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ABSTRACT Although the attention-based speech recognition has achieved promising performances,
the specific explanation of the intermediate representations remains a black box theory. In this paper, we use
the method to visually show and explain continuous encoder outputs. We propose a human-intervened force
alignment method to obtain labels for t-distributed stochastic neighbor embedding (t-SNE), and use them
to better understand the attention mechanism and the recurrent representations. In addition, we combine
t-SNE and canonical correlation analysis (CCA) to analyze the training dynamics of phones in the attention-
based model. Experiments are carried on TIMIT and WSJ respectively. The aligned embeddings of the
encoder outputs could form sequence manifolds of the ground truth labels. Figures of t-SNE embeddings
visually show what representations the encoder shaped into and how the attention mechanism works for
the speech recognition. The comparisons between different models, different layers, and different lengths
of the utterance show that manifolds are clearer in the shape when outputs are from the deeper layer of the
encoder, the shorter utterance, and models with better performances. We also observe that the same symbols
from different utterances tend to gather at similar positions, which proves the consistency of our method.
Further comparisons are taken between different epochs of the model using t-SNE and CCA. The results
show that both the plosive and the nasal/flap phones converge quickly, while the long vowel phone converge
slowly.

INDEX TERMS Attention-based model, t-distributed stochastic neighbor embedding, canonical correlation
analysis.

I. INTRODUCTION
The traditional techniques separate a speech recognition sys-
tem into a variety of modules. The system which is designed
by these techniques is grounded with many assumptions, and
some of the modules require expert knowledge. For example,
the acoustic model is trained in a frame-wise manner which is
based on the Markov assumption [1], and the decoding stage
needs a man-made dictionary to obtain hypothesizes [2].

To eliminate all potential unreasonable artificial designs
in the system, there raised a variety of methods that model
speech signals in an end-to-end way. The main task of
an end-to-end model is to create mappings between two
different sequences (input features and sequences of sym-
bols) with different lengths. The connectionist temporal

The associate editor coordinating the review of this manuscript and

approving it for publication was Stavros Ntalampiras .

classification (CTC) model [3], [4] and the attention-based
model [5]–[7] are two typical successful explorations.

The CTC model inserts extra blank symbols to make the
length of the outputs consistent with the input sequences.
Although it is optimized at a sequence-level, it is still a variant
of the Markov model which is based on an independent
assumption [8].

The attention-based model is another important extension
of the end-to-end approach. It is always composed of an
encoder, an attention layer, and a decoder. The attention
mechanism is considered as mappings from the outputs of
the encoder to the inputs of the decoder states [9]–[11].
Since the number of input acoustic features is much larger
than the number of symbols in the label sequence, the atten-
tion weights are reflected as many-to-one connections in the
speech recognition.

Although there are other variants of end-to-end
models such as the transformer [12] and the neural
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transducer [13], [14], the attention layer is a basic struc-
ture for many end-to-end research. It is more interpretable
than other methods, and it achieves rather promising
results [5], [15], [16].

Nevertheless, the attention-basedmodel and its variants are
based on the deep learning theory, which is still a black box
in many applications. In image processing, people have suc-
cessfully uncovered a lot of interpretations on convolutional
neural network (CNN) [17]–[19]. However, understanding
intermediate outputs in speech recognition is challenging.
Speech signals only have short-term stability and are always
framed before modeling. Besides, there are too many vari-
ables embedded in speech signals, making it almost impos-
sible to recover the original speech signals from transformed
representations. As for the attention-based model, we would
like to explore the outputs from intermediate layers of recur-
rent neural network (RNN) and why attention mechanism
works for speech recognition.

II. RELATED WORKS
There have been many explorations toward interpreting
neural network outputs in the speech processing area.
Bai et al. [20] proposed to use linear discriminant analy-
sis (LDA) and t-distributed stochastic neighbor embedding
(t-SNE) to analyze 9-dimensional bottleneck features
(BNFs). Karita et al. [21] use t-SNE to visually show how fea-
tures are mixed or split with inter-domain loss. Kim et al. [22]
use t-SNE on high-level features to show the distribution of
emotional categories. Tang et al. [23] show temporal traces
of recurrent units with t-SNE at different layers. Google
Brain uses singular vector canonical correlation analysis
(SVCCA) [24] and projection weighted CCA [25] to compare
representational similarity between two different CNNs or
deep neural networks (DNNs), for better understanding of
the deep learning dynamics. Zhou et al. [26] proposes to
use finite state automaton (FSA) to learn intermediate output
structures of RNN.

Most of the previous research interpret on neural networks
within traditional techniques, with only a few researches
aiming for the end-to-end structure.

