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ABSTRACT By leveraging the 5G enabled V2X networks, the vehicles connected by cellular base-stations
can support a wide variety of computation-intensive services. In order to solve the arisen challenges in end-
to-end low-latency transmission and backhaul resources, mobile edge computing (MEC) is now regarded
as a promising paradigm for 5G-V2X communications. Considering the importance of both reliability
and delay in vehicle communication, this article innovatively envisions a joint computation and URLLC
resource allocation strategy for collaborative MEC assisted cellular-V2X networks and formulate a jointly
power consumption optimization problem while guaranteeing the network stability. To solve this NP hard
problem, we decouple it into two sub-problems: URLLC resource allocation for multi-cells to multi-vehicles
and computation resource decisions among local vehicle, serving MEC server and collaborative MEC
server. Secondly, non-cooperative game and bipartite graph are introduced to reduce the inter-cell inter-
ference and decide the channel allocation, which aims to maximize the throughput with a guarantee of
reliability in URLLC V2X communication. Then, an online Lyapunov optimization method is proposed to
solve computation resource allocation to get a trade-off between the average weighted power consumption
and delay where CPU frequency are calculated using Gauss-Seidel method. Finally, the simulation results
demonstrate that our proposed strategy can get better trade-off performance among power consumption,
overflow probability and execution delay than the one based on centralized MEC assisted V2X.

INDEX TERMS Cellular V2X networks, URLLC radio resource management, collaborative mobile edge
computing, power optimization, latency and reliability.

I. INTRODUCTION
As the increasing amount of connected autonomous vehi-
cles, a wide variety of computation-intensive, latency sen-
sitive and power-hungry applications are emerging, such as
autonomous driving, image or video-aided real-time navi-
gation, real-time traffic monitoring, etc. These applications
need a significantly large amount of energy consumption,
radio and computation resources, which brings great chal-
lenges to the operator with limited computation ability. As a
result, cloud-based vehicular networks have been proposed
as a solution to address this problem. Compared with local
vehicular processing, remote servers have abundant storage
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space and resources for computation. However, the latency
caused by the long distance between the remote cloud servers
and the vehicles cannot be ignored and it may easily result
in a considerable communication error probability. Vehicular
cloud requires a scalable and reliable mobile communica-
tion network. LTE and Dedicated Short Range Communica-
tion (DSRC) have been trying to fit for such role, yet neither
could be capable of meeting all requirements on account of
their inherent architectural limitations.

In order to satisfy the severe latency requirements of
these vehicular application scenarios, mobile edge comput-
ing (MEC) assisted V2X networks are now regarded as a
promising paradigm to improve vehicular services through
offloading computation-intensive tasks between edge servers
and local vehicular terminals. The V2X communication in the
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future should provide ultra-high reliability and low latency
support for critical and broadband applications. The fifth gen-
eration (5G) mobile communication system will introduce
ultra-reliable and low-latency communication (URLLC) to
overcome these shortages, which can be fully employed as the
data transmissionmethod for computation offloading inMEC
assisted V2X networks. Because the MEC servers operate
at the edge of radio access networks, the rapid interactive
computation offloading is available for vehicles in proximity.
However, this solution suffers from the limitation of resource
and radio access coverage. The computing offloading perfor-
mance highly depends on the wireless transmission of data
offloading from local vehicles to the MEC servers. Thus,
effective task scheduling and resource allocation schemes are
needed to improve system performance.

Obviously, the computing offloading performance is
affected by the quality of wireless transmission. Therefore,
it is important to properly allocate radio resources of wire-
less network to the multiple vehicles in the system. With
the development of broadband services, in order to improve
the utilization efficiency of radio resources, the channels
in the multi-cells system are always reused, which may
cause co-channel interference. The existence of the interfer-
ence will result in the transmission rate attenuation of each
vehicle, thereby affecting the data transmission reliability.
In addition, the randomness of moving direction and vari-
able speeds make it very complicated and challenging for
dynamic resource scheduling. Therefore, the optimal alloca-
tion of radio resources including spectrum and power for each
cell plays an important role in the multi-cell cellular-V2X
networks.

A. RELATED WORK
Recently, there are a large number of studies on MEC-based
vehicular networks and exploring the advantages of collab-
orative mobile edge computing networks [1]. The heteroge-
neous requirement on the mobility of vehicles are considered
in [2] for vehicular network based on MEC framework and
this work mainly focus on the MEC server selection and
tasks transmission process. In [3], the author investigates
the vehicular network with mobile edge servers deployed at
the roadside units and using Lagrangian relaxation, in which
the latency and workload requirements are well explored.
In order to minimize the overall system costs of the vehicular
network, [4] propose a mobility-aware mobile edge system
and then solve the computational resource optimization and
select the optimal offloading time. To satisfy users’ experi-
ence in vehicularmobile edge computing, an adaptive compu-
tational resource allocation method is investigated in [5]. [6]
is presented to jointly consider the cost at vehicle terminals
and MEC servers under the system stability constraint using
Lagrangian dual decomposition and relaxation.

Nevertheless, mobile edge computing can help improve
the performance of vehicular, the MEC servers still have
limited computational resources. Thus, some works pro-
posed a cloud and edge collaborative system. In order to

adopt the large computational resources in the central cloud
server, [7] propose a game-theoretic collaboration task
offloading algorithm. Reference [8] provides a partial com-
putation offloading scheme for minimizing the delay and
allocating optimal computational resources. In [9], it mainly
focuses on maximizing the system utility by the optimal
resource allocation and tasks offloading strategy. Reference
[10] focus the multi-server scenario, but the scheme proposed
only schedules one mobile edge server to the user.

