SSDM is evaluated in an academic using a case
study and perceptions of the student participants after using
the methodology are collected through focus group discus-
sions and document analysis. The collected data is analyzed
qualitatively.

Most of the works we found in the literature, particularly
on secure software development concentrate on teams as can
been seen in the preceding paragraphs. Our work is unique
in that we focus on developing a methodology targeted at
individual software developers.We use the quality framework
in [13] as a source for the core quality practices of the Secure-
SSDM. The security practices in [23] are used as a source for
security practices. We consider this pool of security practices
to be consensus practices in the agile environment as they are
derived through a systematic literature review. In integrating
the identified lightweight security practices with the quality
promoting practices, we identify only those security practices
that can be performed by an individual and we systematically
integrate thesewith the SSDM framework discussed in [13] to
produce the proposed Secure-SSDM.We discuss the identifi-
cation and integration process in the following methodology
section.

III. METHODOLOGY
We use Design Science Research (DSR) [24] to iteratively
design the proposed Secure-SSDM. We deem it applicable
in this paper as we seek to design a satisficing solution
to integrate security and quality practices for the purposes
of embedding quality in the software development process.
We adopt the DSR cycle of: (1) Problem identification;
(2) Definition of solution objectives; (3) Design and devel-
opment; (4) Solution demonstration; (5) Solution evalua-
tion; and (6) Results communication. This paper focuses
on the design, demonstration and evaluation of the Secure-
SSDM. The problem is highlighted in our research question
cited above, as how to embed security practices into agile
quality practices without compromising the agility of the
resultant methodology. The design process is summarized in
Figure 1.

33738 VOLUME 8, 2020



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

FIGURE 1. Methodology processes in designing the Secure-SSDM.

As Figure 1 shows, we derive the two different types of
practices to be embedded in the Secure-SSDM from the
literature. Core-SSDM quality practices are drawn from the
SSDMquality framework discussed in [13] to create a quality
practices list, while security practices are drawn from the
security framework in [23]. The quality practices in the lat-
ter framework are drawn from established secure software
development methods, hence are considered to be acceptable
practices in secure software development. Sub-sections A to
D elaborate the activities in the figure.

A. IDENTIFYING QUALITY AND SECURITY PRACTICES
We identify the core development practices of the
Secure-SSDM through selecting those practices confirmed
by two or more authors of the SSDMs participating in the
meta-synthesis in [13]. This way, the Secure-SSDM is built
on development practices generally accepted in the SSDM
community [24]. The rest of the practices in the framework
remain as non-core practices which are executed depending
on the type of product under development. We also identify
security practices from the framework in [23] to create a secu-
rity practices list. We identify those security practices that can
be executed by an individual, and place them in the related
stage of the quality framework. Table 2 shows the list of
quality and security practices drawn from the literature. They
have been organized into development stages to facilitate the

TABLE 2. Quality and security practices.

integration process. The list of quality and security practices
provide us with the answer to sub-question Q1. Having iden-
tified the practices, we proceed to compute their degrees of
agility independently.

B. COMPUTING THE AGILITY DEGREES OF PRACTICES
In determining the degrees of agility of these two types of
practices, this paper adopts Qumer and Henderson-Sellers’s
definition of agility thus:

VOLUME 8, 2020 33739



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

‘‘Agility is a persistent behavior or ability of a sensi-
tive entity that exhibits flexibility to accommodate expected
or unexpected changes rapidly, follows the shortest time
span, uses economical, simple and quality instruments in a
dynamic environment and applies updated prior knowledge
and experience to learn from the internal and external envi-
ronment’’ [25].

These authors derive five features of agility from
this definition. These are: flexibility, swiftness, leanness,
responsiveness, and learning. We add a sixth feature, that of
simplicity.We consider simplicity an important facet of a solo
development environment, since peer review is non-existent
in this environment. We use these six features: flexibility,
swiftness, leanness, responsiveness, learning and simplicity
to compute the agility degrees of each of the SSDM’s devel-
opment core practices and security practices. We compute
these as shown in (1).

δ =
1
n

∑n

t=1
xt; x ∈ (0, 1) (1)

where δ is the agility degree, and x, the value of the agile
feature which can hold two values, 1 for existence, 0 for non-
existence. To illustrate the use of (1) in computing the degrees
of agility, consider the security practice ‘‘Security awareness
training’’.