To better understand the intermediate representations and
the training dynamics of the attention-based model. First,
we apply t-SNE to the encoder outputs. Then, in order to
visualize those embeddings, we propose a human-intervened
force alignment method to obtain labels in the frame-level.
Finally, we try to understand the training dynamics using
CCA upon t-SNE embeddings. The analyze is done in a
phone-level.

We experiment on TIMIT andWSJ. The drawings of t-SNE
embeddings all show that the encoder of the attention-based
model clusters similar data points by the class of symbols
and form a manifold graph of sequential symbols. We further
experiment on comparing training dynamics using a com-
bined method of t-SNE and CCA. It shows that phones with
long tones are learned quickly while phones with short tones
converge slowly.

FIGURE 1. The structure of the joint CTC-attention model.

The structure is organized as follows: Section III intro-
duces our end-to-end models. Section IV describes the
algorithms of t-SNE and our force alignment method for
the attention-based model. Section V introduces how we
use CCA to analyze the training dynamics of the phones.
Section VI presents our experiments and analyzes the exper-
imental results. Finally, Section VII concludes the paper and
points out the potential future work.

III. MODEL DESCRIPTIONS
The target model we analyze in this paper is a joint CTC-
attention model. We study this hybrid model instead of a
pure attention-based model because it achieves better results
and shows great potential in the end-to-end speech recogni-
tion [27]–[29]. In this section, we describe the model briefly.

The joint model combines the CTC and the attention-based
model. It is composed of a shared encoder and a joint decoder,
and the structure is shown in Fig. 1.

The input features are normally acoustic features such as
MFCCs and filter banks. In our previous research, we demon-
strate that the performance gets better using high-level
features [29], [30].

In this paper, the components of the encoder are made of
bi-directional long short-term memory (BLSTM) layers and
convolutional layers. This follows configurations in typical
researches like [31], [32], so that our research could be rep-
resentative. The encoder transforms the input matrix X into
representations H by:

H = Encoder (X) (1)

For the joint CTC-attention model, the loss function L is a
linear combination of two parts:

L = λ1LCTC + (1− λ1)Latermon, λ ∈ [0, 1] (2)

where λ1 is the linear weight of CTC loss.LCTC andLattention
are the losses for the CTC and the attention-based model
respectively.

Finally, the joint decoding also uses CTC to help provide
the most probable phone sequence S:

S = argmax {λ2αCTC + (1− λ2) αatt } (3)

where λ2 is the linear weight of CTC. αCTC and αatt are
the hypothesis output from the CTC and the attention-based
model.
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IV. VISUALIZING ENCODER OUTPUTS USING T-SNE AND
FORCE ALIGNMENT
In an attention-based model, the attention layer is the most
interpretable part, as it tries to align between different rep-
resentations in sequential order. The decoder part is usually
a shallow network composed of few LSTM layers, and it
predicts phone/character sequences. For the encoder, it maps
the input features X into hidden representations H , which
we still have no clear analysis of what they really represent.
In this chapter, our proposed method uses t-SNE and force
alignment to help understand the encoder of the attention-
based model.

The encoder is usually composed of a few stacked BLSTM
layers. On some occasions, there are some convolutional
layers at the bottom of the network, but high layers are always
BLSTM. Even if the network is appliedwith resolution reduc-
tion, it still outputs high-dimensional vectors. In order to
visualize those representations, we use t-SNE to narrow the
output layer to 2 nodes to have a direct view of an encoder
space.

Upon SNE, t-SNE could alleviate both the crowd-
ing problem and the optimization problems. Denote by
H = {h1,h2 . . . ,hT } where T is the number of data points.
Each of the vectors isK -dimensional output from the encoder.
Denote Y =

{
y1, y2 . . . , yT

}
as the set of low-dimensional

t-SNE embeddings (with a size of T × 2), it is obtained by:

Y = TSNE (H) (4)

Here TSNE (·) represents for the t-SNE transformation
operation. The details of the t-SNE algorithm could be found
in [33], and we do not describe it here.

To clear visualize all the t-SNE embeddings and find pat-
terns for them, the labels of all data points are required.
However, there is no explicit alignment for each frame in
the attention-based model since the loss is optimized in an
utterance-level.

In this section, we propose a modified force alignment
method for the attention-based model. The alignments come
from the attention weights. Given an attention weights matrix
W which is organized by T rows and N columns in an
attention-based model, T and N respectively represent for
the number of input features (data points) and the number
of symbols in one utterance. First, we apply a greedy search
to the weights matrix to obtain raw alignments. Denote by
L = (L1,L2 . . . LN ) where L is the raw alignments and Li is
the ith symbol in L. Then Li is calculated as:

Li = argmax
j

(W (i, j)) (5)

where W (i, j) is the element in the ith row and the jth column
ofW .

