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ABSTRACT Mechanical signals are not only disturbed by Gaussian noise, but also by non-Gaussian
noise. These Gaussian noise and non-Gaussian noise have gravely impeded detecting of rolling bearing
defects using traditional methods. In this context, the paper develops a novel detection method for rolling
bearing, which combines bispectrum analysis with an improved ensemble empirical mode decomposition
(EEMD). To effectively eliminate Gaussian noise in the signal, bispectrum analysis is adopted. In order
to effectively reduce non-Gaussian noise, a cloud model-improved EEMD is proposed, where the cloud
model is introduced to restrain the mode mixing phenomenon. Then a rolling bearing defect detection plan
based on the proposed method is put forward. From theoretical analysis and experimental verification, it is
demonstrated that the proposed method has superior performance in reducing multiple background noise.
Furthermore, compared with other three methods, the results show that the proposed method can detect the
defect of rolling bearings more effectively.

INDEX TERMS Bispectrum analysis, cloud model, defect detection, ensemble empirical mode decompo-
sition, mode mixing, rolling bearing.

I. INTRODUCTION
As a widely used and important part of the rotating machine,
rolling bearings often lead to serious consequences of
mechanical equipment after their failure. Therefore, the fea-
ture extraction and fault diagnosis of rolling bearing has been
one of the important issues in the field of fault diagnosis
of rotating machinery [1], [2]. When the rotating machin-
ery is in normal operation, its vibration signal is usually a
Gaussian signal, but once it fails, its vibration signal will
turn into a non-Gaussian signal [3]. However, the tradi-
tional power spectrum analysis and time-frequency analy-
sis cannot reflect the phase information between different
frequency components, and usually, are disturbed by the
non-Gaussian noise. The higher-order spectrum, especially
bispectrum analysis, is a powerful tool for the analysis of
non-Gaussian signals. It represents random signals from
higher-order probabilistic structural and can make up for
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the defect that second-order statistics (power spectrum) do
not contain phase information [4]. Tian et al. [5] propose
a detector based on bispectrum of modulated signals for
bearing fault detection, and can effectively suppress static
random noise and discrete aperiodic noise. Shaeboub et al. [6]
examine the effectiveness of conventional diagnostic features
in both motor current and voltage signals using spectrum and
modulation signal bispectrum analysis (MSBA), which has
a good noise reduction capability. Huang et al. [7] use the
performance of the conventional bispectrum (CB) method
and its new variant, the modulation signal bispectrum (MSB)
method to analyze faults from different rotors, and prove
that MSB performs significantly better than the CB method.
Chasalevris et al. [8] use bispectrum analysis to identify
bearing fault. Guo et al. [9] applied bispectrum analysis for
feature extraction of diesel cylinder liner piston rings, then the
fault information is extracted by artificial neural network and
obtains a high accuracy. Li et al. [10] use bispectrum analysis
to diagnose the rolling bearing fault. Although these methods
can accurately extract the fault features under the background
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of complex noise, especially containing Gaussian noise,
the non-Gaussian noise will inevitably exist in the measured
vibration signals, which often inhibit the extraction of true
signal signatures for diagnosis. To improve these methods,
Li et al. [3] propose a feature extraction method based on
wavelet transform and bispectrum analysis which can extract
the bearing fault features effectively but cannot detect the
multi-frequency component of the fault.