Assessing the existence of the six features in the practice,
we assign a 1 to it for flexibility, as we deem it a flexible
process, and another 1 for learning, as it promotes learning,
we assign a 1 for its being a responsive practice. This is
a simple process, so we assign another 1 for this feature.
The process however is not fast, so we assign a 0 for speed,
and another 0 for it not being lean since it involves some
documentation. The score for this practice is 4/6, giving an
agility degree of 0.67. The other degrees of the quality and
security practices are computed in a similar manner. It should
be noted that in inferring the agility values of the agile prac-
tices in the SSDM, we also refer to the work of [26] where the
agility values of Scrum and XP are computed. This research
is similar to these authors’ in that most of the SSDM quality
practices are drawn from XP and Scrum.

C. CREATING A COMPATIBILITY MATRIX
Having derived the agility degrees of the two sets of practices,
we create a compatibility matrix to ease the integration pro-
cess. The SSDM core-quality practices and security practices
can only be integrated if they are compatible [15], [16]. Two
practices are compatible if the developer can execute the
two simultaneously with minimal loss of productivity. The
compatibility between two practices is mainly inferred from
the literature and from the close analysis of each practice
and what it takes to execute the processes simultaneously,
particularly for an individual. Table 3 shows the compatibility
matrix with the practices and their associated degrees of
agility. A ‘C’ in a cell in the table shows the compatibility
between the two practices whereas ‘NC’ shows incompati-
bility between the practices.

D. INTEGRATING QUALITY AND SECURITY PRACTICES
Once the agility degrees of the two sets of practices are
computed, and the compatibility matrix is in place, prac-
tices can now be integrated. We use Keramati and Mirrian-
Hosseinabadi’s adapted algorithm which we summarize in
the steps below:

1. Choose a security practice with the highest degree of
agility.

2. Choose an agile practicewith the least agility degree for
integration, if none exists, delete the security practice
from the list and stop, that is, go to step 6.

3. Integrate the two practices to form a new secure agile
practice with agility degree computed as min (a, b)
where a is the agility degree of the agile practice and b,
the agility degree of the security practice.

4. Check if agility degree of secure agile practice
>= 0.5. This is in line with the recommendation by
Qumer and Henderson-Sellers [27] to consider any
practice or methodology with an agility degree>= 0.5,
as agile. In this case, the research therefore adopts the
agility values of 0 to 1 as suggested by these authors.
The setting of a threshold of the agility degree to 0.5 is
our adaptation of this algorithm.

5. Remove the security practice from the security prac-
tices list.

6. Stop or go back to 1 if security practices still exist
To illustrate the use of this algorithm during the integration
process, consider an example practice in the list of security
practices, that of source code security reviews which had its
agility degree computed to be 0.83, and is the highest. this
practice is compatible with: coding & code review of with
dummy; code refactoring; code integration testing; and task
automation. The compatible quality practice with the least
agility degree of 0.67 is, coding & code review with dummy.
Combining these two gives a minimum agility degree of min
(0.67, 083) = 0.67. As this is greater than 0.5, these two
can be combined resulting in the practice: Coding & code
review, and security code review with the help of a dummy
partner. This is a practice in the Development with review
phase. The rest of the security practices incorporated into the
Secure-SSDM were integrated this way. In Section IV we
overview the resulting methodology stages.

IV. THE SECURE-SSDM METHODOLOGY
The Secure-SSDM is an agile methodology designed through
the integration of quality practices and security practices
drawn from the literature. This gives the methodology
its intrinsic quality characteristics. The methodology is
organized into six stages: Stage I - Management Buy-in
and Standards adoption; Stage II - Functional and Security
Requirements Elicitation; Stage III - Release and Sprint Plan-
ning; Stage IV - Development with Review; Stage V - Sprint
Review and Close, and Stage VI - Evaluation. The stages
are summarized as shown in Figure 2. We summarize the
practices undertaken in each of these stages in the following
sub-sections.

33740 VOLUME 8, 2020



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

TABLE 3. Compatibility matrix with agility degrees of practices.