However, there are mistakes that are mainly located at the
beginning and the ending of a label sequence due to padding.
We take an example from TIMIT, where the labels for each

utterance are started and ended with ‘‘sil’’. The ground truth
label of ‘‘sil eh nw ah dx ay z dh eyw er sil’’ will become ‘‘sos
sil eh n w ah dx ay z dh ey w er sil’’ after adding a symbol of
‘‘sos’’ at the beginning when it is predicted from an attention-
based model. The beginning of the raw alignments looks like
‘‘sos sos sos sos sil sil sos sos sil sil eh eh . . . ’’. It is obvious
that ‘‘sos’’ and ‘‘sil’’ should not appear in an alternate order.
Therefore, we implement the following rules to correct the
raw alignments for TIMIT:
a. Alignments should be started with a few ‘‘sos’’, and

followed with a few ‘‘sil’’;
b. Alignments should be ended with a few ‘‘sil’’;
We make a few modifications upon alignment method

according to each rule: 1) all symbols that present before the
first ‘‘sos’’ should be changed into ‘‘sos’’; 2) all symbols that
present after the first ‘‘sil’’ and at the same time present before
the first non-‘‘sil’’ symbol in the corresponding ground truth
labels should be changed into that non-‘‘sil’’ symbol;

For WSJ, the ground truth label for each utterance does
not start and end with ‘‘sil’’. Their models are supervised by
characters. The problem of raw alignments in WSJ mainly
lies in both ends. We only need to make sure the alignments
for each utterance are started with a few ‘‘sos’’, and the ‘‘sos’’
at the end due to padding should be changed into.

Note that human interventions only correct naïve mistakes
for raw alignments. It may not be accurate, but it would be
better for visualizing andwould not be worse than the original
raw alignments. After these post-processing, the alignments
of each frame in the attention-based model are obtained,
which will be quite helpful in visualizing t-SNE embed-
dings. After the t-SNE transformation and force alignment,
the embeddings of the encoder outputs could be drawn, with
the first and the second t-SNE components correspond to the
horizontal and vertical axis.

V. ANALYZING PHONE DYNAMICS USING CCA
The SVCCA method is a powerful tool to compare two
different sets of representations output from two different net-
works. However, in the attention-based model, we are more
interested in analyzing the dynamics of localities instead of
the representation of the whole utterance. It will not be easy to
conclude over so many characters (including many irregular
characters) without proper categorizations, therefore, we only
aim for models that are supervised by phones which can be
categorized by phonetics.

We divide the whole utterance into several segments. Each
segment is composed of identical phones. The CCA com-
parison is applied between two embeddings output from two
respective models. This is shown in Fig. 2. In order to avoid
meaningless computation for each phone, at least the number
of data points should be larger than the output dimensions.
Therefore, we first implement t-SNE to reduce dimensions
for object outputs. The schematic flow of this is shown
in Fig. 3.

We then calculate CCA coefficients for each phone. Denote
Y1 and Y2 as two different encoder output representations for
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FIGURE 2. Computing similarities for phones in the utterance.

FIGURE 3. Comparisons on t-SNE embeddings using CCA.

one phone. They both have the same size of Tn × 2, where
Tn denotes the length of the segment. We first compute their
covariance matrix Cov(Y1,Y2), and it is composed of four
blocks:

Cov(Y1,Y2) =

[
CY1Y1 CY1Y2

CY2Y1 CY2Y2

]
(6)

We rescale each block of the matrix to get four new matri-
ces to make CCA computation more stable:
C1 = CY1Y1/max

(∣∣CY1Y1

∣∣)
C2 = C3 = CY1Y2/

√
max

(∣∣CY1Y1

∣∣) ·max
(∣∣CY2Y2

∣∣)
C4 = CY2Y2/max

(∣∣CY2Y2

∣∣) (7)

Then, through SVD, the diagram matrix is obtained by:

U · S · V = SVD
(
C−11 � C2 � C−14

)
(8)

where · represent for the matrix multiply operation and � is
an element-wise dot operation.

Let Sn = (S1, S2) denote the CCA coefficients of the nth
segment which is composed of identical symbols. Each ele-
ment represents the CCA similarity of each t-SNE embedding

dimension. Denote the similarities of the nth segment as Cn,
it is then calculated by the mean of Sn:

Cn =
S1 + S2

2
(9)

Since we have a set of 2-dimensional vectors after t-SNE
clustering, the number of continuous identical symbols in the
alignments should be larger than 2. This is because CCA
produces meaningless representations of symbols when the
number of data points is less than the number of feature
dimensions. Therefore, we make an extra modification rule
for raw alignments besides rules a & b when doing CCA:
c. Each symbol should be present at least three times in a

row in alignments; otherwise, theywill be abandoned for
CCA comparison.

