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ABSTRACT Multivariate quadratic (MQ) equations-based cryptography is one of the most promising
alternatives for currently used public-key cryptographic algorithms in the post-quantum era. It is important to
design practical public-key signature schemes on embedded processors and resource-constrained devices for
emerging applications in Internet of Things. TheMQ-signature schemes are suitable for low-cost constrained
devices since they require only modest computational resources. In this paper, we propose an efficient MQ-
signature scheme, SOV, using sparse polynomials with a shorter secret key and give its security analysis
against known algebraic attacks. Compared to Rainbow, the secret key of SOV has reduced by a factor
of 90% without increasing the public key size. In particular, SOV requires signatures of 52 bytes, while
ECDSA-256 requires signatures of 64 bytes.

INDEX TERMS Equivalent key, good key, isomorphism of polynomials problem, key recovery attack,
multivariate-quadratic problem, sparse polynomial.

I. INTRODUCTION
It is known that if a large scale quantum computer capable
of implementing Shor’s algorithm [41] is developed then
the discrete logarithm problem (DLP) and the integer factor-
ization problem (IFP) are solved in polynomial time. Thus,
currently used public-key cryptographic algorithms based on
the these problems such as RSA, DSA and ECDSA could
be broken by the quantum computer. There are public-key
cryptographic algorithms believed to remain secure against
a quantum computer: lattice-based, code-based, hash-based,
multivariate quadratic (MQ) equations-based and supersingu-
lar Isogeny-based. Although they have been resist classical
and quantum cryptanalysis, most of them suffer from large
key sizes, signature sizes and/or slow performance compared
to the currently used public-key cryptographic algorithms.
Recently, NIST have initiated Post-Quantum Cryptography
Standardization for public-key encryption, key exchange and
digital signature.

Multivariate quadratic (MQ) equations-based cryptogra-
phy relies on the intractability of solving large multivariate
quadratic systems called the MQ-problem. The MQ-problem
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is proven to be NP-hard even for quadratic polynomials
defined over F2. To build an MQ-scheme, one has to find
an easily invertible quadratic map F : Fnq → Fmq . The
selection of candidates for the quadratic mapF with a special
structure is a basic idea for constructing the MQ-schemes.
The MQ-schemes requires an additional structure to hide a
trapdoor, called the affine-substitute-affine (ASA) structure:
it needs two invertible affine maps S : Fmq → Fmq and
T : Fnq → Fnq to destroy the special structure of F . Then
a public key is given by P = S ◦ F ◦ T and a secret key
is (S,F ,T ) that allows to invert the public key. This ASA
structure is related to some variants of the Isomorphism of
Polynomials (IP) problem [34].

Since Imai and Matsumoto [33] introduced the first
MQ-encryption scheme, a number ofMQ-schemes have been
proposed. MQ-schemes are suitable for low-cost constrained
devices like smart cards [8], [11] since they require simple
operations on matrices and vectors in small fields without
multiple-precision arithmetic. Due to the special structure
related to the IP problem, most of the MQ-schemes were bro-
ken remaining few schemes including variants of Unbalanced
Oil-and-Vinegar (UOV) [17], [30] and HFEv- [35], [38].
Despite advantages of fast performance and short signa-
ture, the MQ-signature schemes using the ASA structure
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suffer from large key sizes. There is the Fiat-Shamir type
MQ-signature scheme converted from Sakumoto et al.’s iden-
tification scheme [39] using the Fiat-Shamir transform. The
resulting scheme, MQDSS [2], [12], has a security reduction
to a random instance of the MQ-problem and short key sizes,
but lose the advantages of the MQ-schemes, short signature
size and fast performance.

Due to emerging applications in Internet of Things (IoTs),
more than 98 % of all microprocessors sold worldwide are
used in embedded devices and will continue to increase.
Thus, it is important to design practical public-key schemes
suitable for embedded processors and resource-constrained
IoT devices. In terms of efficiency, it is known that the
MQ-signature schemes using the ASA structure are superior
to others. At CHES 2012, Czypek et al. [16] demonstrated
feasibility of MQ-signature schemes on 8-bit AVR micropro-
cessor. It is shown that the signing speed of Rainbow and
enTTS outperform RSA and ECDSA.

