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ABSTRACT The current understanding of activity in the wireless spectrum is limited to mostly punctual
studies of aggregated energy values. However, there is a need and increasing technological means for a
better understanding of spectrum usage by automatically detecting and recognizing wireless transmissions
in an unlicensed or shared frequency band. In this paper we propose, implement and evaluate a framework
for automatic detection of wireless transmissions. Our framework includes a manual component as our
assessment suggests manual labor has a paramount impact on tuning and maintaining good performance of
an automatic transmission detection system. However, a considerable problem in this aspect is represented
by the disagreement amongst human annotations which is a universally recognized issue. To this end,
we discuss and evaluate challenges in generating labeled datasets that can then be used as ground truth for
evaluating and possibly training automatic transmission detection systems. We also propose two methods for
automatic transmission detection that are not based on machine learning and therefore do not need training
data and evaluate their performance against each other and manually labeled data. Our results show that
generating human-labeled ground truth data is an expensive and imperfect process. Humans on average
require 90 minutes to label 56 minutes of unlicensed European narrowband spectrum. The experts that
generate the ground truth sometimes only agree on as little as 40.18% of the labeled cases.

INDEX TERMS Automatic transmission detection, wireless networks, machine vision, labeling, annota-
tion reliability, crowdsourcing, radio spectrum measurements, radio spectrum monitoring, radio spectrum
management.

I. INTRODUCTION
The increased penetration of data-driven knowledge
technologies, which are complementary to the existing ana-
lytical approaches, is already changing the modern infor-
mation society. For instance, in wireless networks, devices
were foreseen to use the information provided by the spec-
trum sensing algorithms for dynamic spectrum access [1].
Spectrum sensing algorithms and low-cost hardware enabled
conducting long term spectrum usage studies around the
world [2]. Such studies generated additional knowledge, on a
larger scale than previously possible. More recently, broad-
band multi-GHz real-time spectrum analytics enables fast

The associate editor coordinating the review of this manuscript and

approving it for publication was Ding Xu .

generation of information by guiding the sensing devices [3].
Furthermore, real-time wideband spectrum sensing systems
able to monitor a larger portion of the spectrum are being
proposed [4].

In spite of increased spectrum sensing capabilities, existing
long term wider area spectrum studies are based on averaged
energy levels from the spectrum [5]–[7]. However, extracting
more in-depth knowledge about how the spectrum is used
and what kind of signals are present in the air may have
a significant impact on the technology and policy design.
The need for such knowledge is perhaps best illustrated by
SigIdWiki,1 a Wikipedia-like encyclopedia for signals where
known and unknown signals are posted. The effort within

1https://www.sigidwiki.com/wiki/Signal_Identification_Guide
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SigIdWiki is largely manual: collecting spectrum sensing
data using various low-cost devices, human analysis of the
data, computer-aided human detection and recognition of
transmissions, and finally knowledge generation and publi-
cation in a wiki structure.

To automate a large part of the manual efforts that go into
systems such as SigIdWiki and thus evolve existing spectrum
measurement systems that are not optimized to detect spe-
cific transmissions [2], several options exist. One way is to
automatically detect the signal using the large body of exist-
ing algorithms [8], then filter the signal by time-frequency
filtering and recognize the signal type. Another way is to use
machine learning by employing a separate machine learning
model for each of the two steps, however, if the end goal is to
perform recognition, the machine learning problem formula-
tion is able to combine the detection step with the recognition
step provided suitable labeled data are available. For good
performance, a detection and recognition system likely needs
to rely on recent developments from artificial intelligence,
particularly deep learning for computer vision [9]. Therefore,
as a pre-requisite, sufficient good quality training and eval-
uation data have to be available. Spectrum data collection
can be now scaled in time and space using crowdsourcing
infrastructure such as proposed in [10]. However, the research
community has yet to consider generating and curating high
quality real-world, non-simulated datasets. As shown in other
scientific communities [11], [12], there are a number of chal-
lenges associated with this process. The quality of the labeled
data does not only affect the performance of the learning
algorithms they train [13], but, together with the evaluation
metrics, also the performance evaluation of the final system.
Therefore, even the performance evaluation of unsupervised
machine learning systems, such as proposed in [14], depends
on the labels of the ground truth - i.e. on the convention used
to discriminate anomaly from normality.

In this paper, we propose a framework that enables the
design and development of automatic detection of wireless
transmissions. The proposed framework includes a manual
processing component as well as the inherent automatic pro-
cessing component. We then implement and evaluate the
proposed framework on transmission detection from power
spectral density (PSD) data. We show that 1) generating
human-labeled data is an expensive and imperfect process but
necessary as 2) the performance of an automatic detection
system depends on the available ground truth data. In this
respect, our contributions are as follows:
• We propose and evaluate a manual PSD spectrum label-
ing approach.

• We propose and evaluate two automatic transmission
detection techniques that do not require training data,
therefore are not based on machine learning, against the
manually generated data.

• We adapt a set of existing evaluation metrics to make
them relevant for studying the quality of manually
labeled data as well as the performance of the automatic
detection.

• We make all the datasets generated for this work pub-
licly available. We also publish the source code for
the labeling and machine vision tools as open-source
software under the terms of the GNU General Public
License v3.0.

The paper is organized as follows. Section II surveys
the related work, Section III describes the proposed frame-
work for automatic detection of wireless transmissions and
Section IV provides the design and implementation details of
the processing pipelines for transmission detection. SectionV
introduces several performance metrics and discusses perfor-
mance aspects of the manual and automatic detection pro-
cesses before Section VI concludes the paper.

