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ABSTRACT To simultaneously enable multiple autonomous driving services on affordable embedded
systems, we designed and implemented LoPECS, a Low-Power Edge Computing System for real-time
autonomous robots and vehicles services. The contributions of this paper are three-fold: first, we developed
a Heterogeneity-Aware Runtime Layer to fully utilize vehicle’s heterogeneous computing resources to
fulfill the real-time requirement of autonomous driving applications; second, we developed a vehicle-edge
Coordinator to dynamically offload vehicle tasks to edge cloudlet to further optimize user experience in the
way of prolonged battery life; third, we successfully integrated these components into LoPECS system and
implemented it on Nvidia Jetson TX1. To the best of our knowledge, this is the first complete edge computing
system in a production autonomous vehicle. Our implementation on Nvidia Jetson demonstrated that it could
successfully support multiple autonomous driving services with only 11W of power consumption, and hence
proves the effectiveness of the proposed LoPECS system.

INDEX TERMS Edge computing, QoE (quality of experience), low power, autonomous driving.

I. INTRODUCTION
Many major autonomous driving companies, such as Waymo
and Baidu, are engaged in a competition of designing
autonomous vehicle which can operate reliably meanwhile
in an affordable cost, even in the most extreme environ-
ments. Yet, the cost to build such an autonomous vehicle is
extremely high, sensors part could easily take over $100,000,
the computing system adds another $30,000, resulting in a
demo autonomous vehicle easily over $300,000 [1]. Even
with the most advanced hardware, having autonomous vehi-
cles co-exist with human-driven vehicles in complex traffic
conditions remains a dicey proposition.

To make autonomous driving universally adopted,
the major challenge is to simultaneously enable kinds of
computation intensive task on a low-power edge computing
system with an affordable price. Those autonomous driving
services like real-time localization through Simultaneous
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Localization And Mapping (SLAM), real-time obstacle
detection for perception and decision making, should con-
sumes large amount of sensor data and poses huge demands
for computing power as well as battery capacity.

However, the design of such a low-power edge computing
system is extremely challenging. First, these computation-
intensive services are made of complex pipelines and always
have tight real-time requirement. For example, inertial mea-
sure unit (IMU) data can rush in at a rate as high as 1 KHz
in SLAM, requiring the pipeline to consume sensor data
at a speed be able to produce 1,000 position updates in
a second. Thus, the longest stage in the pipeline cannot
take more than 1 millisecond to process. Second, sensor
data forms a time series and are independent to each other.
That limits the parallelism can be mined for higher effi-
ciency. For movement detection, pictures captured at a rate
of 60 frames per second (FPS) flows into CNN pipeline.
The objects recognition should be finished within 16 ms.
Last, such vehicle computing system has extremely limited
energy budget as it runs on the mounted battery. Therefore,
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it is imperative to optimize power consumption in these
scenarios.

To this end, we proposed LoPECS, a Low-Power Edge
Computing System to fully exploit the heterogeneous com-
puting resource and explore the offloading potential of edge
cloudlet when it passes by. As a demo, a autonomous vehicle
the DragonFly Pod, has been developed for a total cost under
$10,000 when mass-produced. It is dedicated for low-speed
scenarios such as university campuses, industrial parks, and
areas with limited traffic.

As far as we know, this is the first paper on a complete edge
computing system of a production autonomous vehicle. The
contributions of this paper are as follows:

First, to fully utilize the heterogeneous computing
resources of low-power edge computing systems, we devel-
oped a Heterogeneity-Aware Runtime Layer to schedule
autonomous driving computing tasks to heterogeneous com-
puting units for optimal real-time performance. More details
can be found in Section 4.

Second, at times computing offloading from vehicle to
cloudlet leads to energy efficiency, but whether to offload
and how to offload remains an unsolved problem. To address
this problem, we developed a vehicle-edge coordinator to
dynamically offload tasks to edge cloudlet to optimize user
experience in autonomous driving, in terms of lower power
and extended battery life. More details of the offloading
algorithms can be found in Section 5.

Last but not least, we successfully integrated these compo-
nents into our proposed LoPECS system and implemented
it on Nvidia Jetson TX1. We demonstrated that we could
successfully support multiple autonomous driving services
with only 11 W of power consumption, and thus proving the
effectiveness of the proposed LoPECS system. More details
on the system integration can be found in Section 6.

II. AUTONOMOUS DRIVING SERVICES
Before going into the details of the LoPECS system design,
let us briefly examine the services needed in autonomous
vehicle systems. As shown in Figure 1, a fully functioning
autonomous vehicle tightly integrates many technologies,
including sensing, localization, perception, decision making,
as well as the auxiliary service like smooth interaction with
Edge-Cloud platforms for high-definition (HD) map genera-
tion, data storage and etc.

