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ABSTRACT Analysis of large volumes of data is very complex due to not only a high level of skewness and
heteroscedasticity of variance but also the phenomenon of missing data. Expectile regression is a popular
alternative method of analyzing heterogeneous data. In this paper, we consider fitting a linear expectile
regression model for estimating conditional expectiles based on a large quantity of data with covariates
missing at random.We construct a communication-efficient surrogate loss (CSL) function to estimate model
parameters. The asymptotic normality of the proposed estimator is established. A proximal alternating
direction method of multipliers (ADMM) algorithm is developed for distributed statistical optimization on
a large quantity of data. Simulation studies are performed to assess the finite-sample performance of the
proposed method. Survey data from the Behavioral Risk Factor Surveillance System (BRFSS) is used to
demonstrate the utility of the proposed method in practice.

INDEX TERMS CSL function, expectile regression, large-scale data, missing at random, proximal ADMM
algorithm.

I. INTRODUCTION
Large-scale data, which arise in many fields such as online
surveys, genomics and economics, are characterized by a
high level of skewness, heteroscedasticity of variance and the
phenomenon of missing information. When the size of the
dataset becomes extremely large, it may be infeasible to store
all of the data on a single machine. The process of statisti-
cal analysis of large-scale data must involve data transfers
between different storage devices, which becomes a direct
cause of a slowdown of computation. When information on
covariates is collected, missing data may arise due to a lack of
responses. These features pose great challenges for statistical
analysis of large-scale data.

The impact of statistical procedures on missing data’s
processing and data transfers should be considered apart
from the usual statistical inference criteria. In recent
years, numerous studies on distributed approaches to large-
scale statistical optimization problems have been per-
formed [2], [4], [11], [22]. However, these families of
distributed methods are characterized by communication
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complexity. For example, as different machines should be
synchronized, communication can impose a significant over-
head if the amount of data is very large. It makes sense to
study distributed inference that only needs limited synchro-
nization and communication while still enjoying the statisti-
cal power guaranteed by having a large-scale data set.

Most of the existing studies of large-scale data analysis
have focused on the classic least-squares regression. Least-
squares estimates are optimal if the errors are independent,
identically distributed and normal. However, uncontrolled
inhomogeneity of variance among random errors and gen-
uinely long-tailed error distributions have indistinguishable
effects, and may reduce the efficiency of least-squares esti-
mates. Thus, robust alternatives to the least-squares method
are definitely needed. Expectile regression, first proposed by
Newey and Powell [13] to analyze heterogeneous data, is
defined by the asymmetric quadratic loss based on the l2 norm
as follows:

ρτ (u) = |τ − I (u ≤ 0)| u2, for τ ∈ (0, 1) (1.1)

where I (·) is the indicator function. Following the
landmark paper of Newey and Powell [13], numerous
and extensive studies of expectile regression have been
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performed [16], [25]. Specifically, two expectile regression
packages, expectreg [17] and ER-Boost [21], have been made
available. Zhao and Zhang [23] further indicate that sample
expectiles provide a class of smooth curves as functions of
level τ and are robust for heavy-tailed distributions.
In this paper, we study a distributed optimization approach

to analyzing large-scale data based on expectile regression
with covariates missing at random. The simplest method
of handling missing data is complete-case analysis, which
deletes all incomplete data. However, Little and Rubin [12]
pointed out that doing so may cause biased estimation if the
data are not missing at random. The other method of dealing
with missing data is imputation [3], [20], [24]. For example,
Robins et al. [15] studied a new class of consistent weighted
semiparametric estimators in the case of data missing at
random. Wang et al. [18] assessed the statistical performance
of a Horvitz and Thompson [8]-type weighted estimator by
applying different estimates of selection probabilities.

Applying the inverse probability-weighted method,
we define a weighted global loss function and several
weighted local loss functions. Based on these functions,
we construct a communication-efficient surrogate loss (CSL)
function of the weighted global loss function inspired by the
idea of Jordan et al. [10]. TheCSL function can be regarded as
a communication-efficient surrogate for the weighted global
loss function, and can effectively solve the problems caused
by large-scale data stored randomly on multiple machines.
During the calculation, our proposed method can be applied
on the master machine in each round, and other worker
machines only need to compute the gradient based on local
data. As to communication, our proposed method based on
CSLmatches the estimation error bound of the oracle method
within a certain number of communications compared to the
weighted estimator obtained by the oracle method of using
all data simultaneously.

We develop an inference procedure for regression param-
eters of the linear expectile regression model based on
the CSL function. To establish the asymptotic properties
of the proposed estimator, we apply the distributed opti-
mization theory [10] and the Lindeberg-Feller central limit
theorem. Another challenge arises from the numerical cal-
culation of the proposed estimator. We use an alternating
direction method of multipliers (ADMM) algorithm [7], [9].
Boyd [1] showed that an ADMM algorithm is appropriate for
large-scale statistical inference and distributed convex opti-
mization problems. Combining the advantages of the CSL
function with the ADMM algorithm, we explore a proxi-
mal ADMM algorithm for the calculation of our proposed
estimator.

The rest of this paper is organized as follows. In Section 2,
we fit a linear expectile regression model to distributed
data with covariates missing at random. In Section 3,
we develop asymptotic properties of the proposed estima-
tion. In Section 4, we propose a proximal ADMM algo-
rithm for the implementation of the proposed estimation.
We perform simulation studies to evaluate the finite-sample

performance of the proposed method in Section 5. We ana-
lyze a dataset from the Behavioral Risk Factor Surveillance
System (BRFSS) in Section 6 and provide some concluding
remarks in Section 7. The proofs of asymptotic properties are
given in the Appendix.