In the MQ-schemes, there is still room for improvements
in key sizes, signature size and performance depending on the
selection of central maps. For constrained devices, the faster
the better, and the shorter the better. There are several pro-
posals for constructing MQ-signature schemes with shorter
key size and higher performance for practical purposes.
Gligoroski et al. [27] presented a new signature scheme,
MQQ-SIG, using multivariate quadratic quasigroups. They
succeeded in reducing the secret key and improving signing
performance significantly, but required a larger public key.
It was broken by polynomial-time key-recovery attacks by
Faugère et al. [22] at PKC 2015. TTS [14], [15] and enhanced
TTS (enTTS) [44], [45] used sparse polynomials to reduce
the secret key and signing cost, but had lager public key than
other MQ-schemes. In this paper, we propose an efficient
MQ-signature schemewith a shorter secret key and signatures
maintaining the public key size. Our scheme is suitable for
specific applications where the existing signature schemes
cannot be used due to their slow performance and large
signature size.

Our Contributions. We propose an efficient
MQ-signature scheme, SOV, based on sparse polynomials.
• An Efficient MQ-Signature Scheme. Our central map
uses sparse polynomials for reducing the secret key size
and signing cost without increasing the public key size.

• Shorter Secret Key Size and the Shortest Signature
Size. Compared to Rainbow, the secret key of SOV
has reduced by a factor of 90% without increasing the
public key. In particular, the signature size of SOV is the
shortest among pre-quantum schemes and post-quantum
schemes: SOV requires signatures of 52 bytes, while
ECDSA-256 requires signatures of 64 bytes.

The rest of the paper is composed as follows. In Section II,
we construct an efficient MQ-signature scheme, SOV, using
sparse polynomials. In Section III, we give security analysis
of SOV against known algebraic attacks and compare our
scheme to existing signature schemes in Section IV. We con-
clude this paper in Section V.

II. A NEW EFFICIENT MQ-SIGNATURE SCHEME
Original TTS was proposed in [14] and later refined in [15].
Afterwards, Yang and Chen [44], [45] revealed some weak-
nesses of TTS against the MinRank attack and the High-
Rank attack and then proposed the Enhanced TTS (enTTS).
enTTS based on sparse polynomials reduces the secret key
size and its signing cost, but its public key is about 2 times
lager than that of Rainbow. Now, we construct an effi-
cient MQ-signature scheme using sparse polynomials with a
shorter secret key and signatures.

Notations.
• m Number of equations
• n Number of variables
• Fq Finite field of q elements
• Mm×n(Fq) Set of m× n matrices defined on Fq
• GLn(Fq) General linear group of degree n defined

on Fq, the set of n× n invertible matrices
• F Invertible central map F : Fnq→ Fmq
• S Affine or linea map S : Fmq → Fmq
• T Affine or linea map T : Fnq→ Fnq
• S̃, T̃ Denote S̃ = S−1 and T̃ = T−1

A. OUR CONSTRUCTION
A main idea to construct an MQ-scheme is to find a easily
invertible quadratic map F = (F (1), · · · ,F (m)) : Fnq → Fmq
(called a central map) consisting of m multivariate quadratic
polynomials with n variables. It needs to select two lin-
ear or affine invertible maps S : Fmq → Fmq and T : Fnq →
Fnq to destroy the special structure of F . A public key is
P = S ◦ F ◦ T that seems to be indistinguishable from a
random system. Then, (S,F ,T ) is a secret key. The public
key is a system of m quadratic equations with n variables,
P = (P (1), · · · ,P (m)), defined by

P (k)(x1, · · · , xn) =
n∑
i=1

n∑
j=i

p(k)ij xixj +
n∑
i=1

p(k)i xi + p
(k)
0 ,

where p(k)ij , p(k)i , p(k)0 ∈R Fq for k = 1, · · · ,m.

� A New Central Map.
For a new central map, we need the following four index

sets as

V1 = {1, · · · , v}, V2 = {1, · · · , v+ o1},

O1 = {v+ 1, · · · , v+ o1},

O2 = {v+ o1 + 1, · · · , v+ o1 + o2},

where |V1| = v, |V2| = v + o1 and |Oi| = oi for i = 1, 2.
A secret central map F = (F (1), · · · ,F (m)) is a system of m
multivariate quadratic equations with n variables defined by

F (1)(x) =
∑v

i=1 αi,v+1+(i−1(mod o1))xixv+1+(i−1(mod o1)),

F (2)(x) =
∑v

i=1 αi,v+1+(i−2(mod o1))xixv+1+(i−2(mod o1)),

...

