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ABSTRACT Since an optimal computing budget allocation (OCBA) approach maximizes the efficiency of
the simulation budget allocation to correctly find the optimal solutions, various OCBA-based procedures,
such as OCBA,OCBAm+, andMOCBA+, have beenwidely applied to solve simulation-based optimization
problems. Recently, it has been found that the stochastic noise in a simulation model increases due to the
increasing complexity of modern industrial systems. However, the OCBA approach may be inefficient for
these practical problems. That is, it is very likely to waste a lot of budget on other candidates that are not
truly optimal due to the abnormal simulation results, which occurs frequently in noisy environments. In this
paper, we intuitively analyze the causes of this efficiency deterioration of the OCBA approach, and then a
simple heuristic adjustment is proposed to enhance the noise robustness of the OCBA approach based on
our analysis results. The proposed adjustment allows the OCBA approach to further consider the precision
of the simulation results, thereby significantly reducing the wasted budget and increasing the efficiently.
In addition, it can be applied to the existing allocation rules without modification and does not require
additional computational costs. Many experimental results for the eight OCBA-based procedures clearly
demonstrate the effectiveness of this adjustment. In particular, the results of practical problems emphasize
its necessity.

INDEX TERMS Discrete-event system, high robustness to noise, optimal computing budget allocation,
ranking and selection, simulation-based optimization, stochastic simulation.

I. INTRODUCTION
Discrete-event system simulation is a powerful tool for ana-
lyzing modern industrial systems such as telecommunica-
tion [1], manufacturing [2], microgrid [3], transportation
[4], healthcare [5], and military [6] systems that cannot be
described as a closed-form analytic model [7]. As one of the
essential applications of simulation, simulation-based opti-
mization (SBO) finds the optimal configurations of the sys-
tems’ decision variables (i.e., the optimal designs) that satisfy
the given optimal requirements of the system performance
(e.g., maximize the performance) using simulations [8]. How-
ever, the efficiency of SBO is still a concern. For example,
suppose we need to find the best design that maximizes the
system performance out of k design alternatives. Most sim-
ulation models use random variables or processes to capture
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the uncertainty of the real-world, which results in a stochas-
tic noise appearing in the simulation output. Thus, for one
design, its exact system performance, which is represented
by the expectation of the output, can be estimated as the
mean of the output samples obtained from many simulation
replications. SupposeN replications are required to obtain the
precise value of the sample mean of the performance for each
design, and then kN replications are finally used to correctly
select the best design out of the k alternatives. If the number
of design alternatives is large (i.e., k is large) and a large
stochastic noise exists (i.e., a large N is required to reduce the
noise), kN is very large, which may lead to prohibitively high
computational costs for SBO [9]. Moreover, due to the higher
complexity of modern industrial systems, the increasing costs
per simulation run aggravate this problem [10].

Ranking and selection (R&S) is a great way to solve this
efficiency problem when the number of design alternatives is
a few hundred [11]–[14]. This is because R&S intelligently
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TABLE 1. The OCBA-based R&S procedures for diverse optimal solutions.

allocates a simulation budget (i.e., the finite number of sim-
ulation replications) to the designs based on the statistical
inferences for the designs’ simulation results, thereby elimi-
natingmany of the replications required to correctly select the
optimal designs. So far, substantial research has been done
to develop an efficient R&S procedure, and they are mainly
based on three approaches [15], [16]: the indifference-zone
(IZ) [17], the optimal computing budget allocation (OCBA)
[18], and the expected value of information (EVI) [19], [20].
These approaches are distinguished based on how they mea-
sure the evidence for the correct selection and allocate repli-
cations based on the measurements. Both the IZ and OCBA
approaches measure the selection quality via the probability
of correct selection P{CS}, but they define it in different
ways. The IZ approach defines P{CS} via the frequentist
probability and allocates the replications to provide a guaran-
teed lower bound of the P{CS}. On the other hand, the OCBA
approach describesP{CS} using the Bayesian posterior prob-
ability and assigns replications to maximize a lower bound of
the P{CS}. The EVI approach uses the expected opportunity
cost E[OC] based on the Bayesian posterior probability as the
measure and assigns replications to minimize an upper bound
of E[OC] using decision-theory tools. Since E[OC] penalizes
particularly bad selections more than mild ones based on the
expected linear loss, the EVI approach has advantages when
large stochastic noise exists [21]. However, its computational
costs can be significantly higher as k increases due to the
difficulty of minimizing E[OC].

Among these approaches, this paper focuses on the most
popular OCBA approach. As shown in Table 1, many effi-
cient OCBA-based R&S procedures have been proposed
to select different kinds of optimal solutions, and they are
widely used in various areas, such as healthcare [34], learn-
ing automata [35], semiconductor manufacturing [36], [37],
simulation-based policy improvement [38], population-based
search algorithms [39], [40], inventory problems [41], rare-
event simulations [42], etc. Recently, as the complexity of the
modern industrial systems to which this OCBA approach is
applied increases, the stochastic noise in the simulationmodel
also tends to increase. However, unfortunately, some widely-
used OCBA-based procedures, such as OCBA, OCBAm+,

TABLE 2. Notations.

MOCBA+, etc., may be significantly inefficient in the pres-
ence of large noise, which has been reported in several exper-
imental results [43]–[47].