Each vehicle uses sensors to perceive environment
and safely navigate [1], [2]. Sensor data inputs in
localization—the process of understanding its
environment—and in making real-time decisions about how
to navigate within that perceived environment. These key
tasks involve processing a high volume of sensor data (as
high as 2GB/S) in real-time and require a complex com-
putational pipeline. In existing designs, an autonomous car
must typically be equipped with multiple computing servers,
each with several high-end CPUs and GPUs for such high
load computing. Consequently, it leaves autonomous vehi-
cles computing systems another big problem in high power

FIGURE 1. Autonomous driving technology stack.

consumption — often thousands of watts [20]. Thus, it’s
crucial to offer a low-power autonomous driving solution
with limited vehicle-mounted battery.

A. SENSING
Normally, an autonomous vehicle consists of several major
sensors. Since each type of sensor presents advantages and
drawbacks, sensor fusion is used for full sense coverage.
These sensors typically include laser imaging detection and
ranging (LiDAR), a global positioning system (GPS), an iner-
tial measurement unit (IMU), various cameras, or any com-
bination of these sensors. They are featured in different
accuracy, data volume and update frequency, when com-
bined, it generates around multiple gigabytes of raw data
per second.

B. PERCEPTION
Perception subsystem percepts the environment by under-
standing the extracted meaningful information from raw sen-
sor data. Its main tasks include localization, object detection,
and object tracking.

1) LOCALIZATION
SLAM refers to the process of constructing or updating the
map of an unknown environment while simultaneously keep-
ing track of location of agent. We can use GPS/IMU + cam-
era, which is a visual SLAM, or GPS/IMU + LIDAR, which
is a laser-based SLAM. The visual SLAM undergoes the
three-step simplified pipeline: 1) triangulating stereo image
pairs, a disparity map is used to derive depth information for
each point; 2) estimating the motion between the past two
frames by establishing correlations between feature points in
different frames 3) deriving the current position of the vehicle
by comparing the salient features against those in the known
map [5].

In DragonFly pod, we use our proprietary SLAM sys-
tem [7], [8] that utilizes a stereo camera for image gener-
ation at 60 FPS, with each frame having the size of 640 X
480 pixels. Meanwhile, the IMU device generates 200 Hz of
IMU updates (three axes of angular velocity and three axes of
acceleration).

2) RECOGNITION AND TRACKING
The rapid development of deep learning technology guar-
antees significant object detection and tracking accuracy.
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Convolutional Neural Network (CNN) is a type of Deep
Neural Network that is widely used in object recognition
tasks [4]. Note that in a normal network we would have
multiple copies of the convolution, activation, and pooling
layers. The network thus can first extract low-level features,
and from the low-level it derives high-level features, and at
the end it reaches the Fully Connected Layer to generate the
labels associated with the input image.

Once an object is identified using a CNN, next comes
the automatic estimation of the trajectory of that object as it
moves. It is to track nearby moving vehicles and pedestrian
and then ensure the current vehicle does not collide with those
moving objects

In DragonFly pod, we use the Single Shot Multi-
Box Detector [9], which discretizes the output space of
bounding boxes into a set of default boxes over different
aspect ratios and scales per feature map location.

C. DECISION
In the decision stage, action prediction, path planning, and
obstacle avoidance mechanisms are combined to generate an
effective action plan in real time.

The decision unit generates predictions of nearby objects
then decides on an action plan based on these predictions. The
stochastic model of the reachable position sets of the other
traffic participants is built to prediction. Each reachable set
are associated with probability distributions. After prediction,
path planning comes for best roads choose. The determin-
istic approach searches all possible paths and utilize a cost
function to identify the path. However, its full search may be
unable to deliver real-time plans. The probabilistic planners
have been utilized to grantees real-time planning decision.

D. MULTIMEDIA
A generic pipeline of speech recognition can be divided into
the following stages: First, the speech signal goes through the
Feature Extraction stage, which extracts feature vector [28].
Here, we utilize a GMM-based feature extractor; Then the
extracted feature vector is fed to the Decoder, using an acous-
tic model, a pronunciation dictionary, and a language model
as input. The decoder then decodes the feature vector into a
list of words. Note, we utilize the speech model presented
in [10], which uses GMM for classification and HMM for
decoding.

E. SERVICES CHARACTERIZATION
1) NO ONE WINS
The characterization study is focused on computer vision
with the evaluated workloads listed in Table I. To evalu-
ate CV algorithms on target accelerator platforms, OpenCV
CUDA image processing and feature extraction modules,
vendor-supplied FPGA benchmarks, and FastCV library are
used on GPU-based SoC, FPGA-based Soc, and DSP-based
SoC, re-spectively. Based on AlexNet [6], the inference of
CNN is evaluated onGPU-based SoCwith CuDNNv5 library,

TABLE 1. Evaluated workload.