Bispectrum analysis can theoretically completely eliminate
Gaussian noise, but it will lose its advantage when
non-Gaussian noise is added [11]. In practical application,
the fault features of the fault signal are often submerged in
the noise, especially when the early fault occurs, the fault
features are very weak and hard to extract. The existence
of non-Gaussian noise will interfere with the higher-order
spectrum of the signal, and will badly affect the extraction
and analysis of fault features. Therefore, it is necessary to
eliminate non-Gaussian noise in the signal before the bis-
pectrum analysis. Ensemble Empirical Mode Decomposition
is a self-adaptive signal decomposition method proposed by
Huang et al. [12]. Similar to EMD, EEMD can decompose
signals into a series of high-to-low frequency bands based
on the signal itself [13]. Therefore, the EEMD can be used
first to separate the different frequency components of the
signal and to remove the non-Gaussian noise mixed in the
signal, which can effectively eliminate the adverse effect
caused by non-Gaussian noise during the bispectrum analy-
sis. Meanwhile, EEMD is also a noise-assisted data analysis
method, which can restrain the mode mixing phenomenon
caused by EMD by adding white noise into the signal.
Compared with EMD, IMFs obtained by EEMD can better
reveal the intrinsic characteristic of the signal. In recent years,
EEMD has been widely used in the field of mechanical
fault diagnosis [14]–[16]. Wang et al. [17] use EEMD with
a correlation dimension method to identify diesel engine
system failures.

However, some shortcomings of EEMD are discovered
gradually. In the process of decomposing complex sig-
nals, a certain number of false IMFs are generated. These
false IMFs will adversely affect the fault feature extraction.
Aiming at this problem, a MEEMD method is proposed to
remove the false IMFs by limiting the bandwidth and ampli-
tude of adding white noise [18]. Jiang et al. [19] proposed
an IEEMD method that uses multiple EMDs to remove false
IMFs. Lin and Yu [20] use the correlation coefficient of
IMFs and the signal as a criterion to decide which IMFs
should be retained and which IMFs should be eliminated. But
these methods can cause erroneous judgments sometimes,
and cannot identify the true IMFS completely and accurately.
To solve these problems, in this paper, a cloud model method
is introduced to identify the IMFs obtained by the EEMD and
remove the false IMFs, so as to obtain true IMFs.

Bispectrum analysis and EEMD can effectively elimi-
nate Gaussian noise and non-Gaussian noise. In addition,
the cloud model method can improve EEMD to restrain the
mode mixing phenomenon. Therefore, this paper, this paper

proposed a novel detection method for rolling bearing by
the advantages of bispectrum analysis and improved EEMD.
First, the signal is decomposed by EEMD into several IMFs
with different frequencies from high to low, and then the
cloudmodelmethod is used to remove the false IMFs. Finally,
the bispectrum analysis of the true IMFs is carried out to
extract the fault feature information of the fault rolling bear-
ing. The effectiveness of the proposed methods is verified by
theoretical analysis and experimental verification.

The remainder of this paper is organized as follows.
bispectrum analysis is introduced in section II. EEMD and
cloud model method is introduced in section III. The defect
detection method based on bispectrum analysis and cloud
model-improved EEMD is presented in section IV; Applica-
tion is presented in section V. Comparisonwith other methods
is presented in section VI. Our main conclusions are given in
section VII.

II. BISPECTRUM ANALYSIS
Bispectrum analysis is a higher-order spectrum (third-order
spectrum), which has its unique superiority compared with
the power spectrum, such as identification of nonlinear sys-
tems, retention of phase information and elimination of
Gaussian noise [21], usually used to detect quadratic phase
coupling in nonlinear signals [22]. The bispectrum is defined
as the two-dimensional Fourier transform of the third-order
autocorrelation of the signal. There are two ways to obtain
the bispectrum of a signal: ¬ direct method: which computes
the bispectrum of the signal by definition, that is, the third-
order autocorrelation of the discrete Fourier transform of
signal;­ indirect method: The bispectrum is estimated by the
parametric model. As the direct method is more convenient
and accurate, therefore, this paper adopts the direct method.
The specific calculation process is as follows:

(1) Define a discrete signal {x(n)} = {xk (0), xk (1), . . . ,
xk (M − 1)},where k = 1, · · · ,K .
(2) The signal’s discrete Fourier transform coefficients are

defined as

X (k)(λ) =
1
M

M−1∑
n=0

x(k)(n) exp(−j
2πnλ
M

) (1)

where λ = 0, 1, · · · ,M/2; k = 1, · · · ,K .
(3) Calculate the third-order autocorrelation of the

coefficients

bk (λ1, λ2) =
1

12
0

L1∑
i1=−L1

L1∑
i2=−L1

X (k)(λ1 + i1)