To resolve such a problem, this paper intuitively ana-
lyzes the causes of the efficiency deterioration of the OCBA
approach based on the basic OCBA procedure for selecting
the single best design [18]. Then, a simple heuristic adjust-
ment is proposed to improve the efficiency based on our anal-
ysis results. The proposed adjustment can enhance the robust-
ness to noise for the OCBA approach, thereby considerably
increasing P{CS} within a limited simulation budget when
large stochastic noise exists. In addition, this adjustment,
which requires little computational costs, can be effectively
applied to various OCBA-based procedures without modify-
ing their existing allocation rules. The experimental results on
several benchmark and practical problems demonstrate the
improved efficiency of the OCBA-based procedures via the
proposed adjustment.

The remainder of this paper is organized as follows.
Section II briefly introduces the OCBA procedure. Section III
intuitively analyzes the mentioned inefficiency drawback and
proposes the heuristic adjustment. Section IV provides the
experimental results, and a conclusion is given in Section V.

II. OPTIMAL COMPUTING BUDGET ALLOCATION
PROCEDURE
The notations in this paper are shown in Table 2, where a bold
typeface represents a vector. We assume that each simulation
replication is independent from one another and that the
simulation output Yij follows a normal distribution with an
unknown µi and a known σ 2

i . Although the known variance
assumption is used for the easy mathematical derivation of
the Bayesian posterior distribution, the OCBA procedure can
work well, even with the estimated variance (i.e., the sample
variance s2i ) used in practical problems. In addition, this nor-
mality assumption is reasonable since the simulation output
is typically obtained from an average value or batch means,
which means that the central limit theorem holds [48].

The goal of SBO is to select the best design xb with optimal
performance out of k alternatives, where xb is defined as
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follows:

xb = argmin
xi∈2

µi. (1)

Although we consider the minimization problem, the OCBA
procedure is equally applicable to maximization problems.
Due to the limited simulation budget in practice, the exact
performance of xi based on µi can only be estimated by the
sample mean µ̄i; thus, instead of xb, we inevitably have to
select the estimated best design xe based on µ̄i as follows:

xe = argmin
xi∈2

µ̄i. (2)

As mentioned previously, the OCBA procedure evaluates the
selection quality of xe with P{CS} [18]:

P {CS} = P {xe = xb} = P


k⋂

i=1,i6=e

µ̃e < µ̃i

 , (3)

where µ̃i is the Bayesian posterior distribution of µi. Sup-
posing no prior knowledge of an unknown µi, µ̃i follows a
normal distribution N

(
µ̄i, σ

2
i /Ni

)
.

In order to increase the efficiency of SBO, the OCBA pro-
cedure aims to determine the optimal allocation of simulation
replications, N ∗1 , . . . ,N

∗
k , for k designs such that P{CS} is

maximized, subject to a limited simulation budget T :

argmax
N∗1 ,...,N

∗
k

P {CS} such that
k∑
i=1

N ∗i = T and N ∗i ≥ 0. (4)

Here, the constraint
∑k

i=1 N
∗
i = T in (4) implicitly

assumes that the computing costs per simulation run are
roughly the same across designs. If k is two, P{CS} can
be easily calculated, but otherwise, it can only be estimated
using a Monte Carlo simulation, which makes this problem
intractable. To resolve this problem, the OCBA procedure
applied an approximation of P{CS} called APCS based on
the Bonferroni inequality [18]:

APCS ≡ 1−
k∑

i=1,i6=e

P {µ̃e > µ̃i} ≤ P {CS}. (5)

The APCS is much simpler to estimate. In addition, since it
is a lower bound of P{CS}, its maximization can ensure a
sufficiently high P{CS}. Thus, (4) can be approximated with
the APCS as follows [18]:

argmax
N∗1 ,...,N

∗
k

APCS such that
k∑
i=1

N ∗i = T and N ∗i ≥0. (6)

As a result, the intelligent allocation rules of the OCBA
procedure were derived as an asymptotically optimal solu-
tion to (6) as follows (cf. [18] for the detailed mathematical
derivations):

N ∗i
N ∗j
=

[
σi/(µ̄e − µ̄i)

σj/
(
µ̄e − µ̄j

)]2 , i, j ∈ {1, . . . , k} , and i 6= j 6=e,

(7)

N ∗e = σe

√√√√ k∑
i=1,i6=e

(
N ∗i
σi

)2

. (8)

Here, the asymptotic optimum means that these rules were
derived upon the assumption that T is infinite. That is, as T
approaches to infinity (i.e., T → ∞), the APCS can be
asymptotically maximized when T is optimally distributed
to k designs depending on these rules. In common with the
OCBA procedure, the other OCBA-based R&S procedures
also use this infinite assumption. However, this assumption
can cause theOCBAapproach to be inefficient in the presence
of large stochastic noise (see Section III-A for the details).

Algorithm 1 Sequential Update Procedure for Selecting the
Single Best Design Out of k Design Alternatives [18]

Control parameters: n0 and 1
Output: xe (the estimated best design)
Procedure:
1: set l ← 0
2: simulate n0 times for each xi, i ∈ {1, . . . ,k}
3: set N l

1 = N l
2 = . . . = N l

k ← n0
4: update µ̄i and s2i for ∀i, and select xe
5: while

∑k
i=1 N

l
i < T do

6: set T l+1←
∑k

i=1 N
l
i +min

(
1,T −

∑k
i=1 N

l
i

)
7: calculate N ∗i using (7)a and (8)a for ∀i, where∑k

i=1 N
∗
i = T l+1

8: simulate max
(
N ∗i − N

l
i , 0

)
times for each xi

9: set N l+1
i ← N l

i +max
(
N ∗i − N

l
i , 0

)
for ∀i

10: update µ̄i and s2i for ∀i, and select xe
11: set l ← l + 1
12: end while
13: return xe
aIn practice, the unknown σ 2i is approximated by s2i in (7) and (8).