F (o1)(x) =
∑v

i=1 αi,v+1+(i(mod o1))xixv+1+(i(mod o1)),
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
F (o1+1)(x) = 81(x)+21(x)+ ε1xo1+1,

...

F (o1+o2)(x) = 8′o2 (x)+2o2 (x)+ εo2xo1+o2 .

where x = (x1, · · · , xn), m = o1 + o2 and n = m + v.
We call F (i) for i = 1, · · · , o1 a secret polynomial in the first
layer, F (i) for i = o1 + 1, · · · , o1 + o2 a secret polynomial
in the second layer. Our central map is designed so that
all quadratic terms in the central polynomials don’t overlap
and the symmetric matrix of each central polynomial has
a designated rank. Each polynomial in the central map is
selected as follows:
• Choose random αi,j ∈ F∗q so that all quadratic terms
in F (i) don’t overlap with those in F (j) for i 6= j in
the first layer and the symmetric matrix corresponding
to the quadratic part of each F (i) (i = 1, · · · , o1) has
rank 2 · o1.

• 8j(x) is a quadratic polynomial in variables
(x1, · · · , xv+o1 ) defined by

8j(x) =
v∑
i=1

βj,ixix1+(i+j−1(mod v)),

so that all quadratic terms of 8i(x) don’t overlap with
those of 8j(x) for i 6= j (i, j = 1, · · · , d o22 e + 1) and
the v× v part of the symmetric matrix corresponding to
the quadratic part of each F (i) has rank v for i = o1 +
1, · · · , o1 + d

o2
2 e + 1, where βi,j ∈ F∗q.

• 8′j(x) is a quadratic polynomial in variables
(x1, · · · , xv+o1 ) defined by

8′j(x) =
v+o1∑
i=v+1

β ′j,ixixv+1+(i+j−v−1(mod o1)),

so that all quadratic terms of 8′i(x) don’t overlap with
those of 8′j(x) for i 6= j (i, j = d o22 e + 2, · · · , o2) and
the v× v part of the symmetric matrix corresponding to
the quadratic part of each F (i) has rank v for i = o1 +
d
o2
2 e + 2, · · · ,m, where β ′i,j ∈ F∗q.

• 2j(x) is a quadratic polynomial in variables (x1, · · · , xn)
defined by

2j(x) =
v+o1∑
i=1

γj,ixixv+o1+1+(i−j(mod o2)),

so that all quadratic terms in 2i(x) don’t overlap with
those in 2j(x) for i 6= j and the symmetric matrix
corresponding to the quadratic part of each F (i) has full
rank for i = o1 + 1, · · · , o1 + o2, where γi,j ∈ F∗q.

• Lastly, select random εi ∈ F∗q for the linear part of F (i)

(i = o1 + 1, · · · , o1 + o2).
• To satisfy the above conditions, the parameter
(Fq, v, o1, o2) is guaranteed to be selected as
v ≥ o1 ≥ o2.

Now, we propose an efficient MQ-signature scheme using
our central map.

� SOV(Sparse Polynomials-basedOil andVinegar Signa-
ture Scheme).
• KeyGen(1λ). Given a security parameter λ, output a

secret/public key < SK ,PK >=< (̃S,F , T̃ ),P > as
follows:

– Select two invertible affine maps S̃ and T̃ at random,
where S̃ = S−1 and T̃ = T−1

– Choose randomly F = (F (1), · · · ,F (m)) so that it sat-
isfies the conditions specified in the above construction
of the central map.

– Compute P = S ◦ F ◦ T .
• Sign(SK ,m). For a collusion-resistant hash function h :
{0, 1}∗ → Fmq and a message m, calculate h(m) and
S̃(h(m)) = ξ , where ξ = (ξ1, · · · , ξm).

– To calculate F−1(ξ ) = s: to find s such that F(s) = ξ .

� Choose a random vector of Vinegar values sv =
(s1, · · · , sv) ∈ Fvq. After plugging sv into F (i) (i =
1, · · · , o1), get a linear system of o1 equations in o1
variables. Compute a solution (sv+1, · · · , sv+o1 ) of
the linear system by using Gaussian elimination.