·X (k)(λ2 + i2)X (k)(−λ1 − λ2 − i1 − i2) (2)

where 10 = fs/N0, and M = (2L1 + 1)N0.
(4) The bispectrum of x(0), x(1),L, x(N − 1) can be

formulated as

B(ω1, ω2) =
1
K

K∑
k=1

bk (ω1, ω2) (3)

where ω1 =
2π fs
N0
λ1, ω2 =

2π fs
N0
λ2.
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FIGURE 1. Simulated signal f(t).

FIGURE 2. Simulated signal g(t).

FIGURE 3. Simulated signal r(t).

The bispectrum reflects the distribution of the third
moment of the signal in the dual-frequency domain. For a
random signal with a symmetrical distribution, the skewness
is zero and the bispectrum is also zero. The Gaussian signal is
precisely this type of random signal, so the bispectrum has a
strong ability to eliminate Gaussian noise. In contrast, the bis-
pectrum of non-Gaussian noise is non-zero, so bispectrum
analysis cannot deal with this type of noise.

In the following, the bispectrum is used to analyze a sim-
ulated signal to verify that it can effectively eliminate the
Gaussian noise but not the non-Gaussian noise. The simulated
signal is as follows:

x(t) = f (t)+ g(t)+ r(t)

= sin(20π t)+sin(60π t)+sin(100π t)+n(t)+r(t) (4)

f(t) consists of three sinusoidal signals with frequencies
of 10Hz, 30Hz and 50Hz. g(t) is a random signal with
Gaussian distribution. r(t) is a random noise with Rayleigh
distribution. The sampling rates of f(t), g(t) and r(t) are
1000Hz. x(t) consists of f(t), g(t) and r(t). The time-domain
graphics of f(t), g(t), r(t) and x(t) are as shown in Fig.1, Fig.2,
Fig.3, and Fig.4.

x1(t) is a superposition of f(t) and g(t). Calculate the
bispectrum of x1(t), the result is shown in Fig.5.

x1(t) = f (t)+ g(t) (5)

With respect to Fig.5, the maximum peaks exhibit at fre-
quency pair (50, 50) and its Symmetric frequencies [23].
And also, several peaks exhibit at frequency pair (50, 30),
(10, 10) and its Symmetric frequencies. The result proves
that bispectrum analysis can effectively eliminate Gaussian
noise in the signal. However, in the bispectrum, there are also

FIGURE 4. Simulated signal x(t).

FIGURE 5. Bispectrum of the simulated signal x1(t).

FIGURE 6. Bispectrum of the simulated signal x2(t).

many low peaks around high peaks, and the quadratic phase
coupling phenomenon happens. This is because Rayleigh
noise interferes with bispectrum analysis, resulting in more
frequency peaks in the bispectrum, which also shows that bis-
pectrum analysis cannot effectively eliminate non-Gaussian
noise in the signal.

x2(t) is a superposition of f(t) and r(t). Calculate the
bispectrum of x2(t), the result is shown in Fig.6.

x2(t) = f (t)+ r(t) (6)

From the bispectrum shown in Fig.6, we can find neither
three sinusoidal signals, again verifying that bispectrum
analysis cannot deal with non-Gaussian noise.

Calculate the bispectrum of x(t), the result is shown in
Fig.7. As can be seen from Fig.7, due to the existence of many
frequency components in the signal, and the interference of
non-Gaussian noise, the bispectrum is complex, and can find
neither three sinusoidal signals. Therefore, it is necessary to
de-noising the signal to eliminate the non-Gaussian noise
before using bispectrum analysis to obtain accurate analysis
results.