II. DESIGN AND ESTIMATION
Let {(Xj,Yj)Nj=1}

∧
= {(Xki,Yki) : k = 1, 2, · · · ,K , i =

1, 2, · · · , n} denote N = nK independent identically dis-
tributed observations. Suppose that data storage is distributed
so that each machine stores a subsample of n observations.
Let {(Xki,Yki) : i = 1, 2, · · · , n} denote the subsample stored
on the kth machine Mk for k = 1, 2, · · · ,K . We consider
the following linear expectile model:

Yki=XT
kiβ(τ )+εki(τ ), k=1, 2, · · · ,K , i=1, 2, · · · , n,

(2.1)

where β(τ ) is (p+q)-dimensional vector of regression param-
eters of interest, and εki(τ ) are random errors with the τ th
expectile given Xki equal to zero for τ ∈ (0, 1). We drop τ
in the parameter and error terms for notation simplicity in the
following.

If covariate information can be observed for each individ-
ual, the following global loss function is widely used for the
inference of parameter β [13]:

LN (β) =
1
N

K∑
k=1

n∑
i=1

ρτ (Yki − XT
kiβ), (2.2)

where ρτ (u) is defined by (1.1). Regression parameter
β could be estimated by solving the estimation equation
UN (β) = 0, where

UN (β) =
1
N

K∑
k=1

n∑
i=1

Xkiψτ (Yki − XT
kiβ) (2.3)

and ψτ (u) = 2|τ − I (u ≤ 0)|u is the gradient function
of ρτ (u). Note that if we denote the local loss function by
Lk (β) = n−1

∑n
i=1 ρτ (Yki − XT

kiβ) for k = 1, 2, · · · ,K ,
we have LN (β) = K−1

∑K
k=1 Lk (β).

In many practical applications, the modeling process in
statistical inference often encounters missing covariates. For
k = 1, 2, · · · ,K , i = 1, 2, · · · , n, we observe a response
variable Yki, a p-dimensional vector Wki of covariates that is
always observed, and a vector Tki of covariates of dimension
q that may contain some missing components. Let Xki =
(WT

ki ,T
T
ki )

T be the (p + q)-dimensional vector of covariates.
Let Rki denote the indicator variable: Rki = 1 if Tki is fully
observed, and Rki = 0 otherwise. We assume that values
of Tki are missing at random, i.e. P(Rki = 1|Yki,Xki) =
P(Rki = 1|Yki,Wki). Additionally, we assume that for an
unknown γ and Vki = (Yki,WT

ki ) ∈ R(p+1), we establish the
logistic regression P(Rki = 1|Yki,Xki) = eV

T
kiγ /(1+ eV

T
kiγ ) ∧=

π (Vki, γ ).
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To account for the missing data problem, we consider the
following inverse probability weights

wki=
1

π (Vki, γ̂ )
, k=1, 2, · · · ,K , i=1, 2, · · · , n, (2.4)

where γ̂ is the estimator of γ based on the logistic regression
model. Using the weights proposed in (2.4), we obtain the
following weighted estimation equation:

Uw(β) =
1
N

K∑
k=1

n∑
i=1

wkiXkiψτ (Yki − XT
kiβ). (2.5)

Inspired by the relationship between (2.2) and (2.3), we con-
struct the following weighted global loss function L̃N (β) and
weighted local loss functions L̃k (β):

L̃N (β)=
1
N

K∑
k=1

n∑
i=1

wkiρτ (Yki − XT
kiβ), (2.6)

L̃k (β)=
1
n

n∑
i=1

wkiρτ (Yki−XT
kiβ), k=1, 2, · · · ,K . (2.7)

The weighted expectile regression estimator is defined as

β̃ = argmin
β∈B

L̃N (β), (2.8)

where B is the parameter space. The optimization process
(2.8) achieves the optimal statistical error. However, large-
scale data is usually stored on multiple machines, so a sta-
tistical analysis involving the entirety of data must entail
data transfers between different machines. Optimizing L̃N (β)
directly is infeasible under the distributed storage framework.

In this paper, inspired by the idea of communication-
efficient surrogate likelihood method [10], we define a CSL
function that approximates the weighted global loss function
L̃N (β) as follows:

L̃(β) = L̃1(β)+
〈
∇L̃N (β)−∇L̃1(β), β

〉
. (2.9)

Here, β is any initial estimator of β; 〈·, ·〉 denotes the inner
product, and ∇ denotes the partial derivative with respect to
β. In the distributed learning setting, the proposed estimator
using the CSL function as the objective optimization function
is defined by

β̂ = argmin
β∈B

L̃(β). (2.10)

III. ASYMPTOTIC PROPERTIES
In this section, we derive asymptotic properties of the pro-
posed estimator β̂ in (2.10). To present the asymptotic results,
we introduce some notation. Let β0 denote the true value of
β, and define

εi = Yi − XT
i β0, εi = Yi − XT

i β,

60 = E
[
XiXT

i
1

π (Vi, γ )
ψ2
τ (εi)

]
,

60 = E
[
XiXT

i
1

π (Vi, γ )
ψ2
τ (εi)

]
,

60 = E
[
XiXT

i
1

π (Vi, γ )
ψτ (εi)ψτ (εi)

]
,

62 = E
[
(1− π (Vi, γ ))ViXT

i ψτ (εi)
]
,

62 = E
[
(1− π (Vi, γ ))ViXT

i ψτ (εi)
]
,

I (γ ) = E
[
ViV T

i π (Vi, γ ) (1− π (Vi, γ ))
]
.