� After plugging (s1, · · · , sv+o1 ) into F (i) (i =
o1 + 1, · · · , o1 + o2), get a linear system of
o2 equations in o2 variables and find a solution
(sv+o1+1, · · · , sv+o1+o2 ) of the resulting linear sys-
tem. Then s = (s1, · · · , sn) is a solution of
F(x) = ξ .

� If one of the two linear systems has no solution
then choose another vector of Vinegar values sv′ =
(s′1, · · · , s

′
v) and try again.

– Calculate T̃ (s) = σ and output σ as a signature on m.

•Verify(PK , σ,m). From a public keyP and a signature σ on
m, check the equality P(σ ) = h(m). If it holds, output valid.

Key Sizes. The public key of SOV requires m(n+1)(n+2)
2

field elements. The secret affinemaps T and S require n(n+1)
and m(m + 1) field elements, respectively. In the first layer,
it requires v ·o1 field elements. In the second layer, it requires
(v+ o1) · o2 + v · (d

o2
2 e + 1)+ o1 · (d

o2
2 e) field elements for

quadratic terms and o2 field elements for linear terms. Thus,
the secret key requires o1v+o2(v+o1+1)+ v · (d o22 e+1)+
o1 · d

o2
2 e + m(m+ 1)+ n(n+ 1) field elements.

III. SECURITY ANALYSIS OF SOV AGAINST
KNOWN ALGEBRAIC ATTACKS
The MQ-schemes using the ASA structure require two hard
problems for security: the MQ-Problem and the Extended
Isomorphism of Polynomials problem. Moreover, the MQ-
schemes with multiple layers need the intractability of the
MinRank problem. We introduce the underlying hard prob-
lems.

• Multivariate Quadratic (MQ) Problem: Given a sys-
tem of m quadratic equations, P = (P (1), · · · ,P (m)),
on Fq in variables (x1, · · · , xn) and y = (y1, · · · , ym) ∈
Fmq , compute a solution (x ′1, · · · , x

′
n) ∈ Fnq such that

P (1)(x ′1, · · · , x
′
n) = y1, · · · ,P (m)(x ′1, · · · , x

′
n) = ym.

VOLUME 8, 2020 26259



K.-A. Shim et al.: Efficient MQ-Signature Scheme Based on Sparse Polynomials

• Extended Isomorphism of Polynomials (EIP) Prob-
lem: For a nonlinear multivariate system P = S ◦F ◦T
for affine or linear maps S and T , and F in a certain
class of nonlinear system SC, find (S ′,F ′,T ′) such that
P = S ′ ◦F ′ ◦T ′ for affine or linear maps S ′ and T ′, and
F ′ ∈ SC.

• MinRank Problem: For k,m, n, r ∈ N such thatm, r <
n. The MinRank(r) problem is, given (M1, · · · ,Ml) ∈
Mm×n(Fq), find a non-zero k-tuple (λ1, · · · , λk ) ∈ Fkq
satisfying Rank(

∑k
i=1 λiMi) ≤ r .

The MQ-problem is proven to be NP-complete [26] even
for the quadratic equations defined on F2. Patarin [34]
describe the IP-problem and there exist not much known
about its hardness compared to the MQ-problem [9], [23].
The MinRank problem was described in [40] and proven its
NP-completeness.

It is known that a public key of the MQ-scheme has
many distinct secret keys (called equivalent keys) [43]. For
a secret/public key, < (S,F ,T ),P >, of an MQ-scheme,
if P = S ′ ◦ F ′ ◦ T ′ = S ◦ F ◦ T and F ′ preserves
the special structure of F , then (S ′,F ′,T ′) is an equivalent
key of (S,F ,T ), where S ′ ∈ GLm(Fq) and T ′ ∈ GLn(Fq).
If an adversary can find any of the equivalent keys then the
adversary can invert the public key, so forge signatures on any
message for the public key.

In the MQ-schemes, there exist the two types of attacks as:
• Direct Attack. For a public key P = S ◦ F ◦ T and
y ∈ Fmq , compute a solution s ∈ Fnq of P(x) = y.

• Key Recovery Attack. For P = S ◦ F ◦ T , find an
equivalent key of (S,F , T ).