II. RELATED WORK
A very comprehensive and critical overview on spectrum
occupancy sensing is provided in [2]. The authors show that
existing spectrum usage studies generated additional knowl-
edge, on a larger scale than previously possible, however still
not sufficient to draw strong conclusions on the topic. They
also propose a methodology on how to perform spectrum
occupancy analysis for improving spectrum management.
A system designed using the framework proposed in this
paper can be used to realize all five phases of themethodology
proposed in [2].

Various big data spectrum sensing and management sys-
tems such as the Microsoft Spectrum Observatory,2 the
Google spectrum3 for measurements on TV white-spaces,
the IBM Horizon4 project, and, more recently, Radio-
Hound [15] and Electrosense5 have been proposed over time.
Their aim is to enable collecting and analyzing spectrum
usage. For instance, the Electrosense architecture [10] is
designed for crowdsourcing spectrum sensing and processing
large volumes of batch and streaming data. Additionally,
efforts addressing punctual problems, such as compress-
ing spectrum scanning to reduce the amount of data are
considered in [16].

The labeling method and tool proposed in this paper can
extend existing data acquisition infrastructures, eventually
enabling the generation of crowdsourcing based wireless
labeled datasets. In this endeavor, existing findings with
low-cost crowdsourced dataset generation efforts could be
considered. For instance, [11] investigated the quality of
labeling natural language using platforms such as Mechan-
ical Turk. Similarly as we do in this paper for manually
labeled wireless PSD data, [12] investigated how well differ-
ent humans agree on labels for images. As shown in [13],
the quality of the labels in the training data impacts the
performance of the machine learning models, therefore gen-
erating good quality training data should be a priority as
it is a pre-requisite for building an automatic transmission
detection system. An anomaly detection system such as the

2http://observatory.microsoftspectrum.com
3https://www.google.com/get/spectrumdatabase
4https://bluehorizon.network/documentation/sdr-radio-spectrum-analysis
5https://electrosense.org
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FIGURE 1. Wireless transmission detection framework.

one proposed in [14] could be used to improve the efficiency
of the human labeler by selecting transmissions that seem
anomalous or have not been seen before.

The generated labeled datasets by the proposed labeling
methods and techniques could subsequently be used as train-
ing datasets for deep learning models or input to modulation/
signal classifiers [17], enabling additional knowledge
extraction.

The evaluation metrics adapted in this paper for evaluating
the agreement between human-labeled data as well as for
evaluating the performance of the systems are similar to the
ones used in machine vision communities [9], however they
better focus on the needs of the wireless community.

III. AUTOMATIC TRANSMISSION
DETECTION FRAMEWORK
In this section, we propose a framework that can be used for
automatic detection of transmissions in wireless spectrum.
This framework is generic and can be realized in various
ways, using fully automatic, manual or mixed rule-based
detection systems, supervised classification systems as well
as unsupervised systems and is depicted in Fig. 1. It starts
with the infrastructure that senses the spectrum, continues
with a processing pipeline and ends with an application that
utilizes the information on the detected transmissions. In the
following, we briefly describe each component of the frame-
work whereas in the rest of the paper we showcase a possible
realization and discuss design trade-offs, alternatives and the
performance.

A. DATA ACQUISITION INFRASTRUCTURE
The data acquisition infrastructure represents the entry
point of the proposed framework. It is responsible for

collecting representative data that can be used by the pro-
cessing pipeline to produce information that the applica-
tion needs. For instance, the infrastructure could collect I/Q
samples for a subsequent modulation and coding classifica-
tion [18], [19] or PSD data for transmission detection/
recognition as found on SigIdWiki and further discussed in
this paper. Such infrastructure could be custom made with
software-defined radios such as USRPs or signal analyzers,
crowdsourced such as in Electrosense [10] or proprietary
such as Microsoft Spectrum Observatory or Google spectrum
(see Section II). The infrastructure can provide streaming
data [20] or enable batch processing by querying traditional
relational databases.

Large publicly available datasets for wireless networks are
becoming available with the increase of data-driven research
initiatives and efforts to democratize spectrum data such
as Electrosense. When recording spectrum data suitable for
designing automatic transmission detection systems, the rel-
evant tunings of the sensing equipment and possibly environ-
mental features have to be recorded in the meta-data of the
actual traces. Documenting relevant meta-data is necessary
for gaining an insight into the recording process and under-
standing the related parameters. Acquiring and publishing a
dataset according to best practices is also suitable for better
indexing and finding by dedicated dataset search engines,
such as Google Dataset Search.6

B. PROCESSING PIPELINE
The processing pipeline refers to all the components that
are needed to detect transmissions in the data provided by
the acquisition infrastructure. Depending on the design, the

6https://toolbox.google.com/datasetsearch
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transmission detection system may include one or both of
the two processing pipelines illustrated in Fig. 1. It may
include the manual process in which humans clean and
detect transmissions manually using a visual tool or some
scripts. This is the current state of the art in the area, and
the process is required before any automation is designed
and implemented. For designing a good transmission detec-
tion system, in addition to having controlled transmissions
(i.e. simulated/emulated data), manual data labeling is nec-
essary at least for the ground truth used to evaluate the
performance of the automated process [11]–[13].

The pipeline can also be completely automated by employ-
ing a set of techniques such as knowledge rules or machine
learning algorithms. Automated pipelines, even though
designed to detect as wide range of transmissions as possible,
will need periodic tuning and updating that is inherently
manual. Considering the state of the art in the area, it is not
clear what are the design trade-offs of such pipelines andwhat
their relative performance is. However, the accuracy of auto-
mated systems can always be improved by adding additional,
better quality (labeled) data [13]. Thus, a pipeline that has
built-in improvement mechanisms is probably a good way to
ensure durability and scalability of an automatic transmis-
sion detection system. The automatic process would detect
transmissions that it has high confidence in, while (selected)
low confidence transmissions [14] would be sent to a semi-
automatic or manual process for subsequent characteriza-
tion (i.e. labeling). The system would then use the resulting
labeled data to improve its model of existing transmissions.
Depending on the design and implementation of the system,
approaches such as manual model update, active learning or
online learning could be used. As a result, the performance of
the system for automatic detection can be evaluated at design
time and it can be improved during run time.