We impose the following regularity conditions throughout
this paper.

(C1) Parameter space B is compact. For any i, there exists
a compact set X such that Xi ∈ X ⊂ Rp+q.

(C2) Regression errors {εki} are independent and identi-
cally distributed with cumulative distribution function
F(·). Furthermore, the τ -expectiles of {εki} are zero
and E

[
ε2ki|Xki

]
<∞.

(C3) The MLE γ̂ of γ satisfies the regularity conditions of
asymptotic normality of MLEs for exponential family
models.

(C4) There exists α > 0 such that π (Vi, γ ) > α uniformly
in i.

(C5) The matrixes 60, 60 and I (γ ) are positive definite.
There exists a positive definite matrix 61 such that

lim
N−→∞

[
N−1

N∑
i=1

XiXT
i

]
= 61.

The asymptotic properties of the proposed estimator β̂ are
summarized in the following theorem with the proof given in
the Appendix.
Theorem 1: If Conditions (C1)-(C5) are satisfied, then

√
N (β̂ − β0)

d
−→ N (0,

1
4g2(τ )

6−11 66−11 ), N →∞,

where g(τ ) = (1− τ )F(0)+ τ (1− F(0)) and

6 = K (60 −6
T
2 I
−1(γ )62)+ (K − 1)(60 −6

T
2I
−1(γ )62)

− (2K − 2)(60 −6
T
2 I
−1(γ )62).

Remark 1: If we choose the initial value β that satisfies
β = β0 + op(n−

1
2 ), e.g., β = argmin

β∈B
L̃1(β), the proof of

Theorem 1 shows that

N 1/2(β̂−β0)
d
−→N (0,

1
4g2(τ )

6−11 (60−6
T
2 I
−1(γ )62)6

−1
1 ),

as N → ∞. Furthermore, if we use true weights π (Vi, γ )
instead of estimated weights π (Vi, γ̂ ) in obtaining the
weighted expectile estimator, and denote the estimator by β̂T ,
then

N 1/2(β̂T − β0)
d
−→ N (0,

1
4g2(τ )

6−11 606
−1
1 ), N →∞.

IV. PROXIMAL ADMM ALGORITHM
We have established asymptotic properties of the proposed
estimator β̂. The implementation of the optimization problem
(2.10) is difficult and complicated in practice. In this section,
we develop a proximal ADMM algorithm for the calculation
of the proposed estimator. We set β to be the current tth
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iteration’s value β(t) to construct the surrogate loss function;
then, (2.9) can be rewritten as

L̃(t)(β) = L̃1(β)+
〈
∇L̃N (β(t))−∇L̃1(β(t)), β

〉
. (4.1)

Based on (4.1), we construct the following optimization
problem:

β(t) = argmin
β∈B

L̃(t)(β). (4.2)

We denote by {X ,Y } the dataset stored on the first
machine, where X = (X1,X2, · · · ,Xn)T is a matrix with
dimensions n × (p + q). Y is an n × 1-dimensional vec-
tor. We denote Z = (Z1,Z2, · · · ,Zn)T

∧
= Y − Xβ and

Gτ (Z ) = (1/n)
n∑
i=1

wiρτ (Zi). By convexity, problem (4.2) is

equivalent to min
β∈B,Z∈Rn

Gτ (Z )+
〈
∇L̃N (β(t))−∇L̃1(β(t)), β

〉
s.t. Xβ + Z = Y .

(4.3)

Fix ρ > 0; the augmented Lagrangian function of (4.3) is

F(β,Z , θ) = Gτ (Z )+
〈
∇L̃N (β(t))−∇L̃1(β(t)), β

〉
−〈θ,Xβ+Z−Y 〉+

ρ

2
‖Xβ+Z−Y‖22, (4.4)

where θ ∈ Rn is the Lagrangian multiplier, and ‖ · ‖2 denotes
the l2 norm in the Euclidean space.
To optimize the Lagrangian function (4.4), the iterations of

the classical ADMM algorithm are given by
β(t+1) = argmin

β∈B
F(β,Z (t), θ (t)),

Z (t+1)
= arg min

Z∈Rn
F(β(t+1),Z , θ (t)),

θ (t+1) = θ (t) − ρ(Xβ(t+1) + Z (t+1)
− Y ),

(4.5)

where (Z (t), θ (t)) denotes the tth iteration of the algorithm for
t ≥ 0. Discarding the constant terms that are independent
of the corresponding parameters to be estimated allows the
iterations in (4.5) to be rewritten as

β step : β(t+1) = argmin
β∈B

[〈
∇L̃N (β(t))−∇L̃1(β(t)), β

〉
−
〈
θ (t),Xβ

〉
+
ρ

2
‖Xβ + Z (t)

− Y‖22
]
,

Z step : Z (t+1)
= arg min

Z∈Rn
[
Gτ (Z )−

〈
θ (t),Z

〉
+
ρ

2
‖Xβ(t+1) + Z − Y‖22

]
,

θ step : θ (t+1) = θ (t) − ρ(Xβ(t+1) + Z (t+1)
− Y ).