STAGE I. MANAGEMENT BUY-IN AND STANDARDS
ADOPTION
A developer adopting the Secure-SSDM starts by identifying
and educating users on how the project will be undertaken

using the methodology. User education in this case applies in
cases where a project has identified end users, particularly in
an organizational setting. In some cases, a software product is
developed for a generic set of users. In this case, the developer

VOLUME 8, 2020 33741



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

FIGURE 2. Secure-SSDM stages and main activities in each stage.

uses their creativity to formulate requirements for the soft-
ware. A representative set of clients may be identified to
play the role of users if possible. Identifying users at the
onset of a software project is a well-stablished concept of
user involvement in software development. In addition to
educating users on how the development process will pro-
ceed, the developer conscientizes users on issues of security.
During this period, the developer also adopts appropriate
standards (both developmental and security) determined by
the type of software under development for use in the project.
Developers are encouraged to refer to quality and security
standards relevant for their software product to benchmark
the quality of the product under development.

It is also important at this point to carry out security
analysis on identified user roles. At this point the analysis
identifies security threats based on high-level user require-
ments. The use of an automated dashboard is recommended
here to capture and keep track of user requirements, and their
associated threats. Bernabé, Navia, and García-Peñalvo [10]
recommend the use of tools like Trello or Taiga for sin-
gle development environments. Trello as a tool enables the
developer to organize and manage their work so that they
can easily visualize tasks in progress, pending, done, to be
reviewed and so on [10]. As a web-based tool it provides for
portability enabling the developer to access their dashboard
from anywhere.

STAGE II. FUNCTIONAL AND SECURITY REQUIREMENTS
ELICITATION
During requirements elicitation, the developer works with
users to collect both functional and security requirements.
This can be done through collecting user stories describing
the users’ expected interactions with the system. User stories
have to be defined to be small enough so that the devel-
oper can work on them independently. These are what users
perceive as value addition activities to be obtained from the
system. These expected interactions are used to create use
case diagrams. We recommend the use of UML diagrams
in modelling use cases. At the same time the developer also
collects unexpected interactions that may be carried out by
unauthorized persons on use cases. These are better identified
with the help of the user as they understand the operational
environment better.

Unexpected interactions aremodelled asmisuse cases [28].
The developer shouldmake all effort to get the user to imagine
all circumstances that could disturb the smooth flow of their
processes. One way to help the user to identify misuse cases
is to ask the user to imagine what an intruder would do if
they accessed the system. A composite model of use cases
and misuse cases is created to show users’ interactions with
the system. The use cases and their associated misuse cases
are used to create a prioritized product backlog. A priori-
tized product backlog lists the user’s expected deliverables

33742 VOLUME 8, 2020



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

in each development iteration. Capturing misuse cases at
such an early stage helps the developer to prioritize security,
as opposed to having to think about security at the implemen-
tation and testing stages. For complex systems, the developer
may build prototypes to facilitate communication between the
users. This also helps the developer to understand the system.
Once the prioritized backlog is in place, and agreed on by the
developer and client, sprint planning may begin.

STAGE III. RELEASE AND SPRINT PLANNING
Release and sprint planning involve identifying the task at
the top of the prioritized product backlog, and its component
tasks. Since the developer is working on their own, draw-
ing items from an already prioritized product backlog, they
can use the logic of the system to order tasks in a sprint.
The ordered tasks in a sprint should have time estimates
attached to them. The developer should set short iterations
of 1 – 2 weeks, to enhance process visibility. Short iterations
also motivate the developer at the same time promoting
productivity. Appropriate designs for the sprint deliverable
should be made, together with security designs and accep-
tance tests. Sequence diagrams can be used to model the
interactions of the user with the system. Another alternative
is to use class diagrams. It is advised that the developer keeps
models as minimal as possible to enhance productivity. Key
points of intruder interceptions should be indicated so as to
enable the developer to design means to counter these.

STAGE IV. DEVELOPMENT AND REVIEW
Development with review builds the software product. The
developer produces code for the tasks taking care to adhere
to coding and security standards adopted at the onset of the
project. We recommend the use of version/change control
tools to keep track of any code changes. To minimize code
defects, we recommend that the developer performs code
and source level security reviews with the help of a dummy
partner. Identifying errors in the code helps to ensure that
only safe and correct code is integrated into the live envi-
ronment. A dummy partner is any object that the devel-
oper may obtain to explain code to. This may also mean
practicing self-dialogue. Here the developer runs through
all sections of code and explains their functionality to the
dummy. This helps to identify errors in code. All identified
errors should be fixed before the code is integrated into the
baseline.