Although many studies investigate MEC based vehicular
network and collaboration between MEC servers and cloud.
Very few articles study the collaboration between MEC
servers. In 5G D-RAN, the base stations have the ability to
communicate with each other. That is to say, theMEC servers
installed at the base stations can transmit data with each other.
This collaboration scheme can well explore the characteristic
of collaborative MEC assisted cellular-V2X networks, and
improve the processing ability and reliability required by the
V2X network. But in previous researches, this collaborative
MEC scheme has been ignored. Besides, the mobility of vehi-
cles, the inter-interference between multi-vehicles, the low
latency and ultra-high reliability of the system have not been
presented simultaneously with mobile edge computing either.
Therefore, in this article, we study the joint computation
offloading and URLLC resource allocation strategy for col-
laborative MEC assisted cellular-V2X networks.

B. CONTRIBUTIONS
In this paper, we jointly optimize the URLLC radio and com-
putational resources in collaborative MEC assisted cellular-
V2X networks to minimize the overall power consumption
for data offloading. The main contributions of this paper are
presented as below:

1) A novel MEC task offloading model for 5G-V2X net-
works is proposed. To the best of our knowledge, it is the
first time that collaboration between distributed MEC servers
and URLLC transmission for task offloading are jointly con-
sidered in cellular V2X networks. We formulate the task
offloading problem to minimize the power consumption of
collaborative MEC servers and vehicles, which considers the
constraint of the task buffer stability for hard delay in V2X.
This model can cover the V2X performance requirement on
the reliability, power consumption and latency.

2) In order to avoid co-channel interference among
multi-cells and control the transmission power consumption
for a reliable URLLC transmission, bipartite graph optimal
matching algorithm is introduced solve the resource multi-
plex matching problem. We design a non-cooperative game
power control algorithm to get the optimal edge weight of
the bipartite graph. Both the utility and cost are considered in
the pricing scheme so that the cellular vehicle communication
system reaches a Nash equilibrium to pursue the maximized
overall rate under the reliability guaranteeing.

3) An online computational resource allocation algorithm
is proposed by using Lyapunov optimization method.We find
the optimal average weighted power consumption and
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execution delay trade-off under tasks buffers stability con-
strained by the hard delay in V2X. Under each determinis-
tic process, the optimal solution to computational resources
is decided, which can reasonably distribute the tasks into
local vehicle, serving MEC server and collaborative MEC
server. The simulation results demonstrate that the pro-
posed algorithm can achieve efficient power consumption
and execution delay. redFurthermore, the scheme based on
distributed MEC collaboration is more reliable in overflow
probability than the centralizedMEC scheme in cellular V2X
network.

The rest of the paper is organized as follows. The system
model is presented in Section II. Then the problem is for-
mulated as a problem for minimization of weighted energy
consumption sum in Section III. The optimal algorithm is
developed in Section IV. Next, we discuss and analyze the
performance of the algorithm based on the simulation results
in Section V. We finally draw a conclusion in Section VI.

II. SYSTEM MODEL
Fig.1 depicts a collaborative MEC assisted cellular-V2X net-
works, which consists of a distributed radio access network
and mobile edge servers and multiple vehicles. From this
graph, we can obtain the architecture of the coexistence MEC
servers. There are N adjacent cells with a base station (BS)
located at the center, respectively, and an MEC server oper-
ates in each BS. An edge node can be regarded as the com-
bination of base stations and MEC servers and each node
has the ability to transmit data with other nodes. In each
cell, K vehicles are assumed to move independently inside.
Different from the unidirectional road and RSU distribution
model in above papers, the speed and direction of the vehicles
in this paper are both random in their corresponding cell.

FIGURE 1. Collaborative MEC assisted cellular-V2X networks (2 MEC
servers).

The overall computing tasks are supposed to be processed
at both the mobile edge node and local vehicles. It is assumed
that the wireless communication for data offloading from the
vehicle terminals to the base station is through 5G URLLC
links. And the tasks of vehicle moving in the n th cell can
only be offloaded to the corresponding MEC server which is
located in the base station Bn.

Due to the mini-slot scheme of URLLC, the moving
distance of vehicles changes little in one mini-slot. Thus,
we define a larger scheduling granularity as ‘‘time slot’’,
which contains T mini-slots. At the beginning of each time
slot, the vehicles’ location in the cell changes, consequently
the radio resource management scheme has to change.
Respectively, at the beginning of each mini-slot, the offload-
ing scheme is decided. The SISO-OFDMA scheme is adopted
to avoid serious intra-cell interference. Thereby, the radio
resources in each cell are distributed into several sub-
channels or resource blocks (RBs) which are orthogonal
in the time domain. But the vehicle terminals scheduled
by the same sub-channel in different cells will result in
inter-cell interference (i.e. co-channel interference) to each
other, which will cause the transmission rate attenuation and
affects the offloading efficiency.

A. VEHICLE AND MEC SERVER EXECUTION MODEL
During the task execution process, the vehicles can process
the task in its local CPU or offloaded to be processed in
MEC server. The task processing speed all depends on the
speed of CPU frequency, which is strictly correlated with
the type of vehicles and CPU. The computation ability can
be calculated in off-line measurement. The k th vehicles in
n th cell’s CPU frequency is denoted as fn,k (t) and it is not
larger than fn,k,max . The CPU cycles needed in processing one
bit of tasks is denoted as Ln,k . The computing ability in each
time slot is defined as Dl,n,k (t), which is the bits of tasks that
can be executed by local CPU and it is positively related to
frequency. Thereby, the equation of local computation ability
can be expressed as,

Dl,n,k (t) = τ fn,k (t)L
−1
n,k (1)

Similarly, the MEC computation ability is defined as
Ds,n,k (t) = τ fC,n,k (t)L

−1
C,n,k . As is known to us, CPU needs

the energy to maintain basic operation. CPU processing
energy consumption will fluctuate when the logic gates flip
and the consumption is positively related to the square of
circuit voltage and frequency of CPU. In fact, the power
dissipation at the output pins of a core is directly proportional
to its frequency and is governed by the equation

P =
1
2
CV 2f (2)

where C is capacitance, V is voltage, and f is the effective
bus frequency [11]. Under low voltage constraint, the energy
consumption equation of local vehicles can be eliminated to
pl,n,k (t) = kmob,n,k f 3n,k (t), and pser,n,k (t) = kser,n,k f 3C,n,k (t)
because in this circumstance, the CPU frequency has linear
correlativity with circuit voltage. In the equation, the effective
switched capacitance is denoted as kmob,n,k and kser,n,k , and
it is related to the architecture of chip.