(4.6)

Simple calculations lead to the following explicit solution
of the β step in (4.6):

β(t+1) = (XTX )−1
[
XT(ρ−1θ (t) − Z (t)

+ Y )

−ρ−1(∇LN (β(t))−∇L1(β(t)))
]
. (4.7)

For solving the Z step in (4.6), the corresponding optimiza-
tion function is ‘‘parametric separation’’, i.e., the update of

Z (t+1) can be performed component-wisely. For i = 1,
2, · · · , n, we have

Z (t+1)
i

= arg min
Zi∈R

[
1
n
wiρτ (Zi)−θ

(t)
i Zi+

ρ

2
(Zi+XT

i β
(t+1)
−Yi)2

]

= arg min
Zi∈R

ρτ (Zi)+ nρ
2wi

{
Zi−

(
Yi−XT

i β
(t+1)
+
θ
(t)
i

ρ

)}2
 .

(4.8)

For solving the univariate minimization problems (4.8),
we define

Proxρτ [α, β] = argmin
u∈R

[
ρτ (u)+

β

2
(u− α)2

]
.

We call operator Proxρτ the proximalmapping of ρτ . Given
τ ∈ (0, 1) and β > 0, the mapping has the following explicit
expression:

Proxρτ [α, β] =


αβ

2(1− τ )+ β
, α ≤ 0

αβ

2τ + β
, α > 0.

Applying the proximal mapping formula to the Z step, for
i = 1, 2, · · · , n, we obtain

Z (t+1)
i = Proxρτ

[
Yi − XT

i β
(t+1)
+
θ
(t)
i

ρ
,
nρ
wi

]
. (4.9)

Equations (4.7) and (4.9) complete the algorithm for the
proposed estimation in a linear expectile model. Note that
we add the proximal mapping of ρτ in the Z step, so we call
the algorithm the proximal ADMM algorithm, summarized
as follows:

Note that the convergence of the proximal ADMM
algorithm can be established similarly to Section 3.3 in
Gu et al. [5]. As discussed in Gu et al. [5], the worst case
convergence rate of the proximal ADMM algorithm is at least
of order 1/t at each communication round, where t is the
iteration number.

V. SIMULATION STUDIES
We conduct simulation studies to evaluate the finite-sample
performance of the proposed method. We compare the
proposed communication-efficient distributed optimization
method (labeled ‘‘Proposed’’) that entails using the proximal
ADMM algorithm to solve problem (2.10) with the optimal
global method (labeled ‘‘Oracle’’) that entails using the clas-
sic ADMM algorithm to solve problem (2.8).

We consider the following linear expectile regression
model:

Yi=β1+β2X1
i +β3X

2
i +β4X

3
i +εi, i=1, 2, · · · ,N , (5.1)

where the true parameter β0 = (β1, β2, β3, β4)T =

(−3, 1,−1, 1)T. Covariates X1
i ∼ N (0, 1), X2

i ∼ N (0, 1)
and X3

i ∼ Bernoulli(0.5) are independent. We assume that
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Algorithm 1 Proximal ADMM Algorithm for Large-Scale
Expectile RegressionModelWith CovariatesMissing at Ran-
dom
Initialize β(0) = argmin L̃1(β),Z (0), γ (0).
1: for m = 0, 1, 2, . . . ,M − 1 do
2: Transmit the current iteration’s value β(m) to machines
{Mk}

K
k=1;

3: for k = 1, 2, . . . ,K do
4: Calculate the gradient ∇L̃k (β(m)) at machine Mk ;
5: Send the gradient ∇L̃k (β(m)) to master machine

M1;
6: end for
7: Compute the gradient ∇L̃N (β(m)) =

K−1
K∑
k=1
∇L̃N (β(m)) at master machine M1;

8: Compute the CSL function L̃(m)(β) = L̃1(β) +〈
∇L̃N (β(m))−∇L̃1(β(m)), β

〉
;

9: Execute the following iteration on master machine
M1:

10: for t = 0, 1, 2, . . . ,T − 1 do
11: Update

β(t+1) = (XTX )−1
[
XT(ρ−1θ (t) − Z (t)

+ Y )

−ρ−1(∇LN (β(t))−∇L1(β(t)))
]

12: Update

Z (t+1)
=

(
Proxρτ

[
Yi−XT

i β
(t+1)
+
θ
(t)
i

ρ
,
nρ
wi

])
1≤i≤n

13: Update θ (t+1) = θ (t) − ρ(Xβ(t+1) + Z (t+1)
− Y );

14: end for
15: Update β(m+1) = β(T ),Z (m+1)

= Z (T ), θ (m+1) = θ (T )

16: end for
Return β̂ = β(M ).

X2
i are always observed, while (X1

i ,X
3
i ) are missing at ran-

dom. We consider different distributions of random errors
εi: (I) homogeneous errors εi ∼ N (0, 1), εi ∼ t(10) and
εi ∼ χ2(1), and (II) heterogeneous errors εi ∼ (1 +
X3
i )N (0, 1), εi ∼ (1+ X3

i )t(10) and εi ∼ (1+ X3
i )χ

2(1).
Let Ri be a binary variable indicating whether (X1

i ,X
3
i ) is

fully observed. We consider Ri arising from the following
logistic regression model:

logit(P(Ri=1|Xi,Yi))=4+Yi+X2
i , i=1, 2, · · · ,N , (5.2)

where logit(t) = log(t/(1 − t)). We generate N = 10000
samples under model (5.1) with scheme (5.2) used to indi-
cate missing data. For various distributions of εi, the above
missing data mechanism produces on average the rate of
missing data ranging from 20% to 43%. We randomly par-
tition the data on K = 10, 20 and 40 machines. Thus,
the local sample size n on each machine is 1000, 500 and

FIGURE 1. Boxplots for estimation error ‖β̂ − β0‖
2
2 versus the number of

machines under homogeneous errors.