In producing code, secure coding practices such as avoid-
ance of unsafe functions discussed in [29] should be adopted.
These include the avoidance of the use of the strcpy,
strncpy, and strcat families of functions from C and C++

programming languages, among others. Instead developers
should explore safer versions of functions in their develop-
ment environments and adopt these. The code at this stage
should be secure, with minimal, if not free of coding errors.
This is ready for installation at the user’s site in the next
stage.

STAGE V. SPRINT REVIEW AND CLOSE
Review and sprint close marks the end of a sprint initially
set to deliver some functionality (or some component) at the
user’s site. Here the developer should review the time taken to
complete the sprint, against the initial time set for the purpose.
Any differences should be noted and used to adjust estimates
for the next sprint or future projects. The developer also
reviews code quality against set standards. Finished task (s)
are moved to completed tasks and incomplete tasks are car-
ried over to the next iteration. The developer also performs
code integration, integration testing and security testing. The
use of a version control system is highly recommended and
so is the use of automation tools discussed in [30]. These
include tools used to: quickly access all recently modified
code files; correct the most recent commit; delete the most
recent commit; and divide a commit in the event the developer
detects or suspects some conflict within code components.
Such tools help the developer to quickly access the most
recent work and perform corrections without taking time
to browse all files. Security tests should be performed on
all code before integration. At this point the developer also
reviews project progress, after which they plan for next sprint
or close the project, if no items remain in the backlog.

STAGE VI. EVALUATION
The last stage, Evaluation, concludes the project. This
involves evaluation of product deliverables against the user’s
expectation as well as standards adopted at project onset.
This process may be conducted through carrying out a system
acceptance test. The system is tested for both user require-
ments and security requirements fulfilment. At this point
the developer should update their development knowledge
base as well as security repository. The security repository
captures practices to build security into the software. This
knowledge management promotes learning in this environ-
ment. The developer is also recommended to identify pro-
cesses or tasks for automation. These are recurring activities
within the project life cycle. Automating development pro-
cesses improves developer productivity [10], [11]. Although
most of the Secure-SSDM stages are illustrated as sequential,
it should be noted that this is an iterative process, and some
tasks may be executed in parallel depending on the size and
complexity of the tasks at hand. Table 4 shows the practices in
each stage with associated tools recommended for executing
the practice. This is meant to address the need of novice
developers as was observed with student participants in a case
study designed to evaluate the utility of the methodology.
Since quality and security are usually not a key concern with
most solo developers, we provide here recommended tools
for use in executing the practices. We have placed the tools
adjacent to the practices to assist the developers.

V. EVALUATION OF THE SECURE-SSDM
The success of DSR is premised on the successful demonstra-
tion of the utility of the resulting artefact in addressing the

VOLUME 8, 2020 33743



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

TABLE 4. Secure-ssdm and recommended tools, techniques and standards.

problem for which the artefact is designed [24], [31], [32].
The Secure-SSDM is designed to improve the quality and
in particular security of software products designed by indi-
vidual developers. This is done through the addition of the
security practices to those quality practices that were shown
to be existent in the current SSDMs. These were functional
suitability, maintainability, usability, reliability, and satisfac-
tion. The resultant Secure-SSDM is therefore expected to
promote functional suitability, maintainability, usability, reli-
ability, satisfaction and security in the developed software
products.

To that effect the Secure-SSDMhas gone through a number
of iterations to evaluate its utility. During the first iteration,
the SSDM quality framework and its quality practices was
presented to participants at a Computing post graduate aca-
demic seminar for analysis and feedback. The quality prac-
tices and how they build quality into the framework were
explained to the participants. The participants confirmed the
quality practices with few suggestions for improvement. The
highlights for improvement were used to refine the SSDM
quality framework. The refined SSDM quality framework
was also subjected to blind peer review through a conference

33744 VOLUME 8, 2020



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

paper. Reviewers’ comments were used to further refine the
framework.

This refined quality framework is discussed in [13], and
was used as a basis for the design of the Secure-SSDM
discussed in this paper. Since the Secure-SSDM is built on
consensus practices, its quality can also be inferred [24].
To evaluate the utility of the Secure-SSDM in developing
quality and secure software, an academic case studywas used.
A case study is cited as one of the means that can be used to
demonstrate the utility of an artefact designed through DSR.
In section II we heighted a number of authors that have used
the case study in evaluating the usability of a methodology.
A case studywas deemed appropriate in this paper as it allows
us to evaluate the methodology in a socio-technical setting.