B. URLLC TRANSMISSION FOR TASK OFFLOADING
For the n th cell, the uplink received SINR (i.e. signal-to-
interference and noise-ratio) of the vehicle which is scheduled
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by the m th sub-channel at the time slot t can be denoted as:

γmn,k (t) =
Gmn,k (t) · P

m
n,k (t)

σ 2 +
N∑

l=1,l 6=n
Gml,k · P

m
l,k (t)

(3)

where the Gmn,k (t) is the channel gain, Pmn,k (t) is the uplink
transmit power of this vehicle, σ 2

= N0 × B is the noise
power and the N0 denotes the noise unilateral power spectral

density.
N∑

l=1,l 6=n
Gml,k ′ · P

m
l,k ′ (t) denotes the interference from

the vehicle in the adjacent cell.
According to the accurate estimation of the achievable rate

with the finite packet length [12]–[15], at the t time slot,
the maximum uplink transmission rate of the vehicle sched-
uled by the m th sub-channel can be expressed as follows
(units:bits/s),

Rmn,k (t) = B ·

{
log2

[
1+ γmn,k (t)

]
−

√
Vk
n0
f −1Q

(
εdk

)}
(4)

where B represents the bandwidth of a sub-channel and
Vk = 1 − 1[

1+γmn,k (t)
]2 denotes the channel dispersion [12],

which measures the stochastic variation of channels relative
to deterministic channels with the same capacity. The upper
bound of Vk is 1, especially in the high SINR-scenario of
URLLC. n0 is the length of data packet. f

−1
Q (x) is the inverse

function of Q function and Q(x) =
∫
+∞

x
1
√
2π
e

(
−

1
2 t

2
)
dt · εdk

denotes the decoding error rate and it is assumed to have
a small threshold for simplicity. In this paper, we decide
to improve the URLLC transmission performance under the
fixed requirement of decoding error rate (i.e. reliability).

In time slot t , the sum of rate at the vehicle k and the cell
n in the sub-channel m can be presented as below:

sum− Rmn,k (t) =
M∑
m=1

amn,k (t) · R
m
n,k (t) (5)

where amn,k = 1 means the sub-channel m in the cell n is
allocated to the vehicle k at this time slot, otherwise it is
allocated to other vehicle. Thus, the total system capacity is
the uplink transmission rate sum of all vehicle terminals:

T (t) =
N∑
n=1

K∑
k=1

sum−Rmn,k (t) =
N∑
n=1

K∑
k=1

M∑
m=1

amn,k (t)R
m
n,k (t)

(6)

C. TASK QUEUING MODEL
1) VEHICLES
Suppose that the tasks received by vehicles are running
in fine-grained parallelism. At the initial moment of the
t th time slot, An,k (t) bits of tasks arrive at the k th vehicles
in the n th cell, which will be processed since next time
slot. An,k (t) at distinct time slots are distributed within the
range of An,k (t) with E

[
An,k (t)

]
= λn,k [16]. In every

time slot, the tasks to be processed by local CPU is
defined as Dl,n,k (t), the tasks to be offloaded to MEC
servers is denoted as Rmn,k (t) and the remaining tasks that
have arrived but not yet been processed and offloaded will
wait in the queue backlogs of vehicles with finite capac-
ity. The queue length of task buffer at the t th time slot
can be expressed as N rows K columns array Q(t) =
[[Q1,1(t), . . . ,Q1,K (t)], . . . , [QN ,1(t), . . . , QN ,K (t)]]. Qn,k
(t + 1) can be derived from Qn,k (t) as below,

Qn,k (t + 1) = max(Qn,k (t)− D∑,n,k (t), 0)+ An,k (t) (7)

in (7),D∑,n,k (t) equals to the sum ofDl,n,k (t) and Rmn,k (t). red
It stands for the number of tasks executed by local vehicles
and offloaded to mobile edge servers at k th vehicle and the
n th cell in the t th time slot.

2) MEC SERVER
Similar to local vehicles, the tasks offloaded to the server
but have not been executed will be stored in the task
buffer of edge nodes and the task buffer is also assumed
to have a finite capacity. Suppose each cell has one MEC
server and the queue backlogs of task buffer can be
expressed as vector C(t) = [C1,1(t), . . . ,C1,K (t), . . . ,
CN ,1(t), . . . ,CN ,K (t)]. Accordingly, the expression of
Cn,k (t+1) for a non-collaborativeMEC system is established
as below,

C incop
n,k (t + 1) = max(Cn,k (t)− Ds,n,k (t), 0)

+min(max(Cn,k (t)− Dl,n,k (t), 0),Rmn,k (t))

(8)

(8) indicates that tasks that have not been handled by edge
server from previous time slot will be stored in the task
buffer of edge node Besides, tasks that are not processed at
local CPU should be offloaded to the edge server, and the
amount should be less than the maximum transmit capacity.
If the number of tasks exceeds transmit capacity constraint,
the excess amount will be ignored apparently, as the amount
is determined by channel capacity and queue length simulta-
neously.

When the MEC-based 5G URLLC vehicular network is
collaborative, the queue length can be expressed as,

Ccop
n,k (t+1)

=max(Cn,k (t)− Ds,n,k (t), 0)

+min(max(Cn,k (t)−Dl,n,k (t), 0),Rmn,k (t))+Gn,k (t) (9)

where Gj(t) is data transmitted from collaborative MEC
servers.

III. PROBLEM FORMULATION AND DECOMPOSITION
In this section, we will jointly discuss the weighted mean of
energy consumption and the average queue backlogs of the
whole system. Furthermore, the average energy consumption
optimization problemwill be established under all constraints
that are already provided. Finally, we formulate this NP hard
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problem to minimize the power consumption of collaborative
MEC servers and vehicles, which considers the constraint of
the task buffer stability for hard delay in V2X introduced as
the NP hard problem to be solved in this paper.