III. EEMD AND CLOUD MODEL METHOD
A. EEMD
EEMD is an improved algorithm proposed by Huang to
solve the mode mixing phenomenon in EMD. In EMD
decomposition, when the time scale of the decomposed signal
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FIGURE 7. Bispectrum of the simulated signal x(t).

FIGURE 8. Flowchart of EEMD method based on EEMD.

has a sudden change, or the signal contains a lot of noise,
a single IMF will contain a large number of frequency com-
ponents, the phenomenon is called mode mixing [24]. EEMD
can restrain the mode mixing phenomenon by adding white
noise multiple times into the signal [25]. When the decom-
posed signal is applied to a background space filled with
white noise, the signals of different time scales are automat-
ically mapped to the appropriate frequency scale. Therefore,
taking advantage of the zero-mean of noise, after several
averaging, the noise will cancel each other and the signal
itself will be stable. The result of the integrated mean can
be used as the final result. Therefore, taking advantage of
the zero-mean of noise, after several averaging, the noise will
cancel each other and the signal itself will be stable. The result
of the integrated mean can be used as the final result.

The specific calculation process of EEMD is as follows,
the flowchart is shown as Fig.8.

(1) Add normal distribution white noise into the
decomposition signal;

(2) EMD is performed on the signal which is added with
white noise to obtain IMFs;

(3) Repeat steps (1) and (2), adding new white noise each
time;

(4) The average value of IMFs obtained each time is taken
as the final result.

B. OBTAINTRUE IMFs USING CLOUD MODEL METHOD
EEMD is similar to EMD and is a self-adaptivemethod of sig-
nal decomposition [26], [27]. However, due to the end effect
in the decomposition process, false IMFs will be generated,

FIGURE 9. EEMD of the simulated signal x(t).

which will badly affect the extraction of fault feature and the
accuracy of fault diagnosis. Therefore, this paper proposes
the parameter of the cloud model to identify the true IMFs,
remove the false IMFs.

Whether IMFs of bearing signal decomposed by EEMD is
true or not, which is qualitative, and the parameters of cloud
model C (Ex, En, He) are an expression of some qualitative
features. So, it can judge which are true IMFS effectively.
Where Ex is Mean Value, En is Feature Entropy, He is Excess
Entropy.

Ex =
1
n

n∑
i=1

xi (7)

En =

√
π

2
×

1
n

n∑
i=1

|xi − Ex| (8)

He =
√
S − En2 (9)

where S is Second-order central moment of x.
Since the IMF component is derived from the same signal

by the EEMD method, there is little difference in Ex of each
IMF component. Where En is the dispersion of IMFs, and He
is the uncertainty measure of En. In this paper, the similarity
between IMFs and the original signal is measured by parame-
ter En and parameter He ratio of IMFs and the original signal,
so that the false IMF is eliminated.

The following example of a simulated signal verifies the
effectiveness of the cloud model method in removing the
false IMFs. Consider the signal x(t) given in formula (4).
The signal x(t) consists of three sinusoidal signals with fre-
quencies of 10 Hz, 30 Hz and 50 Hz and amplitudes of both 1.
The results of EEMD of the simulated signal x(t) are shown
in Fig.9. Calculate the ratio of the cloud model parameters
(En, He) and correlation coefficient (|ρxy|) [17] of each IMF
and the original signal. The results are shown in Tab.1.
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TABLE 1. Results of two false component identification methods.

FIGURE 10. Flowchart of the proposed method.

It can be seen from Tab.1 that the En and He param-
eter ratios of IMF3, IMF4, and IMF5 are much larger
than the remaining IMFs, so IMF3, IMF4, and IMF5 are
true components. Based on a large number of experiments,
IMF3-IMF5 usually needs to be considered. On the contrary,
the correlation coefficients of IMF5 and IMF6 are similar, and
the authenticity of the IMF cannot be effectively recognized
by the correlation coefficient method. It can be seen that the
cloud model method proposed in this paper can effectively
identify the real IMFs and remove the false IMFs, and the
effect is better than the correlation coefficient method.