Thirty-nine participants (undergraduate students studying
towards a four-year degree in Computer Science) participated
in the study. This lot of students were doing their second year
of a four-year honors degree. This group of participants were
chosen due to their accessibility to the first author. The author
taught the group of students for a semester long course in
Societal computing. This was the third time that the author
took the course. The course lasted for three months beginning
January 2019 up to March 2019. In this course students are
normally expected to identify a problem in the community,
to which they can provide a computerized solution. Using this
requirement of the course, we deemed this group appropriate
for the case study. Since the author had access to the partici-
pants, it was easy to monitor progress as participants worked
on their individual progress.

Prior to the case study, clearance was sought with the uni-
versity gate keeper, as well as an ethical clearance to conduct
the study. At the beginning of the semester, the methodology
was explained to the class. Invitation to participate in the case
study was extended to the class. Those who volunteered to
participate were asked to use the Secure-SSDM to design
and implement software products of their own choice as
expected from the course. Software products were designed
in the areas of Education, Health, Government, Environment
and Business. The areas of application were allocated to the
students through a raffle, where each participant was made
to blindly pick a piece of paper with an application area on
it. These application areas were chosen based on the partic-
ipants’ course outline. We did not change the areas, as we
deemed these varied enough to test the various capabilities of
the methodology.

Themethodology stages were explained to the participants,
together with the main quality and security practices. Partici-
pants were also given copies of the methodology for constant
reference. They were then asked to follow the methodology
practices in designing their software products. Feedback on
the utility of the methodology was collected through a focus
group discussion and document analysis. At the end of the
semester a focus group discussion was held to collect par-
ticipants feedback on the usability of the methodology to
build quality and secure products. The first author moder-
ated the focus group discussion, while a teaching assistant

attached to the class captured responses to the questions
posed by the moderator. Questions posed were divided into
three sections; General comments on the usability of the
methodology; Comments on the practices in each phase; and
Suggestions for improvement. A pre-formulated template to
capture responses per question was used for the purpose.
Responses were captured against questions posed. At the end
of the discussion the first author went through the captured
data corroborating what they had captured with what the
assistant had captured.

Associated project documentation for the software prod-
ucts was also reviewed for models recommended at each and
every stage. This was to verify methodology adherence by
the students. Besides checking methodology adherence from
the participants in their documentation, we also extracted
strengths and weaknesses of the methodology as perceived
by the participants. Data from the focus group discussion and
documentation was extracted into a spreadsheet. This enabled
sorting and color coding of the themes emanating from the
data.

During the focus group discussions participants acknowl-
edged the importance of analyzing the security aspect of soft-
ware products in collaboration with users. As one participant
put it:

‘‘I had never thought I could model a system from an
intruder’s perspective indicating what these could do to hin-
der the smooth use of the system. After realizing the actions,
the intruder could perform on the system, I was forced to
think of how to counter them, instead of just using the log-on
password as a security measure.’’

Another participant marveled at the idea of the use of a
dummy as a peer review partner. Putting it in their ownwords:

‘‘At first I thought this was crazy, but after getting down to
performing the practice, I noted I was able to discover flaws
in my system.’’

The data that we had extracted to Microsoft Excel was
analyzed for themes and patterns. We organized these into
strengths, weaknesses and suggestions for improvement.
These were drawn from our questions and the data.

Table 5 summarizes the participants’ comments on the
utility of the Secure-SSDM, captured both from the focus
group discussion as well as the methodology section of their
project documentation. As shown in the table, while partici-
pants indicated more strengths of the methodology, they also
pointed out some weaknesses. The weaknesses were mainly
associated with the multiple skills that the developer has to
possess to successfully use the methodology. As a recom-
mendation to deal with the lack of secure development skills
participants suggested sub-contracting some practices such
as security testing. This however might increase develop-
mental costs, and subsequently erode the developer’ profits.
For critical systems, developers may have to consider the
suggestion.

Some participants also noted that executing the security
practices took some considerable time, particularly for those
practices that were new to them. This is acceptable from these

VOLUME 8, 2020 33745



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

TABLE 5. Themes emanating from student participants’ comments on the secure-SSDM.

participants as they had limited knowledge of secure coding
practices.