250, respectively. We set τ = 0.3, 0.5 and 0.7. For each
configuration, the results presented below are obtained from
100 independently generated datasets.

Tables 1 and 2 summarize the results of estimationg β. The
tables include the means of squared estimation error ‖β̂ −
β0‖

2
2 (ER), and the sample standard derivations of squared

estimation error (SD).
We present boxplots to show how the squared estima-

tion error varies over different methods and the number of
machines. Figures 1 and 2 display the results. We also show
how the squared estimation error varies for the proposed
method versus the number of rounds of communication.
Figures 3 and 4 summarize the results.

In all cases considered here, results reported in Table 1,
Table 2, Figure 1 and Figure 2 indicate that the oracle
method gives us the best estimates and statistical perfor-
mance. Our proposed approach produces estimates that can
be competitive with those of the oracle method. The results
reported in Figures 3 and 4 indicate that for our proposed
communication-efficient distributed optimization method,
the squared estimation error declines to SE of the oracle
method within a few rounds of communication.

In addition, results reported in Figures 3 and 4 also show
that the smaller the machine count K is, the faster ER of the
proposed estimator converges to that of the ‘‘oracle case’’.
This phenomenon is reasonable, because the local sample
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TABLE 1. Results of estimation of β under homogeneous errors.

TABLE 2. Results of estimation of β under heterogeneous errors.

size n increases as the number of machines K varies from
40 to 10, thus, the proposed estimator exhibits faster conver-
gence of ER to that of the oracle estimator as the number of
samples stored on each machine increases.

VI. REAL-WORLD DATA ANALYSIS
To illustrate the application of our proposed method, we per-
form an empirical study using data from 2017 Michigan
BRFSS. The latter is a collaborative project of Centers for
Disease Control and Prevention. In the analysis, we drop
cases with missing, ‘‘don’t know’’ and ‘‘refused’’ responses
to covariates ‘‘Race’’, ‘‘Sex’’, ‘‘Age’’ and ‘‘Internet’’.

We view variable ‘‘Income’’ as the covariate missing at ran-
dom. Table 3 provides the demographic characteristics for
the five considered covariates. The outcome of interest is
‘‘Weight’’, which represents the log-transformed value for
every individual. After the above treatment, 411345 individ-
uals are available for the study. The rate of missing data is
approximately 13.91%.

We consider the linear expectile regression model to
assess the effect of ‘‘Income’’, ‘‘Race’’, ‘‘Sex’’, ‘‘Age’’ and
‘‘Internet’’ on individuals’ ‘‘Weight’’. Through the study,
we demonstrate that ourmethod provides new perspectives on
this data. With a small percentage of individuals accounting
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TABLE 3. Demographic characteristics of BRFSS data.

FIGURE 2. Boxplots for estimation error ‖β̂ − β0‖
2
2 versus the number of

machines under heterogeneous errors.

for most of the problem, it is interesting to consider the people
with different weights, i.e., different conditional expectiles,
such as τ = 0.3, 0.5 and 0.7.

We create a random partition of the data. A total of 300000
individuals are randomly selected as the training set (Dtrain),
and the remaining 111345 people constitute the testing

FIGURE 3. Graphs of estimation error ‖β̂ − β0‖
2
2 versus the number of

rounds of communication, assuming three machines and homogeneous
errors.

set (Dtest). For the training dataset, we set the machine count
K to 50, 100 and 200; i.e., the local sample size n on each
machine is 6000, 3000 and 1500, respectively. We model
the missing data mechanism by fitting a logistic regression
model; the missing data indicator is viewed as the response
variable, and variable ‘‘Weight’’ of interest and the remaining
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FIGURE 4. Graphs of estimation error ‖β̂ − β0‖
2
2 versus the number of

rounds of communication, assuming three machines and heterogeneous
errors.

TABLE 4. Results of analysis of BRFSS data.

four covariates are predictors. Using the estimated weights,
we then perform the coefficient estimation using the training
dataset, and evaluate its prediction error on the testing dataset
by calculating (1/111345)

∑
i∈Dtest

ρτ (Yi − Ŷi).
We use the proposed proximal ADMM algorithm to cal-

culate the average prediction error (PE) and the standard
derivation (SD) of PE. The results are shown in rows labeled
‘‘Proposed’’ in Table 4. We also consider the ADMM algo-
rithm based on the global loss function L̃N (β). The results are
listed in the rows labeled ‘‘Oracle’’ in Table 4.

The results suggest that PE and SD obtained by the
proposed method are competitive with those of the oracle
method. In addition, results show that PE of our method

increases very little and is close to that of the oracle method
as the number of machines increases from 50 to 200.