A. PERFORMANCE METRIC
When transmitting stochastic traffic flows over wireless
networks, there exists an inherent tradeoff between aver-
age transmit power and corresponding queuing-delay bound.
In [17], authors investigate such a tradeoff and show how
average power increases as delay-bound requirement for
wireless network traffics becomes stringent. Under certain
QoS conditions, what we need to do is reducing the corre-
sponding power consumption. Thus, the weighted mean of
energy consumption is one of the most concerned issues in
this paper, which mainly consists of the energy consumption
of CPU processing and task transmission power. In addition,
the energy required tomaintain the basic operation of vehicles
and MEC servers is irrelevant to the offloading process and
it is ignored for simplicity. Therefore, the weighted mean of
energy consumption in the offloading and processing process
is given by,

P̄∑ , lim
T→+∞

1
T

T−1∑
t=0

E
[∑
n∈N

∑
k∈K

(Ploc,n,k + PMEC,n,k

+ωN+K+1µptxn,k (t))
]

(10)

where PMEC,n,k = ωK+N+1pser,n,k (t) and Ploc,n,k =

ωn,k (ptx,n,k (t)+pl,n,k (t)). It is also the performance metric of
the system model. ωn,k and ωN+K+1 are parameters used to
balance the energy consumption between different nodes and
µ indicates the weight of distribution. All these three nota-
tions are assumed to be constant. For example, assuming that
the energy consumption of MEC has a greater impact on the
whole offloading process. Thereby we can set the weight of
MEC energy consumption larger during the stimulation stage,
so as to achieve the goal of balancing energy consumption.
The average of T is to adjust the sum of energy consumption
to a function related to t and to build the foundation for the
subsequent calculation process.

Based on Little’s Law [18], the weighted mean processing
delay of tasks is positively related to the length of tasks wait-
ing in the task buffers both at the server and local vehicles.
In [16], as a measurement of processing delay, the total queue
length of task buffers at both server and local vehicles is
expressed as below,

q̄∑,n , lim
T→+∞

1
T

T−1∑
t=0

E
[∑
k∈K

(Qn,k (t)+ µC
cop
n,k (t)

+ (1− µ)C incop
n,k (t))

]
(11)

However, relying merely on the average queue length fails
to take the extreme value of queue length into account. There-
fore, for the better assessment of the system performance,
a hard delay is proposed and it is regarded as proportional

to the maximum value of queue length [19], [20].

delayn,k (t) =
qmax
Rmn,k (t)

(12)

where qmax is the maximum value of queue length that
appears during the whole transmission process. delayn,k (t) is
the hard latency at each time slot. In the simulation process,
there is a threshold assigned to the data traffic and thus the
worst delay can be acquired now.

B. AVERAGE ENERGY CONSUMPTION OPTIMIZATION
At each time slot, a series of variable denoted as X(t) ,
[f (t), ptx(t), fc(t)] will be calculated during every iteration.
Then the average energy consumption optimization problem
will be established as below,

P1 : min
X (t)

P̄∑
0 ≤ µ ≤ 1 (13)

0 ≤ fn,k (t) ≤ fn,k,max , n ∈ N , k ∈ K (14)

0 ≤ fC,n(t) ≤ fCn,max , n ∈ N (15)

0 ≤ ptxn,k (t) ≤ p
tx.max
n,k (t) (16)

lim
T→+∞

E[|Qn,k (t)|]
T

= 0,

lim
T→+∞

E[|Un(t)|]
T

= 0, (17)

(13) stands for the distribution weight constraint. (14) is the
constraint for local CPU frequency. (15) is the constraint for
MECCPU frequency. (16) is the constraint to transmit power.
(17) limits the task buffers to be mean rate stable so that all
arrived offloading tasks will be handled during finite time
slots.

In a word, the energy consumption and processing
delay for collaborative MEC assisted cellular-V2X networks
should be jointly considered and they can be solved by
a decomposed algorithm. All the constraints on CPU fre-
quency, transmit power and the stability of task buffer
will be satisfied when minimizing the average energy
consumption.

IV. JOINT OPTIMIZATION ALGORITHM DESIGN
Since the energy consumption optimization problem above
is NP-hard in general. The target problem is supposed to be
decomposed into subproblems and then iteratively and sep-
arately solve them until convergence. For example, in [21],
a decomposition technique can be used to solve this problem
efficiently. We decompose the power consumption minimiza-
tion problem into two subproblems: URLLC resource allo-
cation for multi-cells to multi-vehicles and task offloading
decisions among local vehicle, serving MEC server and col-
laborativeMEC server. Then, the two subproblems are solved
separately and the power consumption optimization problem
are solved iteratively. A common framework for the original
problem is summarized as Fig. 2.
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FIGURE 2. Proposed framework for solving the power consumption
problem.

A. RESOURCE MANAGEMENT FOR THE MAXIMIZATION
OF OVERALL URLLC TRANSMISSION RATE FOR
COMPUTING OFFLOADING
Firstly, the transmission energy consumption, ptxn,k (t) needs
to be determined, which is directly related to the resource
scheduling and power control scheme. Then the computation
energy consumption at the local and the MEC server will
be optimized. For improvement of the efficiency in data
offloading to theMEC server, the throughput with a guarantee
of reliability in URLLC V2X communication need to be
maximized. Therefore, the sub-problem is to maximize the
overall uplink throughput, which is presented as below:

argmax
Pmn,k (t)∈(0,Pmax]

T (t)

= argmax
Pmn,k (t)∈(0,Pmax]

N∑
n=1

K∑
k=1

amn,k (t) · R
m
n,k (t),

∀m ∈ {1, 2, · · · ,M}

C1 : 0 < Pmn,k (t) ≤ Pmax
C2 : Rmn,k (t) ≥ 0

C3 :
K∑
k=1

amn,k (t) = 1

C4 : 10−7 ≤ εdk ≤ 10−5 (18)

where C1 describes the range of uplink transmit power. C2 is
the rate constraint, which means that the achievable transmis-
sion rate is non-negative. C3 guarantees that one sub-channel
in each cell can only be scheduled to a vehicle terminal inside
the cell during one time slot. C4 is the constraint of the
decoding error rate. The sub-channel in the OFDM system
is orthogonal in the frequency domain. Thus, the resource
allocation of each sub-channel can be considered as an inde-
pendent process. The problem of overall system throughput
maximization can be summarized to a multi-resource-block
throughput maximization problem, which is shown in (18).
The vehicles assigned to the same sub-channel m in each
cell cause co-channel interference to each other and they

are all selfish. Higher uplink transmits power is expected to
improve the achievable transmission rate as much as possible.
However, a higher transmit power will make other terminals
suffer a higher interference. Nevertheless, the transmission
rate of other vehicles will be reduced, which results in a
contradiction in power control. Thus, all the variables need
to be jointly considered.