IV. DEFECT DETECTION METHOD BASED ON
BISPECTRUM ANALYSIS AND CLOUD
MODEL-IMPROVED EEMD
The practical engineering signals collected from machines
are often complex and usually contain interference noise such
as Gaussian and non-Gaussian noise. Bispectrum analysis
can only eliminate Gaussian noise, so we use EEMD before
bispectrum analysis to decompose the complex noise into
a series of high-to-low frequency bands and eliminate the
non-Gaussian noise in the signal first. The steps of this
method are as follows: first, decompose the signal using
EEMD to obtain a series of high-to-low frequency bands.
Usually, the frequencies of noise are high and the frequencies
of fault features are low [28]. Then, the cloudmodelmethod is
used to choose the true and useful IMFs. Finally, bispectrum
of these true IMFs is calculated to extract fault feature infor-
mation hiding in the signal. The flowchart is shown in Fig.10.

Known in section 3, IMF3, IMF4, and IMF5 are true IMFs,
so calculate the bispectrum of them, the results are shown
in Fig.11. As we can see, the maximum peaks exhibit at
frequency pair (50, 50), (30, 30), (10, 10) and their Symmet-
ric frequencies, represent the frequencies of three sinusoidal
signals. This example proves that the proposed method can
effectively eliminate the Gaussian and non-Gaussian noise in
the signal and extract the fault feature information from the
complex noise.

FIGURE 11. Bispectrum of IMFs of the simulated signal x(t).

V. APPLICATION
In practical industrial production, when the bearing failure
happens, its internal parts will periodically collide with the
fault part as it rotates at a high speed, resulting in a series
of impact excitation. Generally, the characteristic frequencies
of various fault can be calculated according to the bearing
parameters, then the fault can be diagnosed according to the
fault feature frequency. However, since the energy of the
vibration is often spread over a relatively wide frequency
band, the frequency spectrum contains the harmonics of the
fault feature frequencies, which will easily be disturbed by
noise. Therefore, if different noises can be handled separately
during the feature extraction, the fault diagnosis accuracy can
be greatly improved. Next, we apply the proposed method to
analyze vibration signals of rolling bearings.

A. INNER-RACE FAULT BEARING DETECTION
The bearing vibration signals analyzed in this paper are
provided by Case Western Reverse Lab. The rolling bear-
ing inner-race fault experiment uses 6205-type rolling bear-
ing manufactured by SKF Co., the bearing pitch diameter
is 39.04mm, the ball diameter is 7.94mm, the number of
balls is 9, the contact angle is 0◦. The signal was collected
with a sampling rate of 12000Hz, speed of 1797r/min, the
vibration acceleration signal is shown in Fig.12. The fault
feature frequency of the inner-race fault is calculated to
be 162Hz.
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FIGURE 12. Signal of the rolling bearing with inner- race fault.

FIGURE 13. Bispectrum of rolling bearing with inner- race fault.

FIGURE 14. EEMD of rolling bearing with inner-race fault.

The bispectrum of rolling bearing with the inner-race fault
is shown in Fig.13. From Fig.13, we cannot find any fault
feature in it. Analyze the signal using the proposed method.
First, the signal is decomposed by EEMD into several IMFs,
as shown in Fig.14. IMF1 and IMF2 are noise due to the high
frequencies, which does not contain fault feature information
of the bearing, so it is eliminated directly. Calculate the
cloudmodel parameter ratios of IMF3-IMF9with the original
signal, the results shown in Tab.2. It can be seen that the ratio
of the cloud model parameters of IMF3, IMF4, IMF5 and the
original signal is large, and the difference is obvious, while
the ratio of IMF6 to IMF9 is small, and the change of ratio
is few, so choose these three IMFs with largest parameter
ratios as the true IMFs and then calculate the bispectrum

TABLE 2. Parameter ratios of IMFs and bearing signal.