A. DIRECT ATTACKS
An adversary for mounting direct attacks on theMQ-schemes
wants to find a solution s ∈ Fnq of P(x) = y, i.e. solve
the MQ-problem. For it, the adversary uses Gröbner basis
algorithms like F4 and F5 for solving the MQ-problem. The
complexity for solving the MQ-problem can be estimated
as the HybridF5 (HF5) algorithm [6] to solve the problem.
A main idea is to guess k variables to get overdetermined
systems and then runs the F5 algorithm [21] for solving
the overdetermined systems. Then, the number is given by
qk when guessing k variables over Fq. The complexity for
solving a semi-regular quadratic system of m equations with
n variables on Fq by the HF5 algorithm is be determined by

CHF5(q, n) = mink≥0O
(
qk
[
m ·

(
n− k − 1+ dreg,k

dreg,k

)]α)
,

where dreg,k is the degree of regularity of the quadratic system
after fixing the values of k variables. The linear algebra
constant 2 ≤ α ≤ 3 is for solving a linear system. Since
the internal equations utilized by the HF5 algorithm are very
sparse, α = 2 can be used to get a lower bound on the
complexity.

For security of SOV against the direct attacks, we perform
a number of experiments using the F4 algorithm (the details

FIGURE 1. Generalized Version of the Central Map for SOV.

of the F5 algorithm are not publicly known) with MAGMA
v2.19-10 on Intel Core i5-6600 3.3 GHz. We compare exper-
imental results for solving quadratic systems derived from a
public key of SOV with random quadratic systems on F31
in Table 1. These results are averages of 100 measurements
for each system. According to these results, it makes a little
difference in complexities for solving two types of quadratic
systems.

TABLE 1. Running Time (Second) for Solving Two Types of Quadratic
Systems on F31.

For given security levels, we can determine the required
numbers of equations for solving the determined systems on
F31 by using HF5 algorithm (α = 2) given in Table 2. It will
be used to select a secure parameter of SOV against the direct
attacks for a given security level λ.

TABLE 2. Numbers (m) of Quadratic Equations for Determined Systems
over F31 associated to Security Levels.

B. KEY RECOVERY ATTACKS
The goal of key recovery attacks (KRAs) is to find the secret
key S and T . The KRAs use the special structure of the central
map, i.e. quadratic terms with zero coefficients at certain
known places, to get a systems of equations with variables
in S and T . In our central map, since it significantly increases
quadratic terms with zero coefficients due to the use of sparse
polynomials, the security of our scheme against the KRAs
should be guaranteed. The complexity of solving the above
system can be improved by using equivalent keys. If one can
find an equivalent key (S ′,T ′) then one can reduce the number
of variables in the resulting system with many unknowns to
recover (S ′,T ′). Complexity of solving such systems depends
on the number of unknowns and thus one would like to reduce
them further.

Wolf and Preneel [43] introduced the concept of equivalent
keys and Thomae [42] generalized the notion of equivalent
keys to good keys. The KRAs on UOV were presented as
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FIGURE 2. Equivalent Keys of SOV.

Reconcilation attacks [18]. Ding et al. [18] extended the
Reconcilation attacks to Rainbow Band Separation (RBS)
attacks on Rainbow. The KRAs using good keys are the
generalization of the RBS attacks. Now, we give security
analysis of SOV against KRAs using equivalent keys and
good keys.

1) BASIC KRAS
For 1 ≤ k ≤ m, let F (k) be symmetric matrices related
to the quadratic part of F (k) in the secret central map. For
1 ≤ k ≤ m, let P(k) be symmetric matrices associated to the
quadratic part of P (k) in the public key. From F = S̃ ◦P ◦ T̃ ,
we have the equality

F (k)
= T̃ T

 m∑
j=1

s̃ijP(j)

 T̃ , 1 ≤ k ≤ m,

and the corresponding system of equations as

f (k)ij =

m∑
x=1

n∑
y=1

n∑
z=1

c(x)yz s̃kx̃ tyĩtzj (1)

with coefficients c(x)yz . Since certain quadratic terms in F (k)

have zero coefficients, we get f (k)ij = 0 for some i, j, k . For
SOV, we get a system of

mn(n+ 1)
2

− vo1 − o2(v+ o1 + b
o2
2
c(o1 − v)+ vo2)

cubic equations with (n2+m2) variables. The complexity for
solving the cubic system using the HF5 algorithm is large.