Due to the mobility of vehicles, the resource manage-
ment including channel allocation and uplink power control
becomes much more complicated. In order to address the
problem above, all possible combinations of sub-channel
assignments in different cells need to be traversed to deter-
mine the optimal one, which is computationally complex
and difficult. For simplicity, in this paper, we proposed a
joint uplink resource management scheme in order to lower
the inter-cell interference as much as possible and make an
optimal strategic decision about the channel multiplexing
matching at the same time. At each scheduling time slot,
the position of the vehicle is assumed to be fixed. The channel
multiplexing matching set and power set that maximize the
total system throughput (i.e. the sum of transmission rate)
will be selected. In this paper, the two-cell channel multiplex
matching problem is considered as a bipartite graph optimal
matching problem. Each vehicle in the system is considered
as a vertex in the bipartite graph, as shown in Fig 3. In this
scenario, the two vertices connected by an edge represent the
two vehicles which multiplex the same sub-channel resource
(or the resource block). The weight of this edge is the overall
throughput of this shared sub-channel, which is maximized
through the non-cooperative power control game algorithm
below. Therefore, the system overall throughput maximiza-
tion problem is transformed into an optimal matching prob-
lem that maximizes the edge weight sum of the bipartite
graph.

FIGURE 3. Resource allocation based on bipartite graph with K vehicles
and K MEC cells.

At each time slot, we obtain the weight of each edge.
For each pair of vehicles in two separate cells, the real-time
position and channel gain are clear to each other and the
non-cooperative power control game can be carried out to
lower the inter-cell interference. When the game converges
to the final equilibrium point, the overall throughput of this
sub-channel can be calculated as the weight of this edge.

1) NON-COOPERATIVE POWER CONTROL GAME
ALGORITHM BASED ON PRICING SCHEME
For the problem (18), the system throughput is maximized
through the maximization of each subchannel’s throughput.
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However, for each sub-channel, the throughput maximiza-
tion is a high-order derivative problem involving N power
variables, which is computationally complex and does not
necessarily have a solution set.

For simplicity, the non-cooperative game is introduced and
the power control problem of each sub-channel is considered
as an independent non-cooperative game process. All the
vehicle terminals assigned to the same sub-channel are the
participants of the game. Since each participant in this game
is selfish and their strategy is always choosing the maximum
of power to achieve their own interest maximization, which
will result in non-negligible interference and the rate decay.
To avoid vicious selfish competition and control the power
assumption, the pricing scheme is introduced [22]. In the
choice of power strategy, the vehicles need to consider both
their own utility and the corresponding cost due to interfer-
ence caused by themselves.

The non-cooperative game of the mth sub-channel in
this paper is denotes Gm(t) = [N ,Pm(t),Um(t)], where
N = {u1m, u

2
m} represents the sub-channel matching set.

Pm(t) = {Pml,k (t),P
m
2,k (t)} is the power strategy set, and

Um(t) denotes the net utility function set of vehicles. The
power strategy value space can be described as Pmn,k (t) =
[(Pmn,k (t))min,Pmax], where (P

m
n,k (t))min is the minimal power

to guarantee that the transmit rate is non-negative and Pmax
is the budget of uplink transmit power. The strategy space is
a closed bounded convex set.

The net utility of vehicle terminals is the achievable rate
minus the pricing function (19). The pricing factor cmn,k (t)
denotes the cost to pay per unit power. Therefore, all the
game participants n, k aim atmaximizing their own net utility.
And the optimal power response of each game participant can
be denoted as arg max

Pmn,k (t)
Um
n,k (t), where 0 denotes the channel

constant.

Um
n,k (t) = B ·

{
log2

[
1+

γmn,k (t)

0

]
−

√
Vk
n0
f −1Q

(
εdk

)}
− cmn,k (t) · P

m
n,k (t) (19)

Theorem 1: A unique Nash equilibrium exists in theGm(t)
for the sub-channel m at time slot t .

Proof: The Theorem 1 is proved if the following two
assumptions are guaranteed. (i) The power strategy space
[(Pmn,k (t))min,Pmax] is a non-empty, bounded and closed con-
vex set. (ii) The net utility function Um

n,k (t) is continuous and
quasi-concave in Pmn,k (t).
According to (19), it is obvious that the second derivative

is negative so that the (i) and (ii) are proved. When the first
derivative is assigned to zero, we can obtain the optimal
power response (20).

Pmn,k (t) =
B

cmn,k (t) ln 2
−

0
(
σ 2
+
∑N

l=1,l 6=n G
m
l,k · P

m
l,k (t)

)
Gmn,k (t)

(20)

It is easy to prove that the monotonicity of the net utility
function. Thus, the maximal is obtained at the point where
the first derivative is zero. Based on the limitations of power
strategy, the lower bound of cn,k (t) is denoted as (21) and the
upper bound is denoted as (22).

cminn,k (t) =
BPmax +

0

(
σ 2+

N∑
l=1,l 6=n

Gm
l,k′
·Pm
l,k′

(t)

)
Gmn,k (t)

 ln 2

(21)

cmaxn,k (t) =
BGmn,k (t)

2c0 · 0

(
σ 2 +

N∑
l=1,l 6=n

Gml,k ′ · P
m
l,k ′ (t)

)
ln 2

(22)

Therefore, at each time slot t , the range of pricing factor for
each vehicle’s matching between two cells can be calculated
by the intersection of its upper limit and the union of its lower
limit is calculated. And the optimal pricing factor needs to
be decided for each matching in order to obtain the maximal
throughput sum, whichwill be set as the weight later. The best
power response of the k th vehicle in cell n is showed as (23).
Then each game participant will carry out the optimal power
response according to other participants’ power strategy till
the overall power set converges to an equilibrium point.