Finally, the whole procedure is concluded below:
Step 1: obtain output matrix A and B from attention-based

encoder A and B respectively.
Step 2: applying t-SNE to output matrix A and B, and get

embedding matrix A and B.
Step 3: obtain force alignments (based on rules of a, b, and

c) for both embedding matrices, and divide the whole utter-
ances into several sequences with different identical symbols.

Step 4: compute Cn between two embedding matrices for
each segment of consecutive identical symbols (as is shown
in FIGURE 2).

Step 5: statistic values for all Cn, and evenly divide them
into ten intervals (ranged from 0 to 1). Note that for the
segments which are composed of the same alignments, they
are merged for statistics. When more values are in intervals
that are close to 1, it indicates that the phone converges
quickly.

VI. EXPERIMENTS AND ANALYSIS
In this paper, we build models on TIMIT andWSJ. The setups
for two corpora follow the settings in [30]. Utterances from
the test set are selected for showing t-SNE embeddings and
CCA comparisons.

A. DESCRIPTIONS OF SPEECH RECOGNITION MODELS
We first introduce details of target models and their perfor-
mances. In order to better understanding the attention-based
models, we choose typical models to experiment on.

For TIMIT, we choose our best-performedmodel in [29] of
our previous work. The model is a joint CTC-attention model
trained on 120-dimensional high-level features (the original
40-dimensional features with delta and delta-delta compo-
nents concatenated). The high-level features are extracted
through multi-lingual training and transfer learning, with
dimension-reduction using convex nonnegativematrix factor-
ization (CNMF) [34]. The multi-lingual resource we use is
from Voxforge Italian, German, French, and Spanish. For the
structure, the encoder has 3 BLSTM layers in the CTC part
and 2 BLSTM layers in the attention part with 320 units in
each layer and direction. Dropout is applied on both BLSTM
and attention layers with a rate of 0.2. The attention layer
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TABLE 1. Recognition results of TIMIT and WSJ.

is location-based, with 320 units. The decoder is a 1-layer
LSTM with 300 units. The system is rescored by an RNN
languagemodel (RNN-LM)with a weight of 0.2.We evaluate
the recognition results by phone error rate (PER), and list
them in TABLE 1.

The second model is trained with 120-dimensional high-
level features, which is also concatenated with delta compo-
nents as it is in TIMIT. However, what is different is that these
CNMF features are extracted from DNN that is only trained
with the target language. The rest settings are the same as in
TIMIT.

For WSJ, we choose two different models. The first model
is trained on 83 filter banks with no delta components. The
encoder is a 6-layer BLSTM stacked over a CNN. There
are 320 units in each direction and layer in BLSTMs, and
then they are projected to 320 units. The dropout rate for
the encoder is 0.2. The CNN is composed of two identical
components, and each component includes consecutive two
convolutional layers stacked with a max-pooling layer (the
2D max-pooling size is (3, 3)). The convolutional parameters
of the CNN follow the settings in [30]. For the rest BLSTM
layers, the time resolution of the second and the third BLSTM
layer are both declined by half. The activation used is the
rectified linear unit (ReLU). The decoder is a 1-layer LSTM
with 300 units. We train a word-level RNN-LM [35] to help
decode all end-to-end systems. The RNN is a 1-layer LSTM
with 1000 units. The RNN-LM is trained using stochastic
gradient descent (SGD) for 20 epochs with a batch size of
100. The softmax layer predicts 65000-dimensional output
values, the vocabulary size is 65000.

B. VALIDATION FOR THE FORCE ALIGNMENT METHOD
Before trying to understand the encoder, we would like to
prove and show why we make some specific rules to fix
alignments.

1) VALIDATION IN TIMIT
We first take an utterance from the TIMIT test set as an
example. The name of the utterance is ‘‘mwew0_sx11’’, and
the ground truth label of it is ‘‘sil hh iy w el ax l aw er r eh r l
ay sil’’. The alignments are from system P1 (see definition
in Table 1, the same applies to P0, K0, and K1). The raw
alignments before modifications are:

‘‘eh sos sos sos sos sil sil sil sil sil sil sil sil sil sil sos hh hh
hh hh hh hh hh iy iy iy iy iy w w w w el el el el el el el el ax
ax ax ax ax ax ax ax ax ax ax ax ax l l l l l l l l l l l l l l aw aw
aw aw aw aw aw aw aw er er er er er er er er er er er er er er r
r r r r r r eh eh eh eh eh eh eh eh eh eh eh eh sos sos eh eh eh
eh eh eh eh eh r r r r r l l l l l l l l l l l l l l l l ay ay ay ay ay ay
ay ay ay ay ay ay ay ay sil sil sil sil sil sil sil sil sil sil sil sil’’.