Contrary to the assumptions used by the OCBA procedure,
T is actually limited and σ 2

i is typically unknown. In order
to effectively utilize the allocation rules in such situations,
the OCBA procedure applied a heuristic sequential update
procedure, as shown inAlgorithm 1, where σ 2

i in (7) and (8) is
approximated by the sample variance s2i . That is, until a given
T is depleted, a small number of simulation replications1 are
allocated in a sequential manner such that the optimal alloca-
tion depending on (7) and (8) can be calculated based onmore
accurate values of µ̄i and s2i in each iteration. There are two
parameters to control this procedure: n0 and1. n0 is the initial
number of simulation replications allocated to each design to
obtain the minimum data of µ̄i and s2i for further allocations
of 1. A suitable choice of n0 is recommended as a number
from 5 to 20 [49], [50].1 is the one-time increment, which is
the number of replications additionally allocated per iteration.
A suggested choice for 1 is a number less than 100 or 0.1k
[11]. In the next section, we intuitively analyze the causes of
the efficiency deterioration of the OCBA approach based on
this OCBA procedure.
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TABLE 3. Benchmark problem descriptions for various OCBA-based R&S procedures.

III. ENHANCING THE NOISE ROBUSTNESS OF THE
OPTIMAL COMPUTING BUDGET ALLOCATION APPROACH
A. INTUITIVE ANALYSIS
The allocation rules of the OCBA procedure consider s2i and
the difference between µ̄i and µ̄e, as shown in (7) and (8),
where σ 2

i is approximated by s2i . Concretely, a design with
a large s2i and a small difference has a high possibility to be
assigned additional simulation replications. Since these rules
are dependent on the value of µ̄i, it can be intuitively inferred
that the OCBA procedure can make an incorrect assignment
of 1 when µ̄i is an inaccurate value. In the presence of large
stochastic noise, it is often the case that the value of µ̄i based
on a small number of collected output samples is unfortu-
nately very poor. Concretely, µ̄i may have an abnormal value
far from the normal state near µi. For example, there are five
designs (i.e.,2 = {x1, . . . , x5}), where the simulation output
of the design follows a normal distributionN

(
0.5i, 102

)
. Ten

replications are equally allocated to each design, and then the
resulting values of µ̄i and si for the five designs are shown at
l = 0 of the graph in Fig. 1(a) and (c). Actually, x1 is the best

design with the lowest performance (i.e., x1 6= xb), but the
value of µ̄1 based on the collected output samples is far from
µ1 and abnormally high (i.e., far from the normal state near
µ1 = 0.5). In this situation, since µ̄4 is the minimum value
of µ̄i, x4 is chosen as the estimated best design xe, which is
a completely incorrect selection (i.e., x4 6= xb). In order for
x1 to be correctly selected as xe, x1 should be allocated an
additional simulation budget to change the abnormal value of
µ̄1 to its normal state.

However, the OCBA’s allocation rules in (7) and (8) that
rely on the value of µ̄i cannot allocate further replications to
x1 due to the huge difference between the values of µ̄1 and µ̄e
(i.e., µ̄4). Accordingly, since the abnormal value of µ̄1 is not
updated, whether x1 can be assigned additional replications
depends on only the change in the value of other designs’ µ̄i
and s2i . That is, the possibility of its further allocation is very
uncertain, which leads to a vicious circle in which the actual
best design x1 cannot be allocated any additional replications
due to the abnormal value of µ̄1 being maintained. In some
cases, even after a lot of the simulation budget has been
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FIGURE 1. An example of the budget-wasted situation via the basic OCBA procedure in the presence of large stochastic noise. Graphs (a)-(c) respectively
represent the changes in µ̄i , N l

i , and si of the five designs while sequentially allocating the 2,000 replications (i.e., 1 = 10) with the existing allocation
rules of (7) and (8), where σ2

i is approximated by s2
i . When the actual best design x1 unfortunately has an abnormal value of µ̄1 due to the large noise

after conducting 10 initial replications (see l = 0 in Graph (a)), x1 has not been allocated any additional replications while allocating 1,950 replications,
and these replications have been wasted in the other designs that are not the actual best design.

allocated through the sequential update loop of the OCBA
procedure in Algorithm 1, x1 may not be assigned the budget
at all. As shown in Fig. 1, even though 2,000 replications
were sequentially allocated depending on the OCBA’s rules
(1 = 10), none of themwas assigned to x1, which means that
the abnormal value of µ̄1 was not recovered. As a result, x2 is
wrongly chosen as xe. If T goes to infinity, it will eventually
be assigned further replications due to the asymptotic optimal
nature of the rules [11]. However, in the meantime, a lot of
budget is wasted on other meaningless designs due to the
incorrect allocations of the OCBA procedure based on the
poor value of µ̄1.
Actually, this wasted budget situation occurs frequently

in the presence of large stochastic noise. For example, con-
sider a practical case such as the MILES design problem
in Table 4, which has large noise due to many near optimal
designs, as shown in Fig. 5. Then, the occurrence probability
of the situation was 0.7285 after allocating 4,000 simula-
tion replications, 0.2396 after assigning 10,000 replications,
and still 0.1184 after allocating 100,000 replications. That
is, even if a simulation budget of 100,000 was sequentially
assigned by the rules of the OCBA procedure, the actual
best design whose µ̄i unfortunately had a poor value could
not be allocated any additional replications to recover its µ̄i.
Consequently, P{CS} was estimated as 0.8643 after allocat-
ing 100,000 replications with the OCBA procedure. There-
fore, such a wasted budget situation can be a significant
cause for the efficiency deterioration of the OCBA procedure
when large noise exists. Here, every probability, including
P{CS}, was estimated over 10,000 independent repeated
experiments.