Pmn,k (t)
∗

=



(Pmn,k (t))
min

0 · (2c0−1) ·

(
σ 2
+

N∑
l=1,l 6=n

Gml,k ′ ·P
m
l,k ′ (t)

)
Gmn,k (t)

,

Pmn,k (t) ≤
(
Pmn,k (t)

)min
)

B
cmn,k (t) ln 2

−

0

(
σ 2
+

N∑
l=1,l 6=n

Gml,k ′ · P
m
l,k ′ (t)

)
Gmn,k (t)

,(
Pmn,k (t)

)min
< Pmn,k (t) <

(
Pmn,k (t)

)max

Pmax , pnmax ≥ Pmax
(23)

To prove the uniqueness, we have guaranteed that the
best power response is a standard function which has the
following three properties. (i) Positivity. (ii) Monotonicity.
(iii) Scalability. According to [22], the Nash Equilibrium
point is unique for the Gm(t)

2) BIPARTITE GRAPH OPTIMAL MATCHING ALGORITHM FOR
MULTI-CELL CHANNEL RESOURCE MULTIPLEXING
For the two-cell scenario, the multiplex matching scheme
of the wireless channel is critical to the wireless system’s
transmission efficiency. In this paper, we consider adopting
the Kuhn-Munkres (KM) algorithm to obtain the optimal
channel reusing scheme efficiently and rapidly. It is assumed
that each sub-channel can only be scheduled to one vehicle
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Algorithm 1 The Non-Cooperative Game Power Control
Algorithm
Input :Gmn,k (t),K ,Tend ,B,Pmax ,N0, c0,T ,S, cmin, cmax;
Output: RSmax ,P1t ,P

2
t ,R

1
t ,R

2
t ;

for t = 1; t ≤ Tend ; t ++ do
for k1 = 1; k1 ≤ K ; k1++ do

for k2 = 1; k2 ≤ K ; k2++ do
for s = 1; s ≤ S; s++ do

(1) Calculate the price factor price =
cmin(k1, k2, t)+ s ∗ (cmax(k1, k2, t))/S;
(2) Update the power strategies
iteratively according to the optimal
power response (23) for k1 and k2 until
it converges to a fixed point;
(3) Calculate the transmit power and rate
according to (4) and (23);

end
Determine the optimal pricing factor and set
the corresponding throughput RSmax as the
weight of this edge;

end
end

end

at each time slot to avoid intra-cell interference. And each
vehicle terminal cannot occupy more than one sub-channel at
the same time. In this paper, the sub-channels are considered
to be identical so that it is not necessary to consider all
the combinations of all sub-channels and vehicles. It is the
vehicle matching set between two cells that really matters.
The quantity of the sub-channels is assumed to be equal to the
number of vehicles so that the problem is a perfect matching
problem for the bipartite graph.

The bipartite graph is built and the vehicles in two cells
are regarded as two groups of vertexes of the bipartite graph,
respectively. The number of vehicles in each cell is equal
to K . The steps of the bipartite graph optimal matching
algorithm can be concluded as Algorithm 2.

The time complexity is O(n3). Now the radio resource
management scheme is finished so the optimal sub-channels
matching set and uplink transmit power set are obtained. The
actual transmission rate for uplink data offloading can be
calculated. The steps can be concluded in the pseudo-code
as below.

B. ONLINE COMPUTATIONAL RESOURCE
MANAGEMENT ALGORITHM
In this section, an online Lyapunove optimization method
is proposed to solve computation task offloading to get a
trade-off between the average weighted power consumption
and delay. With this method and drift-plus-penalty, the time
average of a stochastic problem can be minimized under a
series of constraints. At every time slot, the optimal solution
will be decided by the Lyapunov optimization framework.

Algorithm 2 Bipartite Graph Optimal Matching
Algorithm
Input : V ,E,A,B,Wi,j(t),Tend ;
Output: Pfinal,RSfinal,match(t)
for t = 1; t ≤ Tend ; t ++ do

(1) Set weight matrix r according toWi,j(t);
(2) Assign the initial vertex labels:
L1,i(t) = max(Wi,j(t)) and L2,j(t) = 0;
(3) Find a complete match with the Hungarian
algorithm, if it fails go to (4);
(4) Improve the labeling by slack array:
slack(y) = min{l(x)+ l(y)− w(x, y)|x ∈ S}.
Calculate the labeling changing value:
1 = min{slack(y)|y ∈ B\T }. Then improve the
labeling of vertex r :
if r ∈ S then

l ′(r) = l(r)−4;
else if r ∈ T then

l ′(r) = l(r)+4;
else if r /∈ S and r /∈ T then

l ′(r) = l(r)
end
(5) Repeat the step 3 and 4 till the complete match of
equality subgraph is found.

end

In a word, the algorithm and calculation process are able to
achieve asymptotic optimality.

From definition of Lyapunov, we defined the quadratic
Lyapunov functions as formula (24)

L(2(t)) =
1
2

∑
n∈N

∑
k∈K

(
(1− µ)(C incop

n,k (t))2

+µ(Ccop
n,k (t))

2
+ Q2

n,k (t)
)

(24)

where 2(t) , [Q(t),C(t)]. This function is defined to
measure the total queue length in the system. By defining
the Lyapunov drift as the change in the quadratic Lyapunov
function from one slot to the next, a drift function can be
written as,

1L(2(t)) = L(2(t + 1))− L(2(t)) (25)

For stabilizing a queuing network while also minimizing
the delay in network penalty function, the drift-plus-penalty
method is used. Using this methodology, the current queue
state is observed and the optimization actions are taken to
minimize the upper limit of drift plus penalty function in the
formula.