On reviewing the associated models of the software prod-
ucts that participants built, we noted most participants had
produced the models that were anticipated for their types of
products. Most participants had managed to model misuse
cases associated with all their use cases. Based on the use
cases and misuse cases, participants managed to come up
with design models showing the flow of the system, together
with counter measures to deal with identified threats. A few
participants, however after coming upwith theirmisuse cases,
failed to come up with appropriate designs to counter identi-
fied intruder actions. Such practice is common among stu-
dents to fail to follow adopted methodologies as they pace
towards the finishing line [33]. We have since improved on
the methodology by adding tools required to support the
desired quality practices, particularly security practices.

A. THREATS TO VALIDITY
The case study setting for our evaluation is an academic
setting made up of students with varied backgrounds. Some
students enroll for the Computer Science course after doing
some courses in software development. Such students might
have used other practices to develop their software, thereby
not giving a clear picture of the utility of the Secure-SSDM.
To deal with this threat the first author consistently checked
development progress of each participant and their adherence
to the practices suggested.We had progress reports conducted
fortnightly to check the participants’ progress, so that each
participant could indicate at what stage of the software devel-
opment process they were in. We also reviewed their project
documentation for the expected deliverables of each stage.

The other threat to validity is the fact that the academic
setting is quite different from the industry setting, making it

difficult to generalize the results of the case study. The student
participants have limited time (in this case study 12 weeks,
which also have to accommodate other courses), and limited
resources, as in some cases students fail to find real clients
and end up hypothesizing most of the requirements. To deal
with this threat we emphasized that the participants choose
projects that could be handled within their normal class times
of four hours per week. This also made it easy for us to
track their progress. We are also currently evaluating the
Secure-SSDM through a multiple industry case study.

VI. CONCLUSION
We have proposed a Secure-SSDM for individual developers
that can be used to build quality, and in particular security
into software products. The introduction of security promot-
ing practices to the existing quality practices is our main
contribution to the solo software development environment.
From a Design science perspective, our contribution to the-
ory is the addition of security practices into the solo soft-
ware development knowledge base. Using an adapted version
of Keramati and Mirian-Hosseinabadi’s algorithm we have
concentrated on incorporating those lightweight practices
that are executable by an individual with minimum effort.
Our contribution to practice, is the proposed Secure-SSDM,
amethodology that can be used by an individual in developing
small to medium-sized software products. We have success
fully demonstrated the utility of the Secure-SSDM in building
high-quality and secure software applications in the areas of
Education, Health, Government and Business. This in turn
should help improve the quality of mobile and web-based
applications which are popular with solo developers in these
application areas.

As future work we recommend the addition of other quality
practices to our methodology to address the characteristics of

33746 VOLUME 8, 2020



S. Moyo, E. Mnkandla: Novel Lightweight Solo Software Development Methodology

performance efficiency, compatibility, and portability. These
are the quality properties in addition to security that were
identified not to be supported by the existing SSDMs after
we compared the derived quality framework in [13] with the
ISO/IEE 25010 [14] quality model high-level characteristics.

REFERENCES
[1] D. S. Cruzes, M. Felderer, T. D. Oyetoyan, M. Gander, and I. Pekaric,

‘‘How is security testing done in agile teams? A cross-case analysis of
four software teams,’’ in Agile Processes in Software Engineering and
Extreme Programming (Lecture Notes in Business Information Process-
ing), vol. 283. Cham, Switzerland: Springer, 2017, pp. 201–216.

[2] A. Firdaus, I. Ghani, and S. R. Jeong, ‘‘Secure feature driven development
(SFDD) model for secure software development,’’ Procedia Social Behav.
Sci., vol. 129, pp. 546–553, May 2014.

[3] I. Ghani, Z. Azham, and S. R. Jeong, ‘‘Integrating software security
into agile-Scrum method,’’ KSII Trans. Internet Inf. Syst., vol. 8, no. 2,
pp. 646–663, 2014.

[4] B. Musa and S. Norita, ‘‘Systematic review of Web application security,’’
Artif. Intell. Rev., pp. 259–276, 2015.

[5] S. Al-Amin, N. Ajmeri, H. Du, E. Z. Berglund, and M. P. Singh, ‘‘Toward
effective adoption of secure software development practices,’’ Simul.
Model. Pract. Theory, vol. 85, pp. 33–46, Jun. 2018.