C. APPLICATION
The application refers to the way the detected transmissions
are subsequently used. These applications can be dedicated to
human or machine end-users. For instance, a signal encyclo-
pedia such as SigIdWiki or a tool summarizing the activity
in the spectrum for the regulators would fall under the first
category whereas a dynamic radio access system that relies
on the detected transmissions would fall under the second
category. From the implementation perspective, they could
be classified into non-real-time applications that rely on
a query-response model for statistical reports or real-time
applications that imply a streaming approach useful for agile
or dynamic spectrum and network management scenarios.
Fig. 2 presents a real-time transmission recognition applica-
tion that relies on transmission detection.

IV. DESIGN AND IMPLEMENTATION OF
THE PROCESSING PIPELINES
In this section, we design and implement three processing
pipelines for transmission detection to illustrate the proposed
framework. The goal is to detect transmissions in wireless

radio spectrum using data as it comes from available off-the-
shelf or advanced spectrum sensing devices [4], [21] in the
form of PSD values. We do not assume any prior knowledge
of how these transmissions might look like.

As we aim to detect wireless transmissions on PSD data,
our data resembles the form of a two-dimensional matrix,
where one dimension represents time, the other frequency and
measured power is color coded. When visualized, the matrix
forms the well-known waterfall plot of the spectrum as
depicted in Fig. 3. Brighter colors correspond to higher
energy levels that represent transmissions, whereas darker
colors stand for lower energy levels that represent noise or
weak transmissions.

The PSD matrix P, denoted as

P = pt,f ∈ Rm×n, (1)

contains power levels pt,f (we also refer to these as spectrum
points), where t is a discrete time point determined by the
sampling frequency and f corresponds to each frequency bin
(i.e. the smallest resolution in frequency domain obtained
from FFT). Formally, given a set of transmissions X =
{x1, . . . , xn}, each transmission xn is characterized by a
rectangle bounding box described as

xn = (tstart , tstop, fstart , fstop)n (2)

where tstop > tstart and fstop > fstart . A rectangle is used
as a boundary because it characterizes the behavior of trans-
missions in PSD data well and is also frequently used in the
machine vision community for detecting faces and objects in
images [9].

A. PIPELINE FOR MANUAL TRANSMISSION DETECTION
As discussed in Section III, the manual process of detecting
transmissions is useful for understanding how to design an
automated system and subsequently evaluate the automated
system. As spectrum monitoring data are generated at high
speeds and in high volume, a human is able tomanually detect
only a small number of transmissions. Therefore, to max-
imize the value of manual labeling, the pipeline has to be
designed in such a way to:
• Enable fast visual perception of transmissions in the
spectrogram. The spectrogram rendering should display
transmissions and hide noise, it should use a color
scheme that is suitable for human perception so that the
transmissions immediately stand out.

• Enable fast bounding box creation. The human user
should be able to quickly draw accurate rectangles
around transmissions from the spectrograms and asso-
ciate time/frequency values with the transmission inside
the bounding box.

• Enable labeling of relevant transmissions. The spectro-
grams rendered for labeling purposes should contain
transmissions that vary in time, space and type to achieve
the highest labeling coverage possible with minimal
effort and little repetition.
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FIGURE 2. Example transmission recognition application that relies on automatically detected transmissions.

• Can be scaled to enable more users to label with con-
trolled overlap, eventually leading to crowdsourcing of
spectrum event detection.

In the data preprocessing step, the manual pipeline pro-
posed in this paper is able to remove values from the PSD
that are not considered high enough. It can be configured to
display 1) all the PSD points - this corresponds to the noise
floor + 0 dB, 2) noise floor + 3 dB as used in a study made
at four locations in Guangdong, China [5], 3) noise floor +
6 dB corresponding to a study made in Singapore [22] and
4) noise floor + 10 dB corresponding to a recommendation
from ITU [23]. For user rendering, the pipeline uses dark
colors for low values of the PSD matrix and bright colors for

transmissions for increased contrast. To further improve the
contrast and therefore improve the efficiency of the pipeline,
findings from human-computer interaction studies could be
further considered [24].

The manual interaction with the pipeline requires three
different actions from the user: 1) input the start corner of
a transmission, 2) input the end corner of a transmission
and 3) move to the next waterfall plot. By inputting the
start and end corners of the transmission (see the white dots
in Fig. 3), the pipeline will automatically map the two inputs
on the image to the corresponding values in time and fre-
quency. Then it will associate the matrix of pixels within the
bounding box with the time/frequency values thus creating

24374 VOLUME 8, 2020
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FIGURE 3. Screen with the labeling tool presenting the user with a random excerpt of the waterfall plot. The white bounding
boxes represent the manually labeled transmissions.

a time/frequency labeled transmission. The inputs can be
provided using standard peripherals such as a mouse or a
touch screen.

A standard approach in machine learning communities
for creating relevant manually labeled datasets is to present
random excerpts of the data to the user. We employed this
approach in our manual pipeline by extracting random slices
of the spectrum of specified duration d that are x seconds
apart, where x is randomly selected from an interval [xmin,
xmax]. The two parameters, d and x, are configurable. This
approach could be improved along several dimensions. First,
by scaling the labeling process to a high number of human
labelers and then using majority voting for label creation.
Second, by only displaying slices that are sufficiently differ-
ent from previously displayed ones or by displaying slices
that contain transmissions detected with low confidence by
the automatic system. For generating high quality manually
labeled datasets, also findings from other scientific fields can
be considered [11], [12].