FIGURE 15. Results of rolling bearing with inner-race fault obtained by
method based on EEMD and bispectrum analysis.

of them. The results are shown in Fig.15(a), 15(b) and 15(c)
respectively. It can be clearly seen from Fig.14 that maxi-
mum peaks exhibit at frequency pair (648,648), (324,324),
(162,162) and their Symmetric frequencies, not only reflect-
ing the bearing inner-race fault feature frequency of 162Hz
and its second and fourth harmonics, but also reflects the
signal phase information.

B. OUTER-RACE FAULT BEARING DETECTION
Fig.16 shows the vibration acceleration signal of the
6205-type rolling bearing with an outer-race fault with a sam-
pling rate of 12000Hz and speed of 1797r/min. The out-race
fault feature frequency is calculated to be 107Hz.

Tab.3 and Fig.17 are the cloud model parameter ratios
and bispectrum obtained by the proposed method based on
EEMD and bispectrum analysis. From the Tab.3, It can be
seen that IMF3, IMF4, and IMF5 are the true IMFs. And from
the Fig.17, It can be seen that the maximum peaks exhibit
at frequency pair (428,428), (214,214), (107,107) and their
Symmetric frequencies, represent the feature frequency of the
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FIGURE 16. Signal of the rolling bearing with outer-race fault.

TABLE 3. Parameter ratios of IMFs of bearing signal.

FIGURE 17. Results of rolling bearing with outer-race fault obtained by
method based on EEMD and bispectrum analysis.

outer race fault and its second and fourth harmonics. This
experiment also verifies the effectiveness of the proposed
method.

C. ROLLING ELEMENT FAULT BEARING DETECTION
Fig.18 shows the vibration acceleration signal of the 6205-
type rolling bearing with a rolling element fault with a sam-
pling rate of 12000Hz and speed of 1797r/min. The out-race
fault feature frequency is calculated to be 137Hz.

Tab.4 and Fig.19 are the cloud model parameter ratios
and bispectrum obtained by the proposed method based on

FIGURE 18. Signal of rolling bearing with rolling element fault.

TABLE 4. Parameter ratios of IMFs of bearing signal.

FIGURE 19. Results of rolling bearing with rolling element fault obtained
by the method based on EEMD and bispectrum analysis.

EEMD and bispectrum analysis. From the Tab.4, It can be
seen that IMF3, IMF4, and IMF5 are the true IMFs. And from
the Fig.19, It can be seen that the maximum peaks exhibit
at frequency pair (548,548), (274,274), (137,137) and their
Symmetric frequencies, represent the feature frequency of
the rolling element fault and its second and fourth harmon-
ics. This experiment further verifies the effectiveness of the
proposed method.

D. ANOTHER INNER-RACE FAULT BEARING DETECTION
In order to validate the robustness and versatility of the
proposed method, another inner-race fault bearing detection

VOLUME 8, 2020 24329



Y. Jiang et al.: Novel Rolling Bearing Defect Detection Method

FIGURE 20. Drivetrain Dynamics Simulator.

FIGURE 21. Signal of the rolling bearing with inner-race fault.

TABLE 5. Parameter ratios of IMFs of bearing signal.

is carried out using SpectraQuest’s Drivetrain Dynamics Sim-
ulator (DDS), which is showed in Fig.20. The experiment
uses ER16K-type rolling bearing, the bearing pitch diameter
is 15.16mm, the ball diameter is 3.125mm, the number of
balls is 9, the contact angle is 0◦. The signal was collected
with a sampling rate of 12800Hz, speed of 1200r/min, the
vibration acceleration signal is shown in Fig.21. The fault
feature frequency of the inner-race fault is calculated to be
108Hz.