In other OCBA-based R&S procedures, such as OCBAm,
MOCBA+, OCBA-CO, etc., the wasted budget situation can
sufficiently occur. This is because they also allocate further
replications using σ 2

i and the difference in µ̄i similar to the

TABLE 4. The performance of all objectives of all designs in the three
multi-objective models: (a) Steep model [11], [54] and (b) Lee’s model
[29], [55].

basic OCBA procedure (e.g., the rule of the OCBAm proce-
dure is N ∗i /N

∗
j =

[
σi
(
µ̄j − c

)
/σj (µ̄i − c)

]2, where i 6= j and
variable c is heuristically calculated according to equation
(5.18) in [11]). In other words, since their allocation rules
also depend on the value of µ̄i, an incorrect assignment of 1
is made due to an abnormal value of µ̄i, and thus, the vicious
circle of no further allocation in the actual optimal designs
lasts. As a result, the efficiency of the OCBA approach for
large noise can be improved by reducing the wasted budget.
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B. A SIMPLE HEURISTIC ADJUSTMENT
Increasing n0 might be an easy way to decrease the wasted
budget by preventing the outbreak of an abnormal value of
µ̄i in the initialization of the sequential update procedure.
However, since σ 2

i is typically unknown in practice, it is
difficult to check in advance whether the simulation model
has large stochastic noise. Even though σ 2

i is known and
small, if the spacing of µi between designs (which is also
unknown depending on the noninformative assumption ofµi)
is relatively smaller, this small σ 2

i can act as large stochas-
tic noise that precludes the correct selection. That is, it is
difficult to decide whether to increase n0 due to the lack of
prior information on the noise. In addition, blindly increas-
ing n0 may even decrease P{CS} by excessively wasting
the limited simulation budget for the initialization. Actually,
when n0 increased from 10 to 60 in Lee’s model in Table 3,
the estimated value of P{CS} of the MOCBA+ procedure
decreased from 0.992 to 0.951 after allocating 2,000 repli-
cations. To summarize, increasing n0 is limited and not
practical.

If it is difficult to prevent the occurrence of an abnormal
value of µ̄i (which is inevitable in noisy environments),
in order to effectively reduce the wasted budget, the actual
optimal designs whose value of µ̄i is abnormal should be
allocated further replications as soon as possible. Thereby,
the abnormal value of µ̄i can return to its normal state.
However, as mentioned before, since the allocation rules of
the OCBA approach focus on only the abnormal value of
µ̄i, the possibility of further allocation to such designs is
very uncertain. As a result, the further replications cannot be
assigned quickly. In order to improve this uncertain possibil-
ity of further allocation, it is necessary to take into account
not only the value of µ̄i but also the precision of µ̄i, which is
not considered in the OCBA approach so far. The precision of
µ̄i for the actual optimal designs that have an abnormal value
of µ̄i is typically low. In addition, as the sequential alloca-
tion process proceeds, the precision of µ̄i for these optimal
designs becomes relatively lower than that for other designs
that are continuously assigned additional replications. Thus,
if the precision can be taken into account, this possibility
of further allocation to these optimal designs that are not
assigned any additional replication can reliably increase with-
out depending on the uncertain change in the values of other
designs’ µ̄i and s2i . As the possibility increases, these designs
will eventually be allocated one or two further replications.
Since the abnormal value of µ̄i is typically based on a small
number of samples, a few additional samples can make a
significant impact on this value. That is, these few further
allocated replications become primers, which break down the
vicious circle of continuing the wasted budget situation and
result in the allocation of many additional replications to the
actual optimal designs.

Based on this intuitive inference, the allocation rules of
the OCBA approach should additionally consider the pre-
cision of µ̄i to reduce wasted budget. Specifically, it is

necessary to allocate further replications to designs that
have relatively lower precision of µ̄i. However, why does
the OCBA approach not consider the precision that seems
quite natural to include in its rules? This can be found
in the infinite assumption on which they are based. Since
the precision is always 100% under the assumption, there
is no need to consider this; thus, during the mathemati-
cal derivations, the terms related to the precision become
negligible as T approaches to infinity. Intuitively, the num-
ber of allocated replications so far should be considered
for representing the precision, but it can be ignored when
the given budget T is infinite. As a result, the OCBA
approach does not take the precision of µ̄i into account
in its allocation rules. Furthermore, the heuristic sequen-
tial update procedure used by almost all R&S procedures,
including the various OCBA-based procedures, violates the
infinite assumption. This is because the sequential pro-
cedure slightly increments T , as shown in Algorithm 1
(i.e., T l+1 = T l + 1, where l is the iteration index in
Algorithm 1), so that the budget allocated so far cannot
be negligible. That is, the existing allocation rules of the
OCBA approach are not suitable for the sequential update
procedure.