[6] H. Homaei and H. R. Shahriari, ‘‘Athena: A framework to automatically
generate security test oracle via extracting policies from source code and
intended software behaviour,’’ Inf. Softw. Technol., vol. 107, pp. 112–124,
Mar. 2019.

[7] C. Wijayarathna and N. A. G. Arachchilage, ‘‘Why Johnny can’t develop
a secure application? A usability analysis of java secure socket extension
API,’’ Comput. Secur., vol. 80, pp. 54–73, Jan. 2019.

[8] J. Zhu, J. Xie, H. R. Lipford, and B. Chu, ‘‘Supporting secure programming
inWeb applications through interactive static analysis,’’ J. Adv. Res., vol. 5,
no. 4, pp. 449–462, Jul. 2014.

[9] R. Agarwal and D. Umphress, ‘‘Extreme programming for a single person
team,’’ in Proc. 46th Annu. Southeast Regional Conf., 2008, pp. 82–87.

[10] R. B. Bernabé, Á. Navia, and J. García-Peñalvo, ‘‘Faat: Freelance as a
team,’’ inProc. 3rd Int. Conf. Technol. Ecosyst. EnhancingMulticulturality
(TEEM), 2015, pp. 687–694.

[11] Y. Dzhurov, I. Krasteva, and S. Ilieva, ‘‘Personal extreme programming—
An agile process for autonomous developers,’’ in Proc. Int. Conf. Softw.,
Services Semantic Technol. (S3T), 2009, pp. 252–259.

[12] L. Ramingwong, S. Ramingwong, and P. Kusalaporn, ‘‘Solo scrum in
bureaucratic organization: A case study from thailand,’’ in IT Conver-
gence and Security, K. J. Kim, H. Kim, and N. Baek, Eds. Singapore:
Springer-Verlag, 2017, pp. 341–348.

[13] S.Moyo and E.Mnkandla, ‘‘Ametasynthesis of solo software development
methodologies,’’ in Proc. Int. Multidisciplinary Inf. Technol. Eng. Conf.
(IMITEC), 2019, pp. 353–359.

[14] Systems and Software Engineering-System and Software Product Qual-
ity Requirements and Evaluation(SQauRE)-System and Software Quality
Models, document ISO/IEC FCD 25010, 2010.

[15] H. Keramati and S.-H. Mirian-Hosseinabadi, ‘‘Integrating software devel-
opment security activities with agile methodologies,’’ in Proc. IEEE/ACS
Int. Conf. Comput. Syst. Appl., Mar. 2008, pp. 749–754.

[16] Sonia and A. Singhal, ‘‘Integration analysis of security activities from the
perspective of agility,’’ in Proc. Agile India, Feb. 2012, pp. 40–47.

[17] Sonia, A. Singhal, and H. Banati, ‘‘FISA-XP: An agile-based integration
of security activities with extreme programming,’’ SIGSOFT Softw. Eng.
Notes, vol. 39, no. 3, pp. 1–14, Jun. 2014.

[18] J. S. González-Sanabria, J. A. Morente-Molinera, and A. Castro-Romero,
‘‘DeSoftIn: Methodological proposal for individual software develop-
ment,’’ Rev. Fac. Ing., vol. 26, no. 45, pp. 23–32, May 2017.

[19] K. Beznosov and P. Kruchten, ‘‘Towards Agile Security Assurance,’’ in
Proc. New Secur. Paradigms Workshop, 2004, pp. 47–54.

[20] L. B. Othmane, P. Angin, H. Weffers, and B. Bhargava, ‘‘Extending the
agile development process to develop acceptably secure software,’’ IEEE
Trans. Dependable Secure Comput., vol. 11, no. 6, pp. 497–509, Nov. 2014.

[21] B. Hamid and D. Weber, ‘‘Engineering secure systems: Models, pat-
terns and empirical validation,’’ Comput. Secur., vol. 77, pp. 315–348,
Aug. 2018.

[22] D. Quiñones, C. Rusu, and V. Rusu, ‘‘A methodology to develop
usability/user experience heuristics,’’ Comput. Standards Int., vol. 59,
pp. 109–129, Aug. 2018.