Tab.5 and Fig.22 are the cloud model parameter ratios
and bispectrums obtained by the proposed method based
on EEMD and bispectrum analysis. It is obvious from
Table 5 that IMF3, IMF4, and IMF5 are real IMF com-
ponents. The results of the bispectrum analysis are shown
in Fig.22 (a), 22 (b), and 24 (c), respectively. And from
the Fig. 22, It can be seen that the maximum peaks exhibit
at frequency pair (108,108), (324,324), (648,648) and their
Symmetric frequencies, represent the feature frequency of
the inner race fault and its third and sixth harmonics. This
experiment further verifies the robustness and versatility of
the proposed method.

VI. COMPARISON
In this section, we take several other methods, such as
power spectrum analysis, bispectrum analysis, and wavelet
de-noising bispectrum analysis, to comparewith the proposed
method so as to verify the effectiveness and superiority of it.

Consider the signal of the rolling bearing with an outer-
race fault in section 5.2. Fig.23, Fig.24 and Fig. 25 are

FIGURE 22. Results of rolling bearing with inner-race fault obtained by
method based on EEMD and bispectrum.

FIGURE 23. Power spectrum of the rolling bearing with outer-race fault.

FIGURE 24. Bispectrum of the rolling bearing with outer-race fault.

the results obtained by power spectrum analysis, bispec-
trum analysis, and wavelet de-noising bispectrum analysis.
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FIGURE 25. Results of rolling bearing with outer-race fault obtained by
method based on wavelet denoising and bispectrum analysis.

FIGURE 26. Power spectrum of rolling bearing with rolling element fault.

FIGURE 27. Bispectrum of rolling bearing with rolling element fault.

The steps of the method of wavelet de-noising bispectrum
analysis are as follows: the fault signal is first decomposed
and denoised by wavelet, then after demodulated by Hilbert
transform, the bispectrum analysis is applied to extract the
fault feature.

From Fig.23 and Fig.24, It can be seen that the fault feature
frequency of the rolling bearing cannot be identified from the
power spectrum and the bispectrum due to the noise inter-
ference. The fault information has been completely buried
in the strong noise. Therefore, the power spectrum analysis,
and bispectrum analysis cannot extract the fault features of
rolling bearings. With respect to Fig.17, the maximum peaks
exhibit at frequency pair (107, 107) and its Symmetric fre-
quencies, represent the feature frequency of the outer race
fault. However, compare Fig.25 with Fig.17, peaks in Fig.17
(c) are sharper than peaks in Fig.25, and there are second
and fourth harmonics of the fault feature frequency find-
ing in Fig.17 but not Fig.25. Therefore, compared with the
power spectrum analysis, bispectrum analysis and wavelet
de-noising bispectrum analysis, the proposed method can
detect the defect of rolling bearings more effectively, which
provides a newmethod for fault diagnosis of rolling bearings.

Consider the signal of the rolling bearing with a
rolling element fault in section 5.3. Fig.26, Fig.27 and

FIGURE 28. Results of rolling bearing with rolling element fault obtained
by method based on wavelet denoising and bispectrum analysis.

Fig.28 are the results obtained by power spectrum analysis,
bispectrum analysis, and wavelet de-noising bispectrum anal-
ysis. Compared with the power spectrum analysis, bispec-
trum analysis, and wavelet de-noising bispectrum analysis,
the result is the same as the analysis of the rolling bearing
with an outer-race fault, the proposed method can detect the
defect of rolling bearings more effectively.

VII. CONCLUSION
The research presented in this paper focused on rolling
bearing defect detection in multiple background noise.
Bispectrum analysis has been utilized to effectively reduce
Gaussian noise of rolling bearing defect detection signals.
A novel cloud model-improved EEMD has been proposed for
non-Gaussian signal denoising, where the cloud model has
been introduced to restrain the mode mixing phenomenon
so as to improve the accuracy of EEMD. After theoretical
and experimental investigations, the necessity and benefit of
the cloud model have been demonstrated. After comparing
the results obtained by five methods, it can be concluded
that the proposed method based on bispectrum analysis
and cloud model-improved EEMD can extract fault feature
information of rolling bearings more effectively and outper-
forms traditional methods with better capability of defect
detection.
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