VII. DISCUSSION
We study an efficient approach in an expectile regression
framework for analyzing large-scale data with covariates
missing at random. The expectile regression approach is
particularly suitable for analyzing highly skewed and het-
eroscedastic data. To overcome the difficulties caused by
large-scale data, a CSL function is constructed. We show that
the approach of constructing a surrogate loss function ( to the
global loss function) based on the subsample of observations
is very useful in solving the large-scale data problem where
the sample size is so large that the calculation of the global
loss function is prohibitive.

An estimator is obtained by solving an optimization prob-
lem using the CSL function as the objective function. The
asymptotic properties of the proposed estimator are estab-
lished. A proximal ADMM algorithm is proposed for the cal-
culation of the proposed estimator. Simulation studies suggest
that the proposed method performs well for a finite sample
size. The easy implementation of the proposed method is
demonstrated using real-world data examples.

The procedure described in the paper is most suitable
if the frequency of missing data is low or medium. If it
is overly high, applying an augmented estimating equation
method [14] to use the partial information, and an imputation
method [3] to fill in some of the missing values can be
explored based on our distributed framework. Further stud-
ies also discuss exploring the ideas presented to reduce the
computational cost of communication-efficient distributed
multitask learning with shared support [19].

APPENDIX
Proof of Theorem 1: For simplicity, the dataset stored on

the first machine is denoted by {X1i,Y1i}
∧
= {Xi,Yi}ni=1.

Define

εi = Yi − XT
i β0, εi = Yi − XT

i β,

60 = E
[
XiXT

i
1

π (Vi, γ )
ψ2
τ (εi)

]
,

60 = E
[
XiXT

i
1

π (Vi, γ )
ψ2
τ (εi)

]
,

60 = E
[
XiXT

i
1

π (Vi, γ )
ψτ (εi)ψτ (εi)

]
,

62 = E
[
(1− π (Vi, γ ))ViXT

i ψτ (εi)
]
,

62 = E
[
(1− π (Vi, γ ))ViXT

i ψτ (εi)
]
,

I (γ ) = E
[
ViV T

i π (Vi, γ )(1− π (Vi, γ ))
]
,

I1(δ) = −
1
√
n

n∑
i=1

Ri
π (Vi, γ̂ )

XT
i δψτ (εi),
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I2(δ) =
1
√
n

n∑
i=1

Ri
π (Vi, γ̂ )

XT
i δψτ (εi),

I3(δ) = −
1
√
n

n∑
i=1

[
1
K

K∑
k=1

Rki
π (Vki, γ̂ )

XT
kiδψτ (εki)

]
,

En(δ) = I1(δ)+ I2(δ)+ I3(δ).

Lemma 1: If Conditions (C1)-(C5) hold, then

En(δ)
d
−→ N (0, δT6̃δ), n→∞,

where

6̃ = 60 −6
T
2 I
−1(γ )62 +

K − 1
K

(60 −6
T
2I
−1(γ )62)

−
2K − 2
K

(60 −6
T
2 I
−1(γ )62).

Proof of Lemma 1: Under Conditions (C1)-(C5), similarly
to arguments in Lemma 1 of [16], we obtain

I1(δ) = −
1
√
n

n∑
i=1

ξi + op(1), I2(δ) =
1
√
n

n∑
i=1

ηi + op(1),

I3(δ) = −
1
√
n

n∑
i=1

1
K
ζi + op(1),

where

ξi =
Ri

π (Vi, γ )
XT
i δψτ (εi)− (Ri − π (Vi, γ ))V T

i I
−1(γ )62δ,

ηi =
Ri

π (Vi, γ )
XT
i δψτ (εi)− (Ri − π (Vi, γ ))V T

i I
−1(γ )62δ,

ζi =

K∑
k=1

[
Rki

π (Vki, γ )
XT
kiδψτ (εki)

− (Rki − π (Vki, γ ))V T
ki I
−1(γ )62δ

]
,

and op(1) is dimensionless.
Since

E
[

Ri
π (Vi, γ )

XT
i δψτ (εi)

]
= E

[
XT
i δE[ψτ (εi)|Xi]

]
= 0

and

E
[
(Ri − π (Vi, γ ))V T

i I
−1(γ )62δ

]
= E

[
E[Ri − π (Vi, γ )|Xi,Vi]V T

i I
−1(γ )62δ

]
= 0,

we have E[ξi] = 0. Then,

Var(ξi) = Var
(

Ri
π (Vi, γ )

XT
i δψτ (εi)

)
+Var

(
(Ri − π (Vi, γ ))V T

i I
−1(γ )62δ

)
− 2Cov

(
Ri

π (Vi, γ )
XT
i δψτ (εi), (Ri − π (Vi, γ ))

× V T
i I
−1(γ )62δ

)
.