In this subsection, we additionally propose a simple heuris-
tic adjustment to consider the precision of µ̄i in the existing
allocation rules of the OCBA approach. To this end, we paid
attention to the standard error of µ̄i as follows:

s.e. (µ̄i) = si/
√
Ni. (9)

Without the loss of generality, s.e.(µ̄i) can represent the
precision of µ̄i. That is, a lower value of s.e.(µ̄i) indicates a
higher precision of µ̄i. In order to allocate more replications
to designs with lower precision of µ̄i, the further allocation
for each xi should be proportional to their s.e.(µ̄i). In the
existing allocation rules, such as (7) and (8), the allocation is
proportional to σi, which is be approximated by si in practice.
In (9), s.e.(µ̄i) is also proportional to si. Thus, if s.e.(µ̄i)
replaces σi in the rules, we can additionally consider the
precision of µ̄i while maintaining the characteristics of the
existing allocation rules. This is the proposed simple heuristic
adjustment. For example, when applying this adjustment,
the allocation rules of the basic OCBA procedure are changed
as follows:

N ∗i
N ∗j
=
Nj
Ni

[
si/(µ̄e − µ̄i)

sj/
(
µ̄e − µ̄j

)]2 , i, j∈{1, . . . , k} , and i 6= j 6=e,

(10)

N ∗e = se

√√√√ k∑
i=1,i6=e

Ni
Ne

(
N ∗i
si

)2

. (11)

Here, Ni, the number of actually allocated replications at xi
(i.e., N l

i in Algorithm 1), is different from N ∗i , the optimal
portion of a given T .
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FIGURE 2. An example of the reduction in the wasted budget by applying the proposed adjustment to the basic OCBA procedure under the same initial
conditions as in the example in Fig. 1. Graphs (a)-(c) respectively represent the changes in µ̄i , N l

i , and si /sqrt
(

N l
i

)
of the five designs while sequentially

allocating 2,000 replications (i.e., 1 = 10) with the improved rules of (10) and (11). Since these rules also consider the precision of µ̄i , further replications
can be quickly allocated to the actual best design x1 that has a relatively high si /sqrt

(
N l

i

)
. As a result, the wasted budget has been reduced, and x1 can

be correctly selected as the best design after allocating 1,950 replications.

The proposed adjustment is very simple but significantly
effective. It can effectively reduce the wasted budget by
further considering the precision of µ̄i in the existing allo-
cation rules and thus improve the efficiency of the OCBA
approach in the presence of large stochastic noise. For exam-
ple, consider the same example of five designs in the previous
subsection again. As shown in Fig. 1, when the actual best
design x1 has an abnormally high value of µ̄1, the existing
rules of (7) and (8) could not allocate further replications
to x1, and the wasted budget situation continued. However,
for the same initial condition, the improved rules of (10)
and (11) work differently. Although x1 cannot be allocated
further replications immediately due to its abnormal value
of µ̄1, s.e.(µ̄1) becomes relatively larger as the allocation
of 1 iterates, as shown in Fig. 2(c). That is, the possibility
of a further allocation to x1 via the improved rules is also
gradually increasing. As a result, a few additional replications
can be quickly allocated to x1, which breaks down the vicious
circle and results in the allocation ofmany further replications
to x1, as shown Fig. 2(b). After allocating 2,000 replications,
x1 is correctly chosen as xe. A comparison of Figs. 1 and
2 demonstrates the effect of the proposed adjustment. Actu-
ally, the occurrence probability of the wasted budget situation
was 0.1201 in this simple example, whereas the probability
significantly lowered to 0.0293 by applying the proposed
adjustment. Consequently, P{CS} increased from 0.7661 to
0.8077. As the noise increases, the efficiency improvement by
applying this adjustment increases. As mentioned previously,
for the practical problem of the MILES design in Table 6,
the occurrence probability and P{CS} were 0.1184 and
0.8643, respectively, after assigning 100,000 replications
using the existing rules. However, when the same number of
replications are allocated using the improved rules, the proba-
bility dramatically decreased to 0.0101, and P{CS} increased
to 0.9854, which is close to 1.

Although the improved rules maximized P{CS}, they are
no longer the asymptotically optimal solution to the OCBA
problem of (6). However, compared to the existing rules,
the improved rules can be more suitable for the sequential
update procedure because they use all the information given
during the sequential procedure, such as µ̄i, s2i , and Ni (the
existing rules use only µ̄i and s2i ). Thus, these rules can
appropriately deal with the abnormal value of µ̄i of the actual
best design that may occur under the sequential procedure
due to large stochastic noise. In other words, these modified
rules cannot be a mathematical solution to (6), which is an
approximation of the original R&S problem of (4), but they
can be a good heuristic alternative to more efficiently solve
(4). In addition, it can be more efficient since there are little
additional computational costs to apply it.

Similar to this example, the proposed adjustment can be
applied to other OCBA-based R&S procedures without mod-
ifying the existing rules and can significantly improve their
P{CS} in the presence of large stochastic noise. However,
we clearly point out that the proposed adjustment cannot be
applied to all OCBA-based procedures, including the pro-
cedures in Table 1. The adjustment is only applicable to
the OCBA-based procedures that allocate further replications
in proportion to any ratio of µ̄i to σ 2

i (or s2i ). In addition,
their allocation rules should not consider Ni depending on
the infinite assumption (i.e., T → ∞). It is not applicable
to some recent OCBA-based procedures that do not sat-
isfy these conditions. For example, the ROCBAcr procedure
[27], which identifies the complete ranking of all designs
with input uncertainty, allocates further replications equally
to only two critical designs. In addition, the OCBA-CmR
procedure [33], which ranks the top designs with stochastic
constraints, already considers Ni in its heuristic allocation
rules. Nevertheless, the proposed adjustment can be applied
to thewidely used classical procedures in Table 1 and enhance
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TABLE 5. Required budget to achieve P {CS} of 0.99 for the benchmark problems in OCBA-based procedures when applying the proposed adjustment: (a)
OCBA, (b) OCBAm, (c) OCBAm+, (d) OCBAmn, (e) OCBAcr, (f) MOCBA, (g) MOCBA+, and (h) OCBA-CO.

their noise robustness. This is demonstrated in the various
experimental results for the eight OCBA-based procedures in
the next section.