[23] K. Rindell, S. Hyrynsalmi, and V. Leppänen, ‘‘Busting a myth: Review
of agile security engineering methods,’’ in Proc. Availability, Rel. Secur.
(ARES), 2017, pp. 1–10.

[24] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, ‘‘A design
science research methodology for information systems research,’’ J. Man-
age. Inf. Syst., vol. 24, no. 3, pp. 45–77, Dec. 2007.

[25] A. Qumer and B. Henderson-sellers, ‘‘Crystallization of agility: Back to
basics,’’ in Proc. Int. Conf. Softw. Technol., 2006, pp. 121–126.

[26] A. Qumer and B. Henderson-Sellers, ‘‘Measuring agility and adoptability
of agile methods?: A 4-dimensional analytical tool,’’ in Proc. IADIS Int.
Conf. Appl. Comput., Jan. 2006, pp. 503–507.

[27] A. Qumer and B. Henderson-Sellers, ‘‘An evaluation of the degree of
agility in six agile methods and its applicability for method engineering,’’
Inf. Softw. Technol., vol. 50, no. 4, pp. 280–295, 2008.

[28] G. Sindre and A. L. Opdahl, ‘‘Eliciting security requirements with misuse
cases,’’ Requirements Eng., vol. 10, no. 1, pp. 34–44, 2005.

[29] M. Belk, ‘‘Fundamental practices for secure software development,’’
in Proc. Softw. Assurance Forum Excellence Code (SAFECode), 2011,
pp. 1–51.

[30] V. Driessen. (Nov. 8, 2018). Git Power Tools For Daily Use. Accessed:
Nov. 16, 2018. [Online]. Available: https://nvie.com/posts/git-power-tools/

[31] R. J. Wieringa, Design Science Methodology for Information Systems and
Software Engineering. Berlin, The Netherlands: Springer-Verlag, 2014.

[32] P. Kotzé, A. Van Der Merwe, and A. Gerber, ‘‘Design science research as
research approach in doctoral studies,’’ in Proc. 21st Amer. Conf. Inf. Syst.,
2015, pp. 1–14.

[33] D. Strode and J. Clark, ‘‘Methodology in software development capstone
projects,’’ in Proc. 20th Annu. Conf. (NACCQ), Nelson, New Zealand,
2007, pp. 243–251.

SIBONILE MOYO received the B.Sc. degree
from the University of Zimbabwe, in 1992, and
the M.Sc. degree in computer science from the
National University of Science and Technology,
Bulawayo, Zimbabwe, in 2005. She is currently
pursuing the Ph.D. degree in computer science
with the Department of Computer Science, School
of Computing, University of South Africa.

She is currently a Lecturer with the Department
of Computer Science, National University of Sci-

ence and Technology (NUST), Zimbabwe. She has taught undergraduate
courses in software engineering, software development and database sys-
tems at NUST for the past 15 years. Her research interests are in software
engineering, software development methodologies, and developing quality
software.

ERNEST MNKANDLA received the degree
(Hons.) in electrical engineering, in 1992,
the M.Sc. degree in computer science in 1997,
the Ph.D. degree in electrical engineering, in 2008,
and the master’s degree in open and distance
learning, in 2016.

He is currently a Professor with the Department
of Computer Science, School of Computing, Uni-
versity of South Africa. He has taught in engineer-
ing, computer science, information technology,

and information systems at various universities in and outside South Africa
for more than two decades and has supervised many M.Sc. and Ph.D.
students. He is a rated Researcher in South Africa and has passion in the
development of quality software and believes in the betterment of humanity
through the provision of quality software technologies and seamless synergy
between humans andmachines. He hopes for a future where there is a balance
between new technology innovations and ethics. He therefore researches
and publishes extensively in software engineering and artificial intelligence.
He has provided consultancy to industry in software development and
information technology.

VOLUME 8, 2020 33747


	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	IDENTIFYING QUALITY AND SECURITY PRACTICES
	COMPUTING THE AGILITY DEGREES OF PRACTICES
	CREATING A COMPATIBILITY MATRIX
	INTEGRATING QUALITY AND SECURITY PRACTICES

	THE SECURE-SSDM METHODOLOGY
	EVALUATION OF THE SECURE-SSDM
	THREATS TO VALIDITY

	CONCLUSION
	REFERENCES
	Biographies
	SIBONILE MOYO
	ERNEST MNKANDLA