2) KRAS USING EQUIVALENT KEYS
To reduce this complexity, one can use the notion of equiva-
lent keys [42], [43].
Definition 1: Let S, S ′ ∈ GLm(Fq) and T ,T ′ ∈ GLn(Fq).

We call S ′ and T ′ equivalent keys to S and T , if and only if
S ′ ◦F ′ ◦ T ′ = S ◦F ◦ T and F |I = F ′|I , i.e. both F and F ′
have the same structure for an index set I = {I (1), · · · I (m)}
for I (k) ⊆ {xixj|1 ≤ i ≤ j ≤ n}.

If one can find two linear maps 6 ∈ GLm(Fq) and � ∈
GLn(Fq) so that

P = (S ◦6−1) ◦ (6 ◦ F ◦�) ◦ (�−1 ◦ T ),

and F ′ preserves all quadratic terms with zero coefficients in
F , then S ′ and T ′ are equivalent keys, whereF ′ = 6 ◦F ◦�,
T ′ = �−1 ◦ T and S ′ = S ◦6−1.

To find the equivalent key of SOV, we consider a gener-
alized version of our central map, F = (F (1)

, · · · ,F (m)
),

given in Fig. 1, where gray parts represent arbitrary values
and white parts represent zero values.
Lemma 1: For the generalized central map F (k)

in Fig. 1,
there exist equivalent keys S ′ and T ′ of the forms in Fig. 2,
where white parts represent zero values, gray parts represent
arbitrary values and there exist ones at the diagonal.
Proof:One can select� and6 of the forms in Fig. 2 so that

F ′(k) preserves the quadratic terms with zero coefficients in
the generalized central map F (k)

in Fig. 1 as in [42]. Then
T ′ = �−1 ◦T and S ′ = S ◦6−1 are the equivalent key of the
forms in Fig. 2. �
When we apply the transformations � and 6 to the gener-

alized central mapF (k)
, we getF ′ as in Fig. 1. To recover the

equivalent key, we need to solve a system of

o1n(n+ 1)+ o2v(v+ 1)+ b o22 c(v− o1)(v+ o1 + 1)

2
+vo1(o2 − o1)

cubic equations with (4 o1 o2+2vm) variables. The complex-
ity for solving this cubic system is still large: the complexity
for solving the cubic system byHF5 is 24218 for the parameter
SOV(F31, 29, 28, 26).

3) KRAs USING GOOD KEYS
To further improve this complexity, one can use good keys,
a generalized notion of equivalent keys [42]. Good keys
preserve some of quadratic terms with zero coefficients in
F not all these quadratic terms. Thus, one further reduces
the numbers of variables and equations by selecting 6 and
� more generally.
Definition 2: Let S, S ′′ ∈ GLn(Fq) and T ,T ′′ ∈ GLm(Fq)

and I (k) ⊆ {xixj|1 ≤ i ≤ j ≤ n} for 1 ≤ k ≤ m fixed.
Let J (k) ⊆ I (k) for 1 ≤ k ≤ m with at least one J (k) 6= φ.
We call S ′′ and T ′′ gook key of S and T if and only if S ′′ ◦
F ′′ ◦ T ′′ = S ◦F ◦ T and F |J = F ′′|J for the fixed index set
J = {J (1), · · · , J (m)}.

Let S ′ and T ′ be the equivalent key of SOV. If one can find
two linear maps 6′ ∈ GLm(Fq) and �′ ∈ GLn(Fq) so that

P = (S ′ ◦6′−1) ◦ (6′ ◦ F ′ ◦�′) ◦ (�′−1 ◦ T ′)

and F ′′ preserves all quadratic terms with zero coefficients
in the subset J of I , then (F ′′, S ′′, T ′′), are good keys of
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FIGURE 3. Good keys for SOV.

TABLE 3. Complexities of the KRAs using Equivalent Keys and Good Keys for SOV(F31, 29, 28, 26).