Meanwhile, when applying the proposed adjustment,
a simulation budget can be more widely distributed, as shown
in Fig. 3. This is because the consideration of s.e.(µ̄1)
increases the possibility of further allocation for designs that
have received relatively small budgets. As mentioned previ-
ously, such a conservative allocation can be effective in the
presence of large stochastic noise, but otherwise, it might
reduce P{CS} by decreasing the replications that need to be
allocated to the actual optimal designs and their neighbor-
hood. However, the reduction can be insignificant because
the total budget required for correctly selecting the optimal

designs is typically small in the small noise cases. That is,
the conservative allocation of the proposed adjustment may
consume a fewmore replications for the correct selection, but
this increase is meaningless because the required total budget
itself is small. Actually, when the variance of the SEV model
in Table 3 decreased to 5, the allocation rules of the basic
OCBA procedure achieved P{CS} of 0.99 using 740 repli-
cations, but the improved rules used 760 replications. After
allocating the same 740 replications, the estimated P{CS}
of the improved rules was 0.9896, which is slightly reduced
in comparison with 0.99. Although the proposed adjustment
may be inefficient at small noise, it can still be effective
because most of the practical optimization problems have
large stochastic noise.
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TABLE 6. Summary of the four practical problems.

FIGURE 3. Distribution example of a budget of 84,600 to 10 designs for
the SDV(H) model in Table 3 using the improved rules of (10) and (11).
The application of the proposed adjustment provides a relatively
widespread allocation compared to the existing rules of (7) and (8).

IV. EXPERIMENTS
This section presents the many experimental results for the
benchmark and practical problems to demonstrate that the
proposed adjustment can significantly improve the efficiency
of the OCBA approach in the presence of large stochastic
noise. We applied the adjustment to the eight OCBA-based
R&S procedures in Table 1: OCBA, OCBAm, OCBAm+,
OCBAmn, OCBAcr, MOCBA, MOCBA+, and OCBA-CO.
That is, we just substituted s.e.(µ̄i) for σi in their existing rules
to additionally consider the precision of µ̄i. Each procedure
improved by applying the proposed adjustment is specified
by the letter ‘(I)’ after its name. For example, the OCBA(I)
procedure represents the improved OCBA procedure with the
application of the proposed adjustment.

A. BENCHMARK PROBLEMS
We used various benchmark problems to evaluate the per-
formance of these OCBA-based procedures in the literature

[10], [11], [18], [24], [26], [29], [32]. In addition, for a fair
comparison, the same settings of n0 and 1 were applied
as in the literature. Table 3 summarizes these benchmark
problems. The models denoted by ‘(H)’ in Table 3 have
larger stochastic noise than their original versions, and thus,
the experimental results for these models may well illustrate
the effectiveness of the proposed adjustment. As mentioned
previously, since the EVI approach has high robustness to
noise, we compared the results of the OCBA approach with
those of the EVI approach for several R&S procedures shown
in Table 3 to evaluate the effectiveness of the proposed
adjustment. Here, the SCORE procedure compared with the
OCBA-CO procedure is not based on the EVI approach, but
is the latest R&S procedure proposed to select the single
best feasible design under stochastic constraints. In addition,
the equal allocation procedure is added as a baseline in every
experiment. The source code of the OCBA procedure was
referenced in textbook [11], and those of the MOCBA and
MOCBA+ procedures were provided by Prof. Lee at the
National University of Singapore (the MOCBA procedure is
a slightly improved version incorporating a large deviation
perspective [31] into the original version in [29]). The rest
were implemented based on the code of the OCBA procedure
and the referred papers [10], [23], [24], [26], [32].

We estimated the P{CS} of each procedure for the corre-
sponding benchmark problems while varying T , and some
results are shown in Fig. 4. Here, every P{CS} was esti-
mated over 10,000 independent repeated experiments. In
addition, to numerically evaluate the improved efficiency of
the proposed adjustment, Table 5 exhibits the value of T
required for each procedure to correctly select its optimal
solutions (i.e., to achieve P{CS} of 0.99) for each problem.
The experimental results shown in Fig. 4 and Table 5 clearly
demonstrate that the proposed adjustment can enhance
the noise robustness of the OCBA approach. As shown
in Fig. 4, the improved OCBA-based procedures that applied
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FIGURE 4. Graphs (a)-(l) illustrate the estimated value of P{CS} versus the T of the eight OCBA-based procedures for some benchmark problems (i.e.,
the models denoted by ‘(H)’) in Table 3: [OCBA] (a) SEV(H), (b) SDV(H); [OCBAcr] (c) SDV(H)’; [OCBAmn] (d) LEV(H); [OCBAm] (e) LEV(H), (f) LDV(H);
[OCBAm+] (g) LEV(H), (h) LDV(H); [MOCBA] (i) Steep; [MOCBA+] (j) Steep; [OCBA-CO] (k) SMEV(H), and (l) SMDV(H). In each graph, the thick line (e.g.,
OCBA(I)) demonstrates the improved efficiency of the eight OCBA-based procedures by applying the proposed adjustment.

the proposed adjustment (i.e., denoted by ‘(I)’, such as
the OCBA(I) procedure) converged faster to the maxi-
mum value of P{CS} than their original versions (see
the thick line in each graph). Table 5 indicates that the
improved procedures reduced the required T for selecting
their optimal solutions compared to the original versions.
In particular, the degree of efficiency improvement was sig-
nificantly large in the presence of large stochastic noise,
as shown in the results of the problems denoted by ‘(H)’
in Table 3.