The proposed pipeline for manual transmission detection
is implemented in Python and is available as open-source
software7 to be used by the community with the aim to
stimulate labeled dataset generation and sharing.

B. PIPELINE FOR AUTOMATIC TRANSMISSION DETECTION
The automatic process attempts to abstract the detection
procedure of a human and automate it. Apart from having
the clear advantage of being able to process vast amounts
of data, automatic detection can also leverage the option of
inexpensively running multiple algorithms on the same data.

7https://github.com/sensorlab/spectrum-labeling-tool

An agreement between the algorithms could be computed that
would give a higher confidence in results.

For designing an automatic process, the following steps
are required: 1) selecting and tuning an appropriate detec-
tion algorithm and 2) implementing and executing the algo-
rithm for detection of wireless transmissions. Typically,
an evaluation step follows that may re-trigger parts of
the automatic process for fine-tuning purposes. This eval-
uation step uses selected performance criteria that mea-
sure the performance of the system according to some
metrics.

The main effort in automatic transmission detection in
wireless spectrum is carried out by the detection algorithms.
We identify two main groups of detection algorithms, which
contrast with respect to conceptual differences in the strategy
of data processing and transmission detection: rule-based
algorithms and computer vision algorithms. In the next sub-
sections, we further explain and provide an example for each
group of algorithms. The source code of our machine vision
algorithm implementation is available on GitHub.8

1) RULE-BASED ALGORITHMS
This group of algorithms processes spectrum and detects
transmissions in agglomerative fashion from the standpoint
of every single spectrum point (measurement). As each trans-
mission in the time-frequency spectrum representation can be
decomposed into a set of points with a predefined resolution,
a legitimate assumption is that this process is reversible if we
can correctly identify these points and join them. We refer to
these points as activity points.

8https://github.com/sensorlab/sigfox-toolbox
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Rule-based algorithms consist of two parts: detection of
activity points and rule-based grouping. Detection of activity
points, also called transmission candidate points, may be
carried out by very simple approaches, such as thresholding.
The goal of this step is to either accept or reject a hypothesis
that a point is a part of some transmission. Once the candi-
date points have been detected, the points are grouped by
consecutively applying a set of predefined grouping rules.
One such rule may, for example, trivially group adjacent
activity points in the frequency dimension. Whereas the rules
generally only group the points, it is possible for a rule to also
ignore already detected candidate transmission points. This
allows for a higher degree of rule flexibility. Final groups of
points represent the detected transmissions.

The correctness of rule-based algorithms heavily depends
on the correct identification of candidate transmission points.
These algorithms allow domain knowledge to be applied in a
semantically straightforward manner, as the grouping process
is transparent and directly reflects the natural visual grouping
operations of a human.

As an example of a rule-based detection algorithm, we pro-
pose the TX grouping algorithm. The proposed algorithm
is shown in Alg. 1. The input to the algorithm is a
two-dimensional matrix of PSD values P, as defined in (1).
The matrix can be infinite in time dimension as the algorithm
can be easily adapted to also deal with streaming spectrum
data by processing each row consecutively, beginning with
the lowest (least recent) row. The algorithm has several
configurable parameters, namely: 1) power threshold thr ,
2) frequency grouping threshold df , 3) frequency pruning
threshold p, 4) time grouping threshold dt and 5) frequency
distance k . The output of the algorithm is represented by a list
of bounding boxes, as defined in (2).

The algorithm works as follows. First, activity points are
detected using a fixed threshold thr by passing through all
elements and comparing them to the threshold as shown
in lines 1-8 of Alg. 1. The effect of this code is visually
depicted in Fig. 4a. Next, a series of simple grouping rules is
applied:
• Frequency grouping rule (Alg. 1, lines 9-25): Group
points in frequency that are not more than df FFT
bins apart (see Fig. 4b). Function fQuery is defined as
fQuery(point, points, df ) = {p : p ∈ points ∧ pt =
pointt ∧ |pf − pointf | ≤ df }.

• Pruning rule (Alg. 1, lines 26-30): Remove groups that
contain less than p points (see Fig. 4c). This step reduces
incorrect detections attributed to noise.

• Time grouping rule (Alg. 1, lines 31-47): Join groups
in time that are less than dt samples apart and the
left-most frequency point of one group is less than k
FFT bins apart from the left-most frequency point of
the second group; equivalently for the right-most fre-
quency points (see Fig. 4d). Function tQuery is defined
as tQuery(group, groups, dt, k) = {g : g ∈ groups ∧
|gt − groupt | ≤ dt ∧ |maxf (g) − maxf (group)| ≤
k ∧ |minf (g)− minf (group)| ≤ k}.

Algorithm 1 TX Grouping Algorithm

Input: P = pt,f ∈ Rm×n

Parameters: thr , df , p, dt , k
Output: X = {x1, . . . , xn}, xn = (tstart , tstop, fstart , fstop)n
1: points← {}
2: for t = 1 to m do
3: for f = 1 to n do
4: if pt,f > thr then
5: points← points ∪ {(t, f )}
6: end if
7: end for
8: end for
9: fGroups← {}

10: visitedPoints← {}
11: for each point ∈ points do
12: if point /∈ visitedPoints then
13: visitedPoints← visitedPoints ∪ {point}
14: fNeighbors← fQuery(point, points, df )
15: fGroup← {point}
16: for each fNeighbor ∈ fNeighbors do
17: if fNeighbor /∈ visitedPoints then
18: visitedPoints← visitedPoints ∪ {fNeighbor}
19: fNeighbors ← fNeighbors ∪

fQuery(fNeighbor, points, df )
20: fGroup← fGroup ∪ {fNeighbor}
21: end if
22: end for
23: fGroups← fGroups ∪ {fGroup}
24: end if
25: end for
26: for each fGroup ∈ fGroups do
27: if |fGroup| < p then
28: fGroups← fGroups \ fGroup
29: end if
30: end for
31: tGroups← {}
32: visitedFGroups← {}
33: for each fGroup ∈ fGroups do
34: if fGroup /∈ visitedFGroups then
35: visitedFGroups← visitedFGroups ∪ {fGroup}
36: tNeighbors← tQuery(fGroup, fGroups, dt, k)
37: tGroup← {fGroup}
38: for each tNeighbor ∈ tNeighbors do
39: if tNeighbor /∈ visitedFGroups then
40: visitedFGroups ← visitedFGroups ∪