The bolded alignments are obvious errors we have men-
tioned in Section IV. The alignments should be started by a
few ‘‘sos’’ followed with some ‘‘sil’’, and no ‘‘sos’’ should be
present in places other than the beginning. Then the modified
alignments are:

‘‘sos sos sos sos sos sil sil sil sil sil sil sil sil sil sil sil hh hh
hh hh hh hh hh iy iy iy iy iy w w w w el el el el el el el el ax
ax ax ax ax ax ax ax ax ax ax ax ax l l l l l l l l l l l l l l aw aw
aw aw aw aw aw aw aw er er er er er er er er er er er er er er
r r r r r r r eh eh eh eh eh eh eh eh eh eh eh eh eh eh eh eh eh
eh eh eh eh eh r r r r r l l l l l l l l l l l l l l l l ay ay ay ay ay ay
ay ay ay ay ay ay ay ay sil sil sil sil sil sil sil sil sil sil sil sil’’.

The bolded symbols are corrected symbols.

2) VALIDATION IN WSJ
We also take an utterance fromWSJ eval92 as another exam-
ple. The name is ‘‘444c040p’’ and the ground truth label of
it is ‘‘T H E Y ’ R E <space> J U S T <space> W A I T
I N G <space> F O R <space> T H E <space> O T H E
R <space> S H O E’’. We achieve the raw alignments from
system K1:

‘‘T T sos sos sos sos sos sos sos sos sos sos sos sos sos sos
sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos
sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos
sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos
sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos
sos sos sos sos sos sos sos sos T T T T T T T T T T T T T T T
H HHH E Y ’ R R E E E<space><space> J J J J J J U U U
U S S S S S T T T T <space><space><space><space>
W W W W W A A A A A I I I T T T I I I I I N N
N G G G G <space><space> <space><space><space>
F F F O O R R R <space><space> T T T H H E E
<space><space><space><space> O O O O T T T T
H H H E E E R R R <space><space><space><space>
<space><space> S S S S S S H H H H H O O O O O O O
O O O O O E E E E E E E E E E E E E E E E E E E E E E E
E E E E E E E E E E E E E E E E E E E E E E E E E E E E
E E E E E E E E E E E E E E E E E E E E E E E E E E E E
E E E E E E E E E E E E E T T T T T T T T T T T T T T
T T T T T T T T T T T T T T T T T T T’’.
We also bold obvious errors for raw alignments. The align-

ments should be started by a few ‘‘sos’’ followed with some
‘‘sil’’, and no ‘‘sos’’ should be present in places other than
the beginning. Then we bold the corrected symbols in the
modified alignments:
‘‘sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos

sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos
sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos
sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos
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FIGURE 4. T-SNE on TIMIT utterance ‘‘mjdh0_si1984’’ for P0 (a) and P1 (b). Horizontal axis: the 1st dimension of
t-SNE embeddings; vertical axis: the 2nd dimension of t-SNE embeddings.

sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos sos
sos sos sos sos sos sos sos sos sos T T T T T T T T T T T T T T
T H H H H E Y ’ R R E E E<space><space> J J J J J J U U
U U S S S S S T T T T<space><space><space><space>
W W W W W A A A A A I I I T T T I I I I I N N
N G G G G <space><space> <space><space><space>
F F F O O R R R <space><space> T T T H H E E
<space><space><space><space> O O O O T T T T
H H H E E E R R R <space><space><space><space>
<space><space> S S S S S S H H H H H O O O O O O O
O O O O O E E E E E E E E E E E E E E E E E E E E E E E
E E E E E E E E E E E E E E E E E E E E E E E E E E E E
E E E E E E E E E E E E E E E E E E E E E E E E E E E E
E E E E E E E E E E E E E E E E E E E E E E E E E E E
E E E E E E E E E E E E E E E E E E E’’.
We correct these alignments to avoid as many errors as

possible so that it would be more accurate to find patterns
based on t-SNE figures. After modification, the location of
each symbol in the alignments exactly follows the order of
the symbols in the ground truth label.

C. VISUALIZING THE ENCODER OUTPUTS
We first take outputs from the last layer of the encoder.
The output vectors are 320-dimensional, corresponding to the
number of the units in the output project layer. Before t-SNE,
we first use K -means for initialization. The perplexity is 30
for t-SNE, which is an empirical setting. For each corpus,
we use alignments obtained from the best-performed model,
model P1. This is because it is most likely able to provide the
most accurate attention weights.