For example, as shown in Fig. 4(e) and Table 5(b), the orig-
inal version of the OCBAm procedure could not converge to
P{CS} of 1 in LDV(H), even after allocating 106 replications,

since it could not break the ongoing budget-wasted situation
that occurs more frequently as the stochastic noise increases.
Its estimated P{CS} after allocating 106 replications was
just 0.8043. However, the OCBAm(I) procedure, which is
the improved version of the existing OCBAm procedure that
applied the proposed adjustment, could correctly find the
top 5 best designs using 17,000 replications, which is just
1.7% of 106. This is because the proposed adjustment enables
the existing allocation rules of the OCBAm procedure to
additionally consider the precision of µ̄i, thereby breaking
the wasted budget situation by quickly allocating further
replications to the actual best designs that have an abnormal
value of µ̄i.
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FIGURE 5. The precisely estimated performance (i.e., the hit rate of
MILES) for 195 designs in the MILES design problem. The rightmost dark
gray bar represents the performance of the best design (i.e., x195).

Furthermore, the improved efficiency of the OCBAm(I)
procedure is far superior to the EOC-m procedure that is
developed to find the best subset based on the EVI approach,
as shown in Fig. 4(d)-(g) and Table 5(b) and (c). Since the
objective of the EOC-m procedure is to minimize E[OC]
rather than maximize P{CS}, direct comparisons between
them may be unfair. Nevertheless, when considering the
results of the original OCBAm and EOC-m procedures for
the same problems, these comparisons are meaningful for
confirming the effectiveness of the proposed adjustment. The
OCBA-CO(I) procedure also exhibits higher efficiency than
the SCORE procedure, which is the latest procedure for
selecting the best feasible design based on large deviations
theory [56]. This efficiency gap is especially pronounced
in the ‘(H)’ problems with large stochastic noise, as shown
in Fig. 4(j) and (k) and Table 5(g). Meanwhile, the OCBA(I)
procedure has similar results as the OCBA-EOC procedure,
which is based on the EVI approach, as shown in Fig. 4(a) and
(b) and Table 5(a). However, the OCBA-EOC procedure has
the disadvantage of the EVI approach in which the computa-
tional costs of minimizing E[OC] can be significantly higher
as k increases. In addition, since the proposed adjustment
has little additional computational costs when applying it,
in practice, the OCBA(I) procedure can bemore efficient than
the OCBA-EOC procedure.

B. PRACTICAL PROBLEMS
As mentioned earlier, as the complexity of modern industrial
systems increases, the stochastic noise involved in the simu-
lation model also tends to increase. Thus, we proposed this
simple heuristic adjustment in order to efficiently apply the
OCBA approach to the SBO of a practical model. To demon-
strate the necessity of the proposed adjustment, we applied
the OCBA(I), OCBAm+(I),MOCBA+(I), andOCBA-CO(I)
procedures to four practical problems: 1) the multiple inte-
grated laser engagement system (MILES) design, 2) the
decoy system design, 3) the flight schedule optimization, and
4) the military network design. A brief description of each
problem is as follows:

FIGURE 6. The precisely estimated performance (i.e., the survival rate of a
warship) for 100 designs in the decoy system design problem. The 10 dark
gray bars represent the performance of the top 10 designs in the best
subset (i.e., x17, x56, x59, x60, x64, x65, x73, x74, x92, and x99).

FIGURE 7. The precisely estimated performance of two objectives (i.e.,
the end-to-end delay and the packet delivery ratio) for 65 designs in the
military network design problem. Among the 15 feasible designs in the
shaded area that satisfy the given constraint, the best feasible design
(i.e., x19) is represented as the dark gray circle.

1) MILES design problem: MILES is a military training
gear that simulates engagement using a laser beam attached to
an actual weapon and multiple sensors attached to a trainee’s
body. To give trainees an immersive experience, the hit rate
of MILES should be maximized, as with an actual weapon
[47]. For the design of MILES, its hit rate can be estimated
over many simulation replications of the optical engineering
simulator [57]. Thus, the first problem is to select the best
design of MILES that maximizes the hit rate from 195 design
alternatives using the simulation, and the OCBA(I) procedure
can be applied to solve this problem.