1V (2(t)) = 1L(2(t))+ V × P∑(t) (26)

where P∑(t) is the penalty function and V is a non-negative
weight which is chosen to adjust to optimal point, with a
trade-off in the queue length of task buffer. Based on the
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equation, we can figure out the upper bound of (27).

1V (2(t))

, C − E
[∑
n∈N

∑
k∈K

Qn,k (t)(D∑,n,k (t)− An,k (t))|2(t)
]

−E
[∑
n∈N

∑
k∈K

(1− µ)C incop
n,k (t)(Ds,n,k (t)− Rmn,k (t))|2(t)

]
−E

[∑
n∈N

∑
k∈K

Ccop
n,k (t)(Ds,n,k (t)−R

m
n,k (t)−Gn,k (t))|2(t)

]
+V × E[P∑(t)|2(t)] (27)

Algorithm 3 A Lyapunov Optimization-Based Online
Resource Allocation Algorithm
Input : 2(t),An,k (t), n = 1, 2, · · · ,N , k =

1, 2, · · · ,K ;
Output: f (t), fser (t)
while t ≤ T do

for n = 1; n ≤ N ; n++ do
for k = 1;m ≤ K ; k ++ do

Determine f (t), fser(t) by solving,
P2: min

X(t)

∑
n∈N

∑
k∈K

(
Qn,k (t)D∑,n,k (t)− (1−

µ)C incop
n,k (t)(Ds,n,k (t)− Rmn,k (t))−

µCcop
n,k (t)(Ds,n,k (t)− R

m
n,k (t)− Gn,k (t))

)
+

V · P∑(t)

where P∑(t) ,
∑
n∈N

∑
k∈K

(
ωn,k (ptx,n,k (t)+

pl,n,k (t))+ ωK+N+1(pser,n,k (t)+ µptxn,k (t))
)

Qn,k (t), C
incop
n,k (t) and Ccop

n,k (t) are updated
according to (6) and (7)

end
end
t = t + 1;

end

Algorithm 3 is designed to make decisions greedily at
every time slot so that the upper bound will also beminimized
on each time slot t . It is obvious that when the tasks waiting in
the task buffer are minimized then the total energy consump-
tion will be minimized at the same time. The object function
of the algorithm is at the right-hand side of the Lyapunov
function. The optimal solution to the deterministic problem
will be discussed in the next section.

With vehicles’ CPU frequency and the mobile edge
servers’ CPU frequency to be determined, the original prob-
lem is decomposed into two sub problems. The irrelevant
variables in (27) can be regarded as constant.

1) OPTIMAL CPU FREQUENCY OF VEHICLES
As variables irrelevant to these problems is regarded as con-
stant, the original equation is eliminated to (28), and the
optimal solution to the original problem is transferred to the

optimal solution to the following equation.

min
f (t)

∑
i∈N

(
− Qn,k (t)τ fn,k (t)L

−1
n,k+V×ωn,kkmob,n,k f

3
n,k (t)

)
,

s.t. 0 ≤ fn,k (t) ≤ fmax , i ∈ N (28)

The first-order derivative is increasing and the second-
order derivative is greater than zero, thus the problem is
convex under linear constraints. Furthermore, this variable
fn,k (t) is decoupled from other variables. According to the
theory of extremum, the extreme value is achieved at the
stationary point or the boundary points, which is calculated
as (29).

fn,k (t) =

{
min

(
fn,k,max ,

√
Qn,k (t)τ

3kmob,n,kωn,kVLn,k

)
, ωn,k > 0

0, ωn,k = 0
(29)

According to the equation above, it is obviously that f ∗n,k (t)
is negatively correlated with V ,Ln,k , ωn,k . At this point, with
the larger number of ωn,k and V, the weight of total energy
consumption becomes larger, thus the CPU frequency need
to decrease. These variables are not required to be decided
by the system operation. While for the task buffers of local
CPU, it is a variable that correlated with other deterministic
variables and it is influenced according to the relationship in
the formula.

2) OPTIMAL CPU FREQUENCY AT THE MEC SERVER
After decoupling irrelevant variables, the optimal solution to
CPU frequency at MEC server can be solved by the following
equation.

min
fc(t),Ds(t)

∑
n∈N

−Cn,k (t)Ds,n(t)+ V × ωN+1kser,nf 3C,n(t)

s.t. 0 ≤ fC,n(t) ≤ fC,n,max , n ∈ N (30)

Similar to the optimal solution of local CPU frequency,
optimal frequency at the MEC server is also a convex prob-
lem. Follow the same steps, we can derive the optimal solu-
tion (31) to the sub question. We define ((1 − µ)C incop

n,k (t) +
µCcop

n,k (t))τ as Cn,k .

fC,n,k (t)

=

{
min

(
f maxC,n,k ,

√
Cn,k

3kser,n,kωN+K+1VLC,n,k

)
, ωN+K+1 > 0

0, ωN+K+1 = 0
(31)

In summary, the optimal solution demonstrates that the
deterministic result is irrelevant with task arrived rate, thus
it is appropriate for the complicated environment. According
to the previous discussion, the optimal local and MEC server
frequency can be obtained under a low complexity algorithm.

V. SIMULATION RESULT
In simulation, to evaluate the performance of our pro-
posed resource management strategy based on collaborative
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TABLE 1. Parameter settings.

MEC assisted cellular-V2X (CBSOA), we regard centralized
MEC vehicular network without collaboration betweenMEC
servers (NCNOA) as the compared method. For convenience,
parameter settings are summarized in Table 1. We assume
that N MEC servers and M vehicles are randomly located
in the coverage of each base station installed with MEC
servers. Besides, the speed of each cars equals to 72km/h.
The length of time slot τ = 1ms, the system bandwidth
ω = 10MHz, N0 = −174dBm/Hz. fn,k,max = 1GHzand
fC,n,k,max = 2.5GHz are the maximum CPU frequency for
local vehicles and MEC servers. kmob,n,k and kser,n,k are
the effective switched capacitance and they equals to 10−27.
Ln,k and LC,n,k are the CPU cycles needed to process 1 bit
of tasks and they equals to 737.5 cycles/bit. The maximum
transmission power is 23dBm and the sub-carrier spacing
is 30KHz.