1) COMPARISONS BETWEEN THE ATTENTION-BASED
MODEL AND THE JOINT CTC-ATTENTION MODEL
To compare the attention-based model and the joint CTC-
attention model, we first take two utterances from the TIMIT
test set. The first one is utterance ‘‘mjdh0_si1984’’, which is
the shortest utterance in the set. Its ground truth label is ‘‘sil
eh n w ah dx ay z dh ey w er sil’’. The other one is a much
longer utterance ‘‘mjdh0_sx274’’, and the label is ‘‘sil k l ih

f w ix s uw dh vcl b ay dh ax l ix vcl zh er r iy ix s epi m ix s
aa zh sil’’. We draw t-SNE embeddings of ‘‘mjdh0_si1984’’
and ‘‘mjdh0_sx274’’ in Fig. 4 and Fig. 5 separately.
From Fig. 4 (a), we can see that model P0 fail to cluster

continuous identical alignments. For example, the symbol
‘‘eh’’ only appears once in the ground truth label, while the
alignments of ‘‘eh’’ are in separate areas.
However, Fig. 4 (b) shows that P1 separates different

symbols by into manifolds. The aligned embeddings are
basically shaped into a circle in sequential order, started by
‘‘sos. . . sill. . . eh. . . ’’ and ended by ‘‘w. . . er. . . sil’’.
However, Fig. 5 shows that both model P0 and P1 could

not explicitly separate different symbols for a long utter-
ance. Many different alignments overlap in similar areas
and the manifolds are not clear. But still, the joint model
P1 could separate symbols between ‘‘dh’’ and ‘‘eh’’, while
P0 could not. This also explains why attention-based mod-
els have difficulties decoding long utterances: the encoder
could not explicitly distinguish different symbols at different
locations, and this leads to vague attention weights to some
utterances.
We further experiment onWSJ, Fig. 6 (a)& (b) show t-SNE

results for a short utterance ‘‘440c040j’’ and a long utterance
‘‘447c040d’’ in model K1, and Fig. 7 (a) & (b) show t-SNE
results for a short utterance ‘‘440c040j’’ and a long utterance
‘‘447c040d’’ in model K0. Their ground truth labels are ‘‘I T
<space>WA S N ’ T<space> A<space> G I V E AWA
Y’’ and ‘‘<NOISE><space> A L S O <space>M E N T I
O N E D <space>W A S <space> A <space> C O N T R
O V E R S I A L <space> P R O P O S A L <space> T O
<space>DENY<space>THE<space>DEDUCT IO
N<space> F O R<space> TW E N T Y<space> P E R C
E N T<space> O F<space> C O R P O R A T E<space>
A D V E R T I S I N G: <space> C O S T S <space> A N
D <space> T O <space> R E Q U I R E <space> I N S T
E A D <space> T H A T <space> T H E Y <space> B E
<space> AMO R T I Z E D<space> O V E R<space> T
W O <space> Y E A R S’’ respectively.

Fig. 6 (a) and Fig. 7 (a) show good manifolds of the
encoder outputs, and it successfully separates the starting
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FIGURE 5. T-SNE on TIMIT utterance ‘‘mjdh0_sx274’’ for P0 (a) and P1 (b). Horizontal axis: the 1st dimension of
t-SNE embeddings; vertical axis: the 2nd dimension of t-SNE embeddings.

FIGURE 6. T-SNE on WSJ utterance ‘‘440c040j’’ (a) and ‘‘447c040d’’ (b) for K1. Horizontal axis: the 1st dimension of
t-SNE embeddings; vertical axis: the 2nd dimension of t-SNE embeddings.

FIGURE 7. T-SNE on utterance ‘‘440c040j’’ (a) and ‘‘447c040d’’ (b) for K0. Horizontal axis: the 1st dimension of t-SNE
embeddings; vertical axis: the 2nd dimension of t-SNE embeddings.

symbol and the ending symbol. However, the embeddings of
the long utterance in Fig. 6 (b) and Fig. 7 (b) are not prop-
erly divided. For example, the first symbol ‘‘<NOISE>’’ is
distantly located to the start symbol ‘‘sos’’, and is closely
located to irrelevant symbols like ‘‘O’’ and ‘‘V’’. This
reflects that the output vectors are not well sequentially
connected.

2) COMPARISONS AMONG DIFFERENT
NUMBER OF UTTERANCES
Next, we experiment with different number of utterances.
We have already known what one utterance is distributed
visually using t-SNE. We also would like to know what
patterns could be found when embeddings from multiple
utterances are shown together.
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FIGURE 8. T-SNE on 3 utterances (a) & 5 utterances (b) & 10 utterances (c) for K0. Horizontal axis: the 1st dimension of t-SNE embeddings; vertical
axis: the 2nd dimension of t-SNE embeddings.