{tNeighbor}
41: tNeighbors ← tNeighbors ∪

tQuery(tNeighbor, fGroups, dt, k)
42: tGroup← tGroup ∪ {tNeighbor}
43: end if
44: end for
45: tGroups← tGroups ∪ {tGroup}
46: end if
47: end for
48: X ← getBoundingBoxes(tGroups)
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FIGURE 4. Application of grouping rules when df = 1, p = 2, dt = 1
and k = 1.

Final groups of points represent detected wireless transmis-
sions. To obtain bounding boxes, minimum and maximum
frequency as well as time of all points in each group are com-
puted (Alg. 1, line 48). A list of these values for all detected
wireless transmissions forms the output of the algorithm.

While the detection of activity points can be carried out by
a simple thresholding approach such as presented, a possible
enhancement may introduce more advanced techniques over
one- and two-dimensional windows, for instance statistical
modeling using distributions of energy levels and statistical
hypothesis testing.

2) COMPUTER VISION ALGORITHMS
This group of algorithms processes spectrum as a whole and
reduces it to a set of detected transmissions. These algorithms
are based on the observation that a person can often immedi-
ately recognize individual transmissions based on their visual
representations on the waterfall plot and determine their start
and stop times and the occupied range of frequencies. Fur-
thermore, with some experience a person can often tell the
type of transmission and wireless technology in use, even
though the waterfall plot is a severely reduced representation
of the radio spectrum; it is typically greatly undersampled and
contains no phase information.

As an example of a computer vision detection algorithm,
we outline our proposed dilate/erode algorithm. The pro-
posed algorithm is shown in Alg. 2. The input to the algorithm
is a two-dimensional matrix of PSD values P, as defined
in (1).With streaming input data, the algorithm can operate on
sub-matrices. The algorithm has several configurable param-
eters, namely: 1) relative power threshold rThr , 2) Gaussian
kernel size kSize, 3) number of dilate/erode operations d and
4) pruning area s. The output of the algorithm is represented
by a list of bounding boxes, as defined in (2).

The algorithm works as follows. After receiving a matrix
of PSD values (see Fig. 5a), the algorithm first performs

Algorithm 2 Dilate/Erode Algorithm
Input: P = pt,f ∈ Rm×n

Parameters: rThr , kSize, d , s
Output: X = {x1, . . . , xn}, xn = (tstart , tstop, fstart , fstop)n
1: G← gaussianBlur(P, kSize)
2: B← adaptiveThresholding(G, rThr)
3: for i = 0 to d do
4: B← dilate(B)
5: end for
6: for i = 0 to d do
7: B← erode(B)
8: end for
9: C ← findContours(B)
10: X ← getBoundingBoxes(C)
11: for each x ∈ X do
12: if (xtstop − xtstart )× (xfstop − xfstart ) < s then
13: X ← X \ x
14: end if
15: end for

a two-dimensional Gaussian filter on the matrix (Alg. 2,
line 1) using kernel of size kSize. This effectively blurs the
waterfall plot and decreases the effect of noise by trading
off some time and frequency resolution. Fig. 5b shows the
waterfall plot after the filtering step. The next step performs
adaptive thresholding (Alg. 2, line 2). Each element of the
matrix is compared to a threshold value and replaced with the
binary result of the comparison. The threshold is calculated
for each individual matrix element separately. A weighted
sum of neighboring values minus rThr is used as a threshold.
The weights are defined by a Gaussian window. Fig. 5c
shows the result of the thresholding step. To further reduce
the effect of noise, the binary matrix is then consecutively
subjected to d dilate and d erode operations (Alg. 2, lines
3-8). A dilate operation replaces a matrix element with a
logical OR function over a region. An erode operation sim-
ilarly replaces a matrix element with a logical AND over a
region. These steps are designed to remove single, isolated
matrix elements that were above the threshold and most
commonly represent noise. They also merge neighboring
regions of the plot that appeared above the threshold into a
single contiguous region. The matrix resulting from succes-
sive dilate and erode operations is shown in Fig. 5d. Finally,
the data are converted from a binary matrix form to a list
of bounding boxes, encircling the individual transmissions
where only bounding boxes that have an area of at least s
are kept (see Fig. 5e). These steps are shown in lines 9-15
of Alg. 2.
The most promising approach to improving the detection

usingmachine vision algorithms is by using deep learning [9].
However, for this work, we selected algorithms that do not
depend on training data. This way we are able to better focus
and understand the effect of the labeled data on the evaluation
of an automatic system.
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FIGURE 5. The processing steps of the dilate/erode algorithm.

V. EVALUATION
This section covers various aspects of the evaluation. We first
adapt existingmetrics frommachine learning for our purpose.
Then we describe the used dataset and discuss performance
aspects of the manual and automatic detection process.

A. METRICS
Before we can use an evaluation metric, we define the way
two detected wireless transmissions are compared by intro-
ducing the concepts of transmission span, overlap and inter-
section. Even in the case of two clear transmissions that are
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obviously the same, there might be small differences in their
detection due to slight errors in the manual placement of the
bounding boxes (see Section IV-A) or errors in the automatic
bounding box creation (see Section IV-B). Therefore there
might be deviations in their time/frequency parameters as
defined in (2).