FIGURE 4. The effect of the control parameter on the weighted mean
power consumption in different scheme.

Then in the following discussion, we will talk about the
performance of these two strategies and key parameters.
We first validate the theoretical result for the impact of the
control parameter. The relationship between weighted mean
of energy consumption and average queue length with control
parameter are revealed in Fig. 4 and Fig. 5. We can easily see
that the weighted mean of energy consumption is negatively

correlated with the control parameter and the weighted mean
of sum queue length is positively correlated with the con-
trol parameter. It verifies that there is a trade-off between
weighted mean of energy consumption and average process-
ing delay. For the balance of the system, a larger control
parameter can be used in an energy consumption sensitive
situation and a smaller control parameter can be used in a
delay-sensitive situation. Regarding a system that uses the
maximum transmit power to offload the task, our proposed
optimized system has a lower weighted mean energy con-
sumption and average queue length. In a word, some compu-
tational resources provided by MEC servers is wasted when
using the maximum transmit power and can be re-allocated
to other vehicles.

FIGURE 5. The effect of the control parameter on the average queue
length in different scheme.

Fig. 4 and Fig. 5 also tells that whenω increases, the energy
consumption and the queue length increases either. Under
this circumstance, the frequencies of the CPU cores are
redundant than needed and more computational resources are
provided. These redundant resources can be re-allocated to
other vehicles.

FIGURE 6. The overflow probability of NCNOA and CBSOA with different
error rate.

Fig. 6 shows the overflow probability for two schemes.
By varying the decoding error rate of the transmission,
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we can see that the reliability will increase with the error
rate. From equation (4) we can observe that a larger decod-
ing error rate will have a corresponding smaller transmis-
sion rate. A smaller transmission rate means that less task
will be offloaded to mobile edge servers and therefore it
will result in a smaller stable queue length. And then the
task buffers will have less probability of overflow. In a
word, a smaller overflow probability means higher reliability.
Besides, the overflow probability between different schemes
is evaluated. It demonstrates that the overflow probability of
the collaborative MEC system is no larger than 3%, while the
non-collaborative system’s overflow probability is no larger
than 6%. Thus, Fig. 6 shows that a collaborative MEC vehic-
ular network with the proposed algorithm is more reliable
than the non-collaborative MEC vehicular network without
the proposed algorithm. As a collaborative MEC system has
better processing capability, thus the task buffers have less
overflow probability.

FIGURE 7. Total queue length v.s time for collaborative MEC networks
with different collaborative impact factor.

Fig. 7 illustrates the amount of queue length as time goes
and the impact of collaboration impact factor on queue length.
As is shown in Fig 7, if it enters the collaborative mode,
a collaborative impact factor will be always larger than 0 and
the average queue length will always be greater than the
non-collaborative system. This is because in the collaborative
MEC system will receive data transmission from other base
stations. The higher the collaboration impact factor becomes,
the higher the processing capability is provided. In other
words, the queue length will decrease with the increase in the
collaborative impact factor. When µ equals to 0.4, the sys-
tem’s processing capability cannot satisfy the requirement.
Therefore, the average queue length continues to increase as
time goes, which demonstrates that the system performance
cannot converge to a stable state under the system’s time-
constraint.

From Fig. 8 we can see the relationship between weighted
mean of energy consumption and the average processing
delay. The average processing delay increases while the

FIGURE 8. Weighted mean of energy consumption vs. Average processing
delay.

FIGURE 9. Relationship network size and average weighted total queue
length.

weighted mean of energy consumption decreases. Further-
more, it shows that a proper control parameter V can be
chosen properly to balance the energy consumption and
processing delay. Besides, given specific processing delay,
the weighted mean of energy consumption increases with the
weight. It also confirms that the energy consumption can be
adjusted by weight factors. Furthermore, there is a power
delay trade-off in this system, which is consistent with our
assumption.

In real circumstance, there will be a different number of
vehicles in each cell. Thus, we discuss the system stability for
different network size. Fig. 9 discuss the impact of network
size on the convergence time using the proposed scheme.
By tracking the average total queue length of vehicles with
different numbers of vehicles, the task arrival rate is kept
unchanged simultaneously. The task buffer’s convergence
time and stability are presented in Fig. 9. It presents that the
queue length will increase at the beginning, but it will be
stabilized finally. A larger A(tasks arrived rate) will result in
larger convergence time, while the queue length is still able to
be stabilized after several time slots for larger network size.
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Therefore, the system is applicable to a reasonable number of
vehicles for mobile edge computing.

VI. CONCLUSION
This paper innovatively envisions a joint computation
resource allocation and URLLC resource allocation strat-
egy for collaborative MEC assisted cellular-V2X networks,
where the tasks can be exchanged feasibly between MEC
base stations. A non-cooperative game and bipartite graph
are introduced to reduce the inter-cell interference and decide
the channel allocation, which maximize the throughput in
URLLC V2X communication. Then an online Lyapunov
optimization method is proposed to solve computation
resource allocation to get a trade-off between the average
weighted power consumption and delay. The results demon-
strated that our scheme greatly reduces the energy consump-
tion and processing delay of the system and there exists a
power-delay tradeoff in the system. Nevertheless, our pro-
posed can get better overflow probability, which means that
it is more reliable than centralized MEC assisted V2X. The
road environment in this paper is based on the random distri-
bution of vehicles. However, in the real world, it is obviously
impossible for vehicles to be completely distributed randomly
on the road. The actual road scene is relatively complex.
For example, cars on a one-way street drive in the same
direction, while cars on a two-way lane drive in opposite
direction. There are also intersections and more complex
vehicle environments. Therefore, it is necessary to further
study the complex road scenes in reality.
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