FIGURE 9. T-SNE on ‘‘mjdh0_si1984’’ for P1 at epoch 4 (a) & 8 (b) & final epoch (c). Horizontal axis: the 1st dimension of t-SNE
embeddings; vertical axis: the 2nd dimension of t-SNE embeddings.

TABLE 2. utterance list of WSJ.

We respectively choose 3, 5, and 10 utterances from WSJ
eval92 set and draw their aligned t-SNE embeddings in Fig. 8.
The names of chosen utterances are listed in TABLE 2.
Although it is impossible to separate one manifold from
another in the figure, the embeddings with the same align-
ment symbols are basically located in the same area. The sym-
bols may be hard to recognize visually due to a limited size
and the overlapping problem, but the gathering of the same
colored symbols indicate that the encoder of the attention-
based model is well trained for temporal modeling.

3) COMPARISONS BETWEEN DIFFERENT ENCODERS
We also compare between encoders of K0 and K1. Note that
the number of the output vectors for K0 is only one-fourth

of the number of the output vectors for K1 due to the time
resolution reduction. However, we get similar conclusions for
K0. The embeddings of the short utterance still clearly form
a manifold of sequential symbols in the ground truth label,
while the embeddings of the long utterance are not shaped
into regular manifolds. This could explain why time reso-
lution reduction works for the attention-based model: many
neighbored frames share the same alignment, and keeping
one frame out of every two frames still enables them to form
a complete utterance.

4) COMPARISONS AMONG DIFFERENT EPOCHS
We further would like to know the differences among dif-
ferent training stages for the attention-based model using
our methods. We use the same utterances in TIMIT as we
used in previous experiments. Fig. 9 (a) & (b) & (c) respec-
tively show t-SNE results on P1 at epoch 4, epoch 8, and
the final epoch for the short utterance ‘‘mjdh0_si1984’’.
Fig. 10(a) & (b) & (c) respectively show t-SNE results on
P1 at epoch 4, epoch 8, and the final epoch for a longer
utterance ‘‘mjdh0_sx274’’.

For the short utterance ‘‘mjdh0_si1984’’, the aligned
embeddings show that the encoder forms better and bet-
ter manifolds of the sequence with the training goes on.
In Fig. 9(a), both ‘‘sos’’ and ‘‘sil’’ are distantly sepa-
rated, which should be located together. In Fig. 9(b), ‘‘eh’’
should follow ‘‘sos’’ and ‘‘sil’’, instead they are located
far away. From the results at the final epoch of the
model, none of the above problems exists. The aligned
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FIGURE 10. T-SNE on ‘‘mjdh0_sx274’’ for P1 at epoch 4 (a) & 8 (b) & final epoch (c). Horizontal axis: the 1st dimension of t-SNE embeddings;
vertical axis: the 2nd dimension of t-SNE embeddings.

FIGURE 11. T-SNE on ‘‘444c040c’’ of the CNN outputs (a) & the first BLSTM layer outputs (b) & the third BLSTM layer outputs (c) &
the last BLSTM layer outputs (d) in K0. Horizontal axis: the 1st dimension of t-SNE embeddings; vertical axis: the 2nd dimension
of t-SNE embeddings.

embeddings show relative better manifolds which start from
‘‘sos. . . . . . sil. . . . . . eh. . . . . . ’’, and end at ‘‘. . . . . . er. . . . . . sil’’.

For the longer utterance ‘‘mjdh0_sx274’’, the case is
not the same with the short utterance. We could see that
embeddings are not sequentially ranged in all three sub-
figures. In Fig. 10 (a), ‘‘sos’’ symbols are separated. In both
Fig. 10 (b) and 9 (c), the beginning symbols are not well
ranged and they are overlapped with other symbols, even
with ending symbols like ‘‘zh’’. Besides, ‘‘sos’’ symbols
are distantly separated in both Fig. 10 (a) and 10 (c).

Since these show the dynamics of the encoder outputs, it can
be concluded that the improvements are less for a relative long
utterance than a short utterance during training.

5) COMPARISONS AMONG OUTPUTS OF DIFFERENT LAYERS
At last, we study outputs of different layers in the encoder, and
show them in Fig. 11. We choose model K0 to experiment on
since it has more layers than other models in our experiments.
The model K0 is composed of a CNN and a 6-layer BLSTM.
We compare outputs from the last layer of CNN in Fig. 11(a),
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TABLE 3. Ratios of cca coefficients values among different phone categories for P0.