In machine learning, the most commonly used metrics
for evaluating the performance of classification tasks are the
precision and recall [25]. We adapt the precision and recall
terms to our problem and we also introduce the agreement
precision and agreement recall metrics that are somewhat
similar to some of the metrics used in [9].

1) TRANSMISSION SPAN
We define the span of a transmission bounded by a box x
as spanm(x) = mstop − mstart where mstart and mstop can
be time or frequency metrics (m ∈ {t, f }) as defined in (2).
In other words, the time or frequency span of transmission
x refers to the dimensions of that transmission as defined
by the time-frequency bounding box - a visual illustration is
presented in Fig. 6.

FIGURE 6. Visualization of span and overlap for two different
transmissions. Frequency span is equal to 4 and 2 units while time span
is 2 and 1 units for blue and red bounding boxes respectively. Frequency
overlap between the two transmissions is 2 and time overlap is 1.

2) TRANSMISSION OVERLAP
We define the overlap of two transmissions bounded by
boxes x1 and x2 as overlapm(x1, x2) = min(mstop1 ,mstop2 ) −
max(mstart1 ,mstart2 ) where mstarti and mstopi can be time or
frequency metrics (m ∈ {t, f }) as defined in (2). The overlap
calculates the length of overlap or, in case there is no overlap,
the minimal negative distance needed for the overlap to occur
between one-dimensional projections of two transmissions in
time on y-axis or frequency on x-axis.

Two transmissions x1 and x2 perfectly overlap when the
spans of all metrics of one transmission are equal to the spans
of all metrics of the other transmission and the overlaps are
equal to the spans for all metrics: spanm(x1) = spanm(x2) =
overlapm(x1, x2); ∀m,m ∈ {t, f }. In this case, the red and blue
rectangles in Fig. 6 have the same area and overlap perfectly.
However, in most cases, there is only partial overlap between
transmissions. In the case of the example given in Fig. 6,
the red dashed transmission overlaps on half time and half
frequency span of the blue solid transmission.

3) TRANSMISSION INTERSECTION
We define transmission intersection, an extended set intersec-
tion operation, on two sets of transmissions X1 and X2 as a
set of all transmissions from set X1 whose bounding boxes
overlap with a bounding box of at least one transmission
from set X2: X1 ∩ X2 = {x1 : x1 ∈ X1 ∧ ∃x2 ∈
X2 : overlapm(x1, x2) > 0; ∀m,m ∈ {t, f }}. This defi-
nition implies that a single transmission from one set can
intersect with multiple different transmissions from the other
set. A regularization factor that alleviates the ramifications
of such an assumption can be introduced. The transmission
intersection operation and symbol are used synonymously to
regular intersection operation in the rest of this section.

4) PRECISION AND RECALL
Precision is defined as the fraction of evaluated detected
wireless transmissions that intersect the detected wireless
transmissions attributed to ground truth, i.e. the fraction of
evaluated detected transmissions that are correct with respect
to the detected ground truth transmissions.

precision =
|Xe ∩ Xgt |
|Xe|

(3)

where X (X = Xe ∪ Xgt ) is the set of all detected trans-
missions, Xe is the set of evaluated transmissions detected
using a manual or automatic pipeline and Xgt is the set of
transmissions according to the ground truth detected using a
manual or automatic pipeline.
Recall is defined as the fraction of detected wireless trans-

missions attributed to ground truth that intersect the evaluated
detected wireless transmissions.

recall =
|Xgt ∩ Xe|
|Xgt |

(4)

5) AGREEMENT PRECISION AND AGREEMENT RECALL
These metrics measure the accuracy of overlaps (i.e. agree-
ment) only on the transmissions that are in the intersection
of both sets: 1) the evaluated detected transmissions and
2) the detected ground truth transmissions. In other words,
agreement metrics are computed only for wireless transmis-
sions from both sets that have overlapping bounding boxes.
We define X̃e ⊆ Xe as a set of evaluated detected trans-
missions that overlap with at least one detected ground truth
transmission and X̃gt ⊆ Xgt to be the set of detected ground
truth transmissions that overlap with at least one evaluated
detected transmission.
Agreement precision is defined as the average fraction of

evaluated detected transmissions’ bounding boxes that over-
lap with the detected ground truth transmissions’ bounding
boxes. For two overlapping transmissions xe ∈ X̃e and xgt ∈
X̃gt we can calculate the agreement precision as

precisionA(xe, xgt ) =
overlapt (xe, xgt )+ overlapf (xe, xgt )

spant (xe)+ spanf (xe)
.

(5)
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If X̃gtxe is a set of all detected ground truth transmissions over-
lapping with an evaluated detected transmission xe, the aver-
age agreement precision is then given by

precisionA =

∑
xe∈X̃e

∑
xgt∈X̃gtxe

precisionA(xe, xgt )

|X̃e| +
∑

xe∈X̃e |X̃gtxe |
. (6)

Similarly, agreement recall is defined as an average frac-
tion of detected ground truth transmissions’ bounding boxes
that overlap with evaluated detected transmissions’ bounding
boxes. It can be defined for two overlapping transmissions as

recallA(xe, xgt )=
overlapt (xe, xgt )+overlapf (xe, xgt )

spant (xgt )+spanf (xgt )
. (7)

If X̃exgt is a set of all evaluated detected wireless transmissions
overlapping with a detected ground truth transmission xgt ,
the average agreement recall is given by

recallA =

∑
xgt∈X̃gt

∑
xe∈X̃exgt

recallA(xe, xgt )

|X̃gt | +
∑

xgt∈X̃gt |X̃exgt |
. (8)

As time and frequency dimensions have different units,
a weight function may be applied to each dimension in (5)
and (7) to balance the discrepancies.