2) Decoy system design problem: A decoy system can
increase the survival rate of a warship by neutralizing the
sonar of a torpedo using a noise signal similar to the warship.
In order to maximize the survival rate of a warship, which
plays key roles in a modern battlefield, it is necessary to find
the optimal design of the decoy system [45]. The survival
rate for each design can be estimated over many simulation
replications of the anti-torpedo combat simulator [58]. How-
ever, since the simulation does not consider all the factors,
the optimal design should be determined by considering some
conditions neglected by the simulation (e.g., qualitative crite-
ria and political feasibility) and the simulation results. To this
end, the second problem is to select the top 10 designs (i.e.,
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FIGURE 8. Graphs (a)-(d) illustrate the estimated value of P{CS} versus the T of the four OCBA-based procedures for the practical problems: (a) the MILES
design problem, (b) the decoy system design problem, (c) the flight schedule optimization problem, and (d) the military network design problem.

the best subset) that maximize the survival rate of a warship
from 100 design alternatives using the simulation, and the
OCBAm+ (I) procedure can be applied to solve this problem.
3) Flight schedule optimization problem: Flight schedules

are very important for airlines because they directly affect
not only the airline’s revenues but also the level of service
they provide to their passengers. Thus, it is crucial to opti-
mize the flight schedules of airlines [29]. There are various
performance measures for evaluating flight schedules, but
three representative ones are as follows: the operational crew
costs, the percentage of late arrivals, and the number of
passengers missing their connections. For the design of flight
schedules, these three measures can be estimated over many
simulation replications of SIMAIR [59]. Since there are mul-
tiple objectives to be considered in the optimization of flight
schedules, the third problem is to select the Pareto set from
10 flight schedule design alternatives using the simulation,
and the MOCBA+ (I) procedure can be applied to solve this
problem.

4) Military network design problem: A reliable military
network system is essential for modern electronic warfare.
For this reliable network, the required operational capability
given by the military is that the end-to-end delay should be
minimized while achieving a more than 85% packet delivery
ratio [46]. For a design of the military network, the delay
and the delivery ratio can be estimated over many simulation
replications of the network-centric warfare simulator [60].
Thus, the last problem is to select the best feasible design of
themilitary network that minimizes the delaywhile satisfying
the stochastic constraint of the packet delivery ratio from
65 design alternatives. The OCBA-CO(I) procedure can be
applied to solve this problem.

Table 6 summarizes these practical problems. Figs. 5-7 and
Table 7 illustrate the precisely estimated performance of each
design in the four problems obtained with many simulation
replications. As shown in these estimation results, the four
practical problems have large stochastic noise due to their
relatively large variance compared to the small difference in
the performance values between the actual optimal designs

TABLE 7. The precisely estimated performance and variance of the three
objectives for 10 designs in the flight schedule optimization problem [29].

TABLE 8. Required budget to achieve P {CS} of 0.99 for practical
problems in several improved ocba-based procedures by applying the
proposed adjustment.

and many near optimal designs. In order to demonstrate
the efficiency improvement of the proposed adjustment in
the presence of such large noise, both the four improved
procedures and their original versions were applied. The
comparative results are shown in Fig. 8 and Table 8. Here,
every P{CS} was estimated over 1,000 independent repeated
experiments.
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The results clearly demonstrate the necessity of the
proposed adjustment. In the MILES design problem,
the existing OCBA procedure required 2,600,000 replications
to correctly select the best design (i.e., achieving P{CS} of
0.99). On the other hand, the OCBA(I) procedure achieved
this with only 113,600 replications, which is just 4.3% of
the previous amount. In addition, the estimated P{CS} of
the existing MOCBA+ procedure was only 0.817 after allo-
cating 6,000 replications in the flight schedule optimization
problem, and even the convergence speed is close to zero,
as shown in Fig. 8(c). However, the MOCBA+ (I) procedure
achieved P{CS} of 0.99 within 3,400 replications. Mean-
while, the efficiency improvement in the military network
design problem may be insignificant compared to the results
of the previous three problems. However, the network-centric
warfare simulator has high time-consumption per replication
because the simulator interoperates the war game simulator
and the ns-3 network simulator using the HLA/RTI [61].
Thus, in this context, even a relatively small improvement in
the military network design problem can sufficiently empha-
size the necessity of the proposed adjustment.

V. CONCLUSION
Although the OCBA approach has been widely used in var-
ious areas, it may be inefficient in the presence of large
stochastic noise such as practical SBO problems. This paper
intuitively analyzed the causes of the efficiency deterioration
of the OCBA approach based on the basic OCBA procedure.
Then, a simple heuristic adjustment was proposed to enhance
the noise robustness of the OCBA approach based on the
analysis. Since the OCBA approach considers only the value
of the sample mean to allocate further replications, it is very
likely to waste a lot of budget on the designs that are not
truly optimal due to the abnormal value of the sample mean
in a noisy environment. The proposed adjustment substitutes
the variance with the standard error in the existing allocation
rules of the OCBA approach, thereby enabling the rules to
additionally consider the precision of the sample mean while
maintaining the characteristics of the allocation. By applying
this adjustment, the improved rules can quickly allocate fur-
ther replications to the actual optimal designs of which the
sample mean has an abnormal value; thus, the wasted budget
can be minimized. In addition, the proposed adjustment is
more efficient because there are little computational costs
to apply it. Compared to the existing rules, the improved
rules can no longer be asymptotically optimal solutions to
the mathematical OCBA problems, such as (6). However,
they become more suitable for the sequential update proce-
dure, which is essential for solving the actual SBO prob-
lems in R&S procedures. This is clearly demonstrated in the
improved experimental results of the eight OCBA-basedR&S
procedures for various benchmark problems. In particular, the
results of the four practical problems emphasize the neces-
sity of the proposed adjustment. The adjustment is expected
to make the OCBA approach more efficient in the fourth

industrial revolution, where the complexity of simulation
models increases due to the digital twins, etc.
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