FIGURE 12. Training accuracy of the model P0 (a) and P1 (b). Horizontal axis: the training epochs; vertical axis: the
training accuracy.

the first BLSTM layer in Fig. 11(b), the third BLSTM layer
in Fig. 11(c), and the last BLSTM layer in Fig. 11(d). We
take the utterance ‘‘444c040c’’ as an example to show t-SNE
results. Its ground truth label is ‘‘I N <space> A <space>
S E P A R A T E <space> I N C I D E N T <space> A
<space> U. <space> S. <space> D E S T R O Y E R
<space> F I R E D <space>M A C H I N E <space> G U
N <space>W A R N I N G <space> S H O T S <space>
A T <space> T W O <space> S M A L L <space> U N I
D E N T I F I E D <space> B O A T S <space> T H A T
<space> A P P R O A C H E D <space> T H E <space>
C O N V O Y’’.
First, we can see that the t-SNE embeddings of CNN

outputs are quite different than BLSTM outputs. The aligned
embeddings of CNN outputs are not fully spatially separated
in Fig. 11(a).
Especially, both the starting symbol ‘‘sos’’ and the ending

symbol ‘‘Y’’ are overlapped with many other symbols in
similar locations. For BLSTM layers, the spatial distribution
is more compact when the outputs are from a deeper layer.
The same aligned embeddings from the deeper BLSTM layer
are located more closely.
Overall, if the encoder embeddings are not clearly shaped

into manifolds of the ground truth label sequences, the model
would not have a good performance due to bad attentions.
Also, the embeddings that output from a CNN or a shallow
BLSTM layer could not produce clear manifolds indicate that
a certain number of recurrent layers are necessary for the
attention-based model.

D. ANALYSIS OF DYNAMICS OF PHONES
In this part, we experiment on the training dynamics of the
encoder using t-SNE and CCA. We experiment on TIMIT
since it is modeled with phones.
According to the method in chapter V, we first compute

CCA coefficients for each phone in each utterance. The
alignments are all obtained from the best-performed model
(model P1). The comparison is carried out between the epoch
4 and the final epoch. Fig. 12(a) & (b) respectively show the
accuracy of model P0 & P1 in different training stages. Epoch
4 is chosen as a representative for its low accuracy during the
early training stage.
We then statistic their values following the procedure in

section V, step 5. We respectively experiment on model
P0 and P1 and summarize their ratios in TABLE 3 and
TABLE 4. We summarize the phone labels into phone cat-
egories according to TABLE 5, which is based on [36]
and [37]. If the ratio that represents the higher domain of
values is large, it means that the phone category tends to
converge in an early stage during training.
Similar results are observed from both models. Almost

40% of the plosive and the nasal/flap embeddings vary in
a limited scale after epoch 4. The strong fricative, weak
fricative, semi-vowel, and short vowel have almost the same
distributions for ratios of CCA coefficient values, indicating
that their dynamics are similar through the whole training
period. The long vowel does not have large ratios for higher
domains comparing with other phone categories. They con-
verge slowly during training.
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TABLE 4. Ratios of CCA coefficients values among different phone categories for P1.

TABLE 5. Phone categorization.

The fast-convergent phone such as the plosive or the
nasal/flap belongs to burst voices, while the slow convergent
phone like the long vowel has a long vocal duration, and
has tonal slippage. As is known, the attention-based model
is difficult at decoding long sentences [38]–[40], we further
demonstrate that the attention-based model is also difficult at
modeling phones with long tones in the speech recognition.

However, what should be emphasized is that the con-
vergent speed does not necessarily have a causal correla-
tion to the classification accuracy of that phone category.
The conclusions drawn from our CCA experiment are only
helpful for understanding the training dynamics of phones,
and are potentially useful for further improvements upon the
attention-based model.

VII. CONCLUSION
In order to better understand the attention-based model, we
propose to use a human-intervened force alignmentmethod to
align the t-SNE embeddings of the encoder outputs. In addi-
tion, we propose a method of combining t-SNE and CCA
to analyze the training dynamics of phone categories in the
attention-based model. Examples from both TIMIT and WSJ
validate the necessity of human interventions during aligning.
The aligned embeddings of the encoder outputs are shaped
into manifolds of the ground truth label sequences visually,
demonstrating the effectiveness of the attention mechanism
in speech recognition. Outputs that come from the deeper
layer, the shorter utterance, or the better-performed models
in speech recognition, tend to produce clearer manifolds.
Besides, embeddings with the same aligned symbols tend
to gather at similar positions when multiple utterances are

drawn together. This proves the consistency of our method.
Further experiments on analyzing the phone dynamics show
that the long vowel phone tends to converge slowly, while the
plosive and the nasal/flap phone converge quickly.
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