By performing a simple calculation, we obtain

Var
(

Ri
π (Vi, γ )

XT
i δψτ (εi)

)
= δTE

[
XiXT

i
1

π (Vi, γ )
ψ2
τ (εi)

]
δ = δT60δ,

Var
(
(Ri − π (Vi, γ ))V T

i I
−1(γ )62δ

)
= δT6T

2 I
−1(γ )E

[
π (Vi, γ )(1−π (Vi, γ ))ViV T

i

]
I−1(γ )62δ

= δT6T
2 I
−1(γ )62δ,

and

Cov
(

Ri
π (Vi, γ )

XT
i δψτ (εi), (Ri − π (Vi, γ ))V

T
i I
−1(γ )62δ

)
= E

[
Ri

π (Vi, γ )
XT
i δψτ (εi)(Ri − π (Vi, γ ))V

T
i I
−1(γ )62δ

]
= δTE

[
(1− π (Vi, γ ))Xiψτ (εi)V T

i

]
I−1(γ )62δ

= δT6T
2 I
−1(γ )62δ,

which show that

Var(ξi) = δT(60 −6
T
2 I
−1(γ )62)δ. (A.1)

As in the derivation of (A.1), we obtain

Var(ηi) = δT(60 −6
T
2 I
−1(γ )62)δ,

Var(ζi) = KVar(ηi),

Cov(ξi, ηi) = δT
[
60 −6

T
2 I
−1(γ )62

]
δ,

Cov(ξi, ζi) = Cov(ξi, ηi), Cov(ηi, ζi) = Var(ηi).

DenoteMi = −ξi+ηi−
1
K ζi; then, Var(Mi) = δT6̃δ, where

6̃ = 60 −6
T
2 I
−1(γ )62 +

K − 1
K

(60 −6
T
2 I
−1(γ )62)

−
2K − 2
K

(60 −6
T
2 I
−1(γ )62). (A.2)

Define W 2
n =

n∑
i=1

Var(Mi). Note that E
[
M4
i

]
< ∞ because

all terms except for Vi are bounded and E
[
(V T

i a)
4
]
< ∞

for any a ∈ Rp+1. By Hölder’s inequality and Chebyshev’s
inequality, for any λ > 0, there exists c > 0 s.t.

1
W 2
n

n∑
i=1

E
[
M2
i I (|Mi| > λWn)

]
≤

1
W 2
n

n∑
i=1

[
EM4

i

]1/2 [
E (I (|Mi| > λWn))2

]1/2
≤

b
W 2
n

n∑
i=1

[P (|Mi| > λWn)]1/2

≤
b
W 2
n

n∑
i=1

[
Var(Mi)
(λWn)2

]1/2
≤

c
W 2
n

n∑
i=1

1
λ|Wn|

. (A.3)
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By (A.2), (A.3) and the Lindeberg-Feller central limit theo-
rem, we have

En(δ) =
1
√
n

n∑
i=1

Mi
d
−→ N (0, δT6̃δ), n −→∞.

Lemma 2: If Conditions (C1)-(C5) hold, then

n
[
L̃(β0 +

δ
√
n
)− L̃(β0)

]
= g(τ )δT61δ + En(δ)+ op(1), n→∞.

Proof of Lemma 2: By performing a simple calculation and
using the definitions of I2(δ) and I3(δ), and denote

Hn(δ) =
n∑
i=1

Ri
π (Vi, γ̂ )

[
ρτ (εi −

XT
i δ
√
n
)− ρτ (εi)

]
,

we obtain

n
[
L̃(β0 +

δ
√
n
)− L̃(β0)

]
= n

[
L̃1(β0+

δ
√
n
)−L̃1(β0)+

〈
∇L̃N (β)−∇L̃1(β),

δ
√
n

〉]
=

n∑
i=1

Ri
π (Vi, γ̂ )

ρτ (εi −
XT
i δ
√
n
)−

n∑
i=1

Ri
π (Vi, γ̂ )

ρτ (εi)

+
δT
√
n

[
n∑
i=1

Ri
π (Vi, γ̂ )

Xiψτ (εi)

]

−
δT
√
nK

[
n∑
i=1

K∑
k=1

Rki
π (Vki, γ̂ )

Xkiψτ (εki)

]
= Hn(δ)+ I2(δ)+ I3(δ). (A.4)

As E [I1(δ)] = 0, we obtain

Hn(δ)=E [Hn(δ)]+
n∑
i=1

Ri
π (Vi, γ̂ )

[
ρτ (εi−

XT
i δ
√
n
)−ρτ (εi)

]
−E [Hn(δ)]

=E [Hn(δ)]+

[
n∑
i=1

Si,n(δ)+ I1(δ)

]

−E

[
n∑
i=1

Si,n(δ)+ I1(δ)

]

=E [Hn(δ)]+I1(δ)+
n∑
i=1

[
Si,n(δ)−E(Si,n(δ))

]
, (A.5)

where Si,n(δ)=
Ri

π (Vi,γ̂ )

[
ρτ (εi−

XT
i δ√
n )− ρτ (εi)+ ψτ (εi)

XT
i δ√
n

]
.

By applying Conditions (C2) and (C3), we obtain

E [Hn(δ)]

= E

[
n∑
i=1

Ri
π (Vi, γ )

(
ρτ (εi −

XT
i δ
√
n
)− ρτ (εi)

)]

+E

[
n∑
i=1

(
Ri

π (Vi, γ̂ )
−

Ri
π (Vi, γ )

)

×

(
ρτ (εi −

XT
i δ
√
n
)− ρτ (εi)

)]

= E

[
n∑
i=1

Ri
π (Vi, γ )

(
ρτ (εi−

XT
i δ
√
n
)−ρτ (εi)

)]
+ op(1)

= E

[
E

{
n∑
i=1

Ri
π (Vi, γ )

(
ρτ (εi−

XT
i δ
√
n
)−ρτ (εi)

)
|Xi,Yi

}]
+ op(1)

= E

[
n∑
i=1

(
ρτ (εi −

XT
i δ
√
n
)− ρτ (εi)

)]
+ op(1)

∧
= E

[
H̃n(δ)