The first intuition when calculating agreement precision
and agreement recallwould be to use the area of the bounding
boxes. However, area-based metrics do not aptly measure real
performance. From Fig. 6, it can be seen that in the case of
the two transmissions bounded by the blue solid rectangle
and the red dashed rectangle, the area of correctly detected
transmission would correspond to 25% whereas using the
averaged time/frequency overlap the overlap is 50%.

B. DATASET
In this evaluation, we use 24 hours of continuous spectrum
measurements in a 192 kHz wide band inside the unlicensed
European 868 MHz SRD band recorded using a proprietary
spectrum sensing device. The device was placed on top
of a building in a mid-sized European city. We recorded
5 PSD measurements per second using 1024 FFT bins. Dur-
ing the measurement collection, we observed radio traffic
common for this frequency band, such as IEEE 802.15.4,
LoRA, Sigfox, and some proprietary transmissions. We also
observed many transmissions of unknown origin and tech-
nology. We make the described unlabeled 24 hours worth
of spectrum as well as random subsets with manual labels
publicly available.9

C. MANUAL PROCESS
For evaluating the manual process, two experts first man-
ually detected transmissions on pseudo-random 30 seconds
long spectrum excerpts from the dataset, as described in
Section IV. The excerpts were uniformly randomly extracted
and were 10-15 minutes apart. Identical excerpts were pre-
sented to both experts to allow for cross-comparison. The

9http://log-a-tec.eu/datasets

two experts each labeled 4 runs consisting of 112 windows of
30-second spectrum excerpts totaling 56 minutes of labeled
spectrum per run and needed on average approximately
90 minutes to label. The required time for labeling was larger
by a factor of 1.6. From this experience, it seems that for
detecting all transmissions on the complete 24-hour dataset,
more than 38 hours of human labor would be required.

Expert 1 detected 1290, 1544, 1037 and 661 transmissions
whereas expert 2 detected 1353, 1834, 1986 and 1844 trans-
missions for 0 dB, 3 dB, 6 dB and 10 dB data preprocess-
ing configurations respectively (see Section IV-A), totaling
11549 manually detected transmissions.

1) THE INFLUENCE OF THRESHOLDS ON SELF-AGREEMENT
Tables 1 and 2 evaluate the influence of data preprocessing
thresholds on the manual annotations of experts 1 and 2,
measured by the precision/recall metrics. The columns of
the table indicate the manually detected transmissions for
various preprocessing thresholds that we fix as ground truth.
The rows indicate the same detected transmissions for var-
ious thresholds that are subject to evaluation. For instance,
the notation x dB (e) means that the dataset was generated at
an x dB threshold used by the labeling tool and is subject to
evaluation. x dB (gt) means that the dataset was generated at
an x dB threshold used by the labeling tool and is considered
as ground truth. As the two tables evaluate self-agreement
at different preprocessing thresholds, they are symmetric,

TABLE 1. The influence of thresholds on the manual labels of expert 1.
Evaluates self-agreement using precision/recall.

TABLE 2. The influence of thresholds on the manual labels of expert 2.
Evaluates self-agreement using precision/recall.
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therefore reading only the part below the diagonal is
sufficient.

From the results in Table 1, we can see that the higher the
threshold set at preprocessing time, the lower the precision
of the self-agreement for expert 1. Particularly, the precision
between the 3 dB (e) evaluated set and the 0 dB (gt) ground
truth set is 97% and it drops to 53% for the 10 dB (e) evaluated
set. The precision between the 10 dB (e) set and the 6 dB
(gt) drops to 63%. As expected, the recall undertakes the
opposite trend and is the highest between the 10 dB (e) and the
6 dB (gt) sets. Similar observations hold for labeled datasets
created by the second expert and listed in Table 2, but in
general this expert achieved much better results in terms of
precision.

For brevity, the results according to the agreement pre-
cision and agreement recall metrics are omitted from this
section, however, the same conclusions can be drawn. In order
to diminish the human bias and reduce the labeling error
it is desirable that not only several independent labels are
produced by multiple individuals, but also multiple labels are
produced by the same expert.

2) THE INFLUENCE OF THRESHOLDS ON
INTER-EXPERT AGREEMENT
Tables 3 and 4 evaluate the agreement between the two
experts. The columns indicate the preprocessing thresholds
at which the manual labels of both experts are compared.
The rows specify which expert’s labels are under evaluation
as the labels of the other expert are fixed as ground truth.
The results in Table 3 show that with the increase of the
preprocessing threshold, the precision of the labels generated
by the second expert is dropping. In this case, the drop can
be explained by expert 1 detecting fewer transmissions than
expert 2 due to transmissions attributed to background noise
by the preprocessing step. However, once a transmission is

TABLE 3. The influence of thresholds on the manual labels. Evaluates
inter-expert agreement using precision/recall.

TABLE 4. The influence of thresholds on the manual labels. Evaluates
inter-expert agreement using agreement precision/recall.

labeled by both experts, it can be seen from Table 4 that the
inter-expert agreement between overlapping detected trans-
missions remains almost constant and is not influenced by
the threshold.

D. AUTOMATIC PROCESS
For the evaluation of the automatic process, the algorithms
discussed in Section IV-B were executed on the complete
24-hour dataset and thus automatically detected transmis-
sions were obtained. The parameters for each algorithm were
manually selected and no optimization was performed. The
TX grouping algorithm detected 57,152 transmissions over
24 hours of spectrum sensing data. The dilate/erode algo-
rithm detected only 36,204 transmissions.