(S, F , T ), where F ′′ = 6′ ◦ F ′ ◦ �′, S ′′ = S ′ ◦ 6′−1 and
T ′′ = �′−1 ◦ T ′. We can get the good keys for SOV as in
Lemma 2.
Lemma 2: For the equivalent key for SOV, S ′ and T ′ of the

forms in Fig. 2, there exist good keys S ′′ and T ′′ of the forms
in Fig. 3. In the good keys, only o2 values of the o1-th row
in S̃ ′′ are arbitrary, equal to the corresponding values in S̃ ′

and only the last column of T̃ ′′ are arbitrary values in the first
(v+ o1 + o2) rows, equal to the corresponding values in T̃ ′.
Proof: One can select 6′ and �′ of the forms in Fig. 3 so

that F ′′ preserves the quadratic terms with zero coefficients
in the designated index set as in [42]. Then, S ′′ = S ′ ◦ 6′−1

and T ′′ = �′−1 ◦T ′ of the form given in Fig. 3 are good keys
associated to the equivalent key (S ′,T ′). �

FIGURE 4. Form of F ′′ = 6′ ◦F ′ ◦�′ of SOV.

SinceF ′′ = 6′ ◦F ′ ◦�′,F ′′ is of the form in Fig. 4, which
is the same as those of Rainbow [42]. It shows that the forms
of the good keys for SOV are the same as those for Rainbow
although the equivalent keys for SOV is different from those
of Rainbow. Consequently, we get the following Theorem.
Theorem 1: The complexity of SOV against the KRAs

using good keys is determined by solving m quadratic equa-
tions and (n− 1) bihomogeneous equations with n variables.

All the remaining parts of S ′ and T ′ are retrieved by linear
equations as in [42] after recovering one row of S ′ and one
column of T ′. Therefore, we can retrieve the entire equivalent
keys S ′ and T ′.

In Table 3, we summarize improvements of lower bounds
(α = 2) on the complexities for solving the resulting systems
by the HF5 algorithm from the KRAs using equivalent keys
and good keys for SOV(F31, 29, 28, 26). The reason of the
selection of this parameter will be presented in the Section IV.
In general, only the number of variables is reduced to find
the equivalent keys. Since we utilize the equivalent keys
corresponding to the generalized central map given in Fig. 1
instead of the original central map to get complexity as low
as possible, the number of equations in our KRAs with equiv-
alent keys is also changed,

C. RANK-BASED ATTACKS
Now, we analyze our scheme against known rank-based
attacks. Our central map is designed so that all the quadratic
terms in the central polynomials don’t overlap and each sym-
metric matrix of each central polynomial has a designated
rank. In particular, each symmetric matrix of each central
polynomial in the second layer has full rank. This property
plays an important role in preventing the rank-based attacks.
• MinRank attack. An adversary for mounting the

MinRank attack wants to find linear combinations R =∑m
i=1 λiP

(i) of thematricesP(i), whereR has aminimal rank r .
A basic idea to solve the MinRank problem [40] is to find a
vector in the kernel of R. The following Proposition deter-
mines the complexity of SOV against the MinRank attack by
using the technique in [7].
Proposition 1: The complexity of SOV against the Min-

Rank attack is o1 · qo1+1.
Proof: In this attack, one tries to find a vector v ∈ Fnq in the

kerP, where P is a matrix of the minimal rank in Span{P(i)}.
The probability of finding such v is the same as that of finding
v′ ∈ Fnq in the kerQ, where Q is a matrix of the minimal rank
in Span{F (i)

}. More precisely, F (i) in the first layer is of the

form
(
0 ∗
∗ 0

)
. Then F (i)

·(∗, 0)T = (0, ∗)T and F (i)
·(0, ∗)T =

(∗, 0)T . Let wi = F (i)
· (∗, 0)T and w′i = F (i)

· (0, ∗)T for
i = 1, · · · , o1. Then the probability that wi (resp., w′i) are
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TABLE 4. Complexities of SOV(F31, 29, 28, 26) against All the Attacks.

TABLE 5. Comparison of Signature Sizes, Key Sizes of Ours, Pre-Quantum Schemes and Post-Quantum Schemes.

linearly dependent is

1−
o1−1∏
i=0

(1−
qi

qo1
) > 1/q (resp., 1−

o1−1∏
i=0

(1−
qi

qv
)

> 1/qv−o1+1).