]
+ op(1), (A.6)

where H̃n(δ) =
n∑
i=1

(
ρτ (εi −

XT
i δ√
n )− ρτ (εi)

)
. DenoteM (t) =

E [ρτ (εi − t)− ρτ (εi)]; then,M (0) = 0; performing a simple
calculation, we obtain

∇tM (0) = −E [2(1− τ )εiI (εi ≤ 0)+ 2τεiI (εi > 0)]

= −E [ψτ (εi)] = 0,

∇
2
t M (0) = 2(1− τ )E [I (εi ≤ 0)]+ 2τE [I (εi > 0)]

= 2(1− τ )F(0)+ 2τ (1− F(0)) = 2g(τ ),

where g(τ ) = (1− τ )F(0)+ τ (1− F(0)). Using the Taylor’s
theorem, we have M (t) = g(τ )t2 + o(t2). Hence, under
Condition (C5), for large n we have

E
[
H̃n(δ)

]
=

n∑
i=1

M (
XT
i δ
√
n
)

=

n∑
i=1

[
g(τ )(

XT
i δ
√
n
)2 + o

(
(
XT
i δ
√
n
)2
)]

= g(τ )δT61δ + op(1). (A.7)

We perform a second-order Taylor expansion of ρτ (εi −
XT
i δ√
n ) around εi and obtain

ρτ (εi −
XT
i δ
√
n
) = ρτ (εi)+∇εiρτ (εi)

[
−
XT
i δ
√
n

]

+
∇

2
εi
ρτ (ηi)

2
δT

[
XiXT

i

n

]
δ + op(1), (A.8)

where ηi is between εi and εi −
XT
i δ√
n . We can rewrite (A.8) as

ρτ (εi −
XT
i δ
√
n
)− ρτ (εi)+ ψτ (εi)

[
XT
i δ
√
n

]

=
∇

2
εi
ρτ (ηi)

2
δT

[
XiXT

i

n

]
δ + op(1). (A.9)
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By (A.9), the definition of Si,n(δ) and the inequality
|∇

2
εi
ρτ (ηi)| ≤ 2max(τ, 1 − τ ), there exists a constant

b > 0 s.t.

|Si,n(δ)| =

∣∣∣∣∣ Ri
π (Vi, γ )

[
∇

2
εi
ρτ (ηi)

2
δT

(
XiXT

i

n

)
δ

]

+ op(1) | ≤ bmax(τ, 1− τ )δT
[
XiXT

i

n

]
δ.

Under Condition (C5),

δT

[∑n
i=1 XiX

T
i

n

]
δ → δT61δ,

max
1≤i≤n

‖Xi‖2
√
n
→ 0, ‖δ‖2 = C,

there exists a constant c = c(τ ) > 0 s.t.
n∑
i=1

E
[
Si,n(δ)

]2
≤ c(τ )

[
δT

{∑n
i=1 XiX

T
i

n

}
δ

]
· max
1≤i≤n

(
‖Xi‖2

n

)
·‖δ‖2→ 0.

(A.10)

Using (A.10), due to the cancelation of cross-product
terms, for a fixed δ we obtain

E

[
n∑
i=1

(
Si,n(δ)− ESi,n(δ)

)]2

=

n∑
i=1

E
[
Si,n(δ)− ESi,n(δ)

]2
≤

n∑
i=1

E
[
Si,n(δ)

]2
→ 0,

which implies that
n∑
i=1

(
Si,n(δ)− ESi,n(δ)

)
= op(1). (A.11)

From (A.5), (A.6), (A.7) and (A.11), it follows that

Hn(δ) = g(τ )δT61δ + I1(δ)+ op(1). (A.12)

Due to (A.4) and (A.12), we obtain

n
[
L̃(β0 +

δ
√
n
)− L̃(β0)

]
= g(τ )δT61δ + En(δ)+ op(1), n→∞,

where

En(δ) = I1(δ)+ I2(δ)+ I3(δ).

Lemma 3: Let U be a symmetric and positive definite
matrix, V be a random variable and An(δ) be a convex
objective function with the minimum point αn. If

An(δ) =
1
2
δTUδ + V Tδ + op(1),

then

αn
d
−→ −U−1V .

The proof of Lemma 3 was given in Hjørt and Pollard [6], and
is thus omitted.
Proof of Theorem 1: By Lemma 1 and Lemma 2, we obtain

n
[
L̃(β0 +

δ
√
n
)− L̃(β0)

]
= g(τ )δT61δ + En(δ)+ op(1),

En(δ)
d
−→ N (0, δT6̃δ), n→∞.

Define δ̂n =
√
n(β̂ − β0); then, β̂ = β0 +

δ̂n√
n . Note that

δ̂n = arg min
δ∈Rp+q

n
[
L̃(β0 +

δ
√
n
)− L̃(β0)

]
and by Lemma 3, we obtain
√
n(β̂−β0)

d
−→ N (0,

1
4g2(τ )

6−11 6̃6−11 ), n→∞. (A.13)

Due to N = nK and the result (A.13), β̂ has the following
asymptotic property:
√
N (β̂ − β0)

d
−→ N (0,

1
4g2(τ )

6−11 66−11 ), N →∞,

where 6 = K (60 − 6T
2 I
−1(γ )62) + (K − 1)(60 −

6
T
2 I
−1(γ )62)− (2K − 2)(60 −6

T
2 I
−1(γ )62).
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