1) INTER-ALGORITHM AGREEMENT
Table 5 presents the results of evaluating the two automatic
algorithms against each other. The first row of the tables
assumes that the ground truth is the set of labels generated by
the TX grouping algorithm and evaluates the labels generated
by the dilate/erode algorithm. The second row presents the
opposite evaluation. The precision and recall are relatively
high, signifying the algorithms identify similar phenomena
in the spectrum as transmissions. Higher precision and lower
recall of the dilate/erode algorithm as compared to the TX
grouping algorithm may be attributed to discrepancies in
the number of detected transmissions between the two algo-
rithms. The algorithms disagree to some extent regarding
the transmission bounding box placement, as indicated by a
lower score of agreement precision and agreement recall.

TABLE 5. Inter-algorithm agreement for automatically detected
transmissions.

2) DETECTION ALGORITHM EVALUATION
Tables 6 and 7 evaluate the automatically detected transmis-
sions considering manually created labels of both experts
as ground truth for different preprocessing thresholds.
The results show that the dilate/erode algorithm exhibits
slightly better precision (up to 85%) and agreement recall

TABLE 6. Precision and recall for the dilate/erode and the TX grouping
algorithms with various manual detection thresholds.
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TABLE 7. Agreement precision and agreement recall for the dilate/erode
and the TX grouping algorithms with various manual detection thresholds.

(up to 83%). On the other hand, the TX grouping algorithm
exhibits higher recall (up to 94%) and agreement precision
(up to 80%). This means that, on unfiltered spectrum scans
where noise is present, the dilate/erode algorithm detects
transmissions more as a human would compared to the TX
grouping algorithm. However, once a transmission is detected
by both human and automatic processes, the overlap between
the automatically generated bounding box compared to the
manually generated bounding box is higher for the TX group-
ing algorithm.

Different preprocessing thresholds have a negligible
impact on agreement precision and agreement recall, the dif-
ference is only noticeable at 10 dB threshold where agree-
ment precision drops and agreement recall increases. This
can be explained by the fact that by showing less information
in spectrograms during the manual process results in less
manually detected transmissions. Precision and recall are
more susceptible to a threshold change, high dependence on
the manual process shows in the mutual trends when evalu-
ating the two algorithms at different thresholds, i.e. precision
increases as the recall decreases for both algorithms when we
compare results for 0 dB and 3 dB thresholds.

3) DETECTION ALGORITHM TUNING
Detection algorithm tuning represents an essential task for
ensuring satisfactory automatic system performance. Tuning
is tightly coupled with 1) data characteristics, such as sam-
pling rate and sensed radio band, and 2) specific objective,
i.e. whether we give any preference with respect to what we
aim to detect in the spectrum.

In this particular case, we can optimize along one or all
four metrics we use for evaluation as defined in Section V-A.
Precision and recall are well known to often follow opposite
trends [26], i.e., when one increases, the other decreases
and vice versa. For example, optimizing only precision can
result in a system that would always identify the entire
spectrum as one large transmission even though the opti-
mization successfully found a global maxima. Most often,
adjustment of parameters will exhibit compromises, such as
an increase in precision but a drop in recall simultaneously.
Parameters should be jointly optimized, optimizing each
parameter separately will often result in finding only a local
optimum.

Section IV-B1 identified thr , df , p, dt and k for Alg. 1
as the parameters that affect the outcome of the algorithm

while in section IV-B2 rThr , kSize, d and s for Alg. 2 are
identified as important. The evaluation metrics for various
configurations of these parameters are calculated using the
dataset presented in Section V-B and manual labels for all
preprocessing thresholds (both experts) from Section V-C.

FIGURE 7. Evaluation metrics for the TX grouping algorithm for various
values of thr .

Fig. 7 displays how different values of thr affect the per-
formance of the TX grouping algorithm. We can see that there
is an apparent precision versus recall and agreement pre-
cision versus agreement recall trade-off which corresponds
to more detections at lower values of thr and less detec-
tions at higher values of thr . Considering our optimization
goals, we can either decide to optimize precision/recall or
agreement precision/recall. We select thr to be −121 as it
maximizes the sum of all metrics. Similarly as thr , parameters
p for the TX grouping algorithm, and rThr and s for the
dilate/erode algorithm influence the number of detections
and consequently the detected transmissions’ morphology.
Parameters that more directly influence the morphology of
detected transmissions are df , dt and k for the TX grouping
algorithm, and kSize and d for the dilate/erode algorithm.
Whereas the number of detections is more closely related to
precision and recall, the morphology mainly influences the
agreement precision and agreement recall as these metrics
measure the level of overlap between detected transmissions
and ground truth.

As all parameters of both algorithms exhibit similar behav-
ior as displayed in Fig. 7, we omit the figures, however, we list
the optimal parameter values in Table 8 and Table 9.

TABLE 8. Optimal parameter selection for the TX grouping algorithm.

TABLE 9. Optimal parameter selection for the dilate/erode algorithm.
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VI. CONCLUSION
In this paper, we proposed a framework that enables the
design and development of automatic detection of wireless
transmissions. Under this framework, we implemented and
evaluated manual and automatic processes for transmission
detection from PSD data. Our results confirm that generating
human-labeled data is an expensive and imperfect process.
Although limited in scale to over-generalize, the manual
labeling of 8 sets of 56 minutes of continuous spectrum
data took on average 90 minutes per set. Regardless of the
inter-expert agreement on the labeled data reaching 99% in
precision at 40% recall in particular cases, such agreement
has a high variance by considering studies from larger manual
labeling efforts conducted in other communities and more
work should be conducted with respect to manual ground
truth generation for wireless transmissions. The two auto-
matic transmission detection algorithms evaluated in this
study have a satisfactory performance of up to 93% precision
with respect to each other and of up to 85% precision with
respect to the manually generated labels used as ground truth.
However, more work is necessary to understand the influence
of the labeled data on detection algorithm evaluation and
possible machine learning model training, especially now
that significant efforts are being invested in solving various
wireless communication problems using supervisedmethods.
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