Then,
∑o1

i=1 λiF
(i) has a minimal rank. The probability of v′ ∈

ker(
∑o1

i=1 λiF
(i)) with a random vector v′ and non-trivial λi

is 1/qo1 · 1/q = 1/qo1+1: the probability that the vector v′

has of the form (∗, 0) is 1/qo1 . Similarly, the probability for
v′ = (0, ∗) is

1/qv · 1/qv−o1+1 = 1/q2v−o1+1.

In our case, since v ≥ o1 ≥ o2, min{qo1+1, q2v−o1+1}
is qo1+1. By finding o1 linear independent matrices M =∑m

i=1 λiP
(i), one can extract the first layer of SOV. This step

costs approximately o1 · qo1+1 as in [37]. �
•HighRankAttack.An adversary for mounting the High-

Rank attack wants to identify the variables appearing the
lowest number of times in the central polynomials. The vari-
ables xv+o1+1, · · · , xn appear only in the quadratic terms of
F (o1+1), · · · ,F (o1+o2) in the second layer of SOV. Thus, it is
similar to that of Rainbow. As in [37], the complexity of SOV
against the HighRank attack is qo2 · n

3

6 .
• Kipnis-Shamir Attack (UOV Attack). The balanced

Oil and Vinegar signature scheme (v = o) [36] was broken
by Kipnis-Shamir attack [31]. The attack can be general-
ized to the unbalanced schemes. It uses the property that

any linear combinations of F (1), · · · ,F (m) has of the formA1 A2 A3
A4 A5 A6
A7 A8 0

 to find the preimage of the subspaces under

an equivalent key T ′, It has the same form of Rainbow.
As in [37], the complexity of SOV against the UV attack is
o42 · q

v+o1−o2−1.

IV. PARAMETER SELECTION AND COMPARISON
Now, we select a secure and optimal parameter for SOV and
compare SOV and other signature schemes.

A. PARAMETER SELECTION
We want to select a secure and optimal parameter set
(Fq, v, o1, o2) so that a SOV(Fq, v, o1, o2) instance over
Fq achieves a security level of λ-bits against all known
attacks. According to our security analysis, the com-
plexities of SOV against all the known attacks are
summarized as:

• Direct attacks: The complexity is the same as
CMQ(q,m, n), where CMQ(q,m, n) denotes complexity
for solving a random system of m quadratic equa-
tions with n variables defined on Fq by using the HF5
algorithm.

• KRAs: The complexity is the same as CMQ
(q, m+ n− 1, n).

• MinRank Attacks: The complexity is o1 · qo1+1.

VOLUME 8, 2020 26263



K.-A. Shim et al.: Efficient MQ-Signature Scheme Based on Sparse Polynomials

• HighRank Attacks: The complexity is qo2 · n
3

6 .
• Kipnis-Shamir Attacks: The complexity is o42 ·
qv+o1−o2−1.

Finally, we select a secure and optimal parameter of SOV
at a 128-bit security level as

• SOV(F31, 29, 28, 26).

We summarize complexities of SOV(F31, 29, 28, 26)
against all the attacks in Table 4, where we take α = 2 for
computing the complexities against the KRAs using good
keys and the direct attacks.

B. COMPARISON
We compare our scheme to pre-quantum schemes and post-
quantum schemes in terms of signature sizes and key sizes
in Table 5.

Signature Size. Signature size of SOV is also the shortest
among pre-quantum schemes and post-quantum schemes.
SOV(F31, 29, 28, 26) results in signatures of 52 bytes, while
ECDSA-256 requires signatures of 64 bytes. Signatures of
BLISS-BI are about 30 times bigger than those of SOV.

Key Sizes. Compared to Rainbow, the secret key of SOV
is reduced by a factor of about 90%without increasing public
key size. Compared to enTTS, the public key size and secret
key size of SOV are reduced by a factor of about 49% and
38%, respectively.

V. CONCLUSION
We constructed an efficient MQ-signature scheme, SOV,
using the sparse polynomials. The secret key size of SOV
is reduced by a factor of about 90% without increasing the
public key size compared to Rainbow. Moreover, the signa-
ture size is the shortest among all known signature schemes
resulting in 52 bytes, while ECDSA-256 requires signatures
of 64 bytes. We believe that SOV is suitable for specific
applications, where the existing signature schemes cannot be
used due to their slow performance and large signature sizes.
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