TABLE 2. Execution time per frame of cv workloads (in ms).

and on FPGA-based SoC using hand-crafted OpenCL kernels
of convolution layers and fully-connected layers.

From Table II., it’s interesting to find that No single accel-
erator wins all. Workloads such as Convolution with regular
parallel patterns are best suited for GPU execution over other
computing platforms, that is because of their favorite in Sin-
gle Instruction Multiple Thread (SIMT) execution. Similar
observation can be made in DL workloads where GPU shows
better performance across all layers than FPGA. However,
Feature Detect, with more control divergences degrading per-
formance on GPU, is suitable on Single Instruction Multiple
Data (SIMD) execution onDSP. Among various Optical Flow
algorithms on different platforms, only the two implementing
the same Lucas Kanade algorithm are considered, where
FPGA shows better performance than GPU. Notice that for
Gaussian Blur CPU shows slightly better performance than
mGPU, because multicore is boosted for acceleration and
there is no overhead for launching kernels.

The shown execution time difference indeed demonstrates
the heterogeneity of underlying computing units when they
get the chance to perform some autonomous driving oper-
ations. If the system can be aware of such heterogeneity,
task can be performed in its preferable unit with tailor-
made hardware acceleration. Multiple heterogeneous units
canwork concurrently in a parallel manner for the exploration
of parallelism in different grain, task level or fine-grained
thread level. Thus, within the same budget, heterogeneity
aware execution allows for much great efficiency and longer
battery life. In this paper we will explore this heterogeneity
by LoPECS, a Low-Power Edge Computing System and talk
about its implementation on DragonFly pod.

III. LoPECS ARCHITECTURE
As discussed in the introduction, to enable the affordable
and reliable DragonFly Pod, we need to integrate multiple
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FIGURE 2. LoPECS architecture.

autonomous driving services onto a low-power edge comput-
ing device.

This poses several challenges: first, as the edge devices
usually consist of heterogeneous computing units, computing
and energy efficiency can only be achieved if the heteroge-
neous computing resources can be fully utilized. However,
mapping different tasks dynamically to different computing
units is complex and challenging, and we do not want to
expose this complexity to the service developer. Hence, we
need a runtime to dynamically manage the underlying het-
erogeneous computing resources as well as schedule different
tasks onto these units to achieve optimal performance or
energy efficiency.

Second, with multiple services running on a
resource-constrained device, we need an extremely
lightweight operating system to manage these services and
facilitate the communications between them. Existing operat-
ing systems, such as ROS (Robot Operating System), impose
very high computing and memory overheads and thus not
suitable for our design.

Third, one way to optimize energy efficiency and to
improve the computing capability of edge vehicles is to
offload computing workloads to the cloud when possi-
ble. However, dynamically deciding whether to offload,
and how to offload is another complex and challenging
task. To achieve, we need to develop algorithms to handle
offloading.

With all these purpose, in this section we propose LoPECS,
aLow-PowerEdgeComputing System for autonomous driv-
ing service. As shown in Figure 2, At the application layer,
currently LoPECS supports localization, obstacle detection,
speech recognition and etc. These services support the safe,
efficient and realtime driving behaviors. Here, we have intro-
duced a layer named QoE (Qaulity of Experience) Oriented
Service Classification. It has the ability to classify different
autonomous driving service into QoE-Time, QoE-Insensitive
andQoE-Energy. Such grouping is based on service’s features
in realtime requirement and hungers for energy cost. With
such views, we can get a clear eye on their desires for edge
offloading.

FIGURE 3. The LoPECS runtime design.

To integrate these services, we developed a Realtime OS,
an extremely lightweight operating system that manages
various services and facilitates their communications with
almost zero overheads. Realtime OS serves as the basic com-
munication backbone. Comparing to ROS, Realtime OS is
extremely lightweight and optimized for both inter-process
communications on the same device, as well as inter-device
communications. In this paper, we mainly talk about the task
parallelism and cooperation, thus we will leave Realtime OS
in our future work.

Below Realtime OS is the LoPECS Runtime layer, which
implements two functions: first, it provides an abstraction of
the underlying heterogeneous computing resources through
and provides acceleration operations; second, it implements
a Heterogeneity Aware Scheduling algorithm to manage the
mapping of tasks on heterogeneous hardware systems.

In addition, in order to effectively control the energy
consumption of autonomous vehicles, LoPECS contains an
Vehicle-Cloudlet Coordinator to dynamically offload some
tasks to the cloud to achieve optimal energy efficiency.
Specifically, taking into account the mobility of vehicles
and the cloud availability, we developed an algorithm to
dynamically determine the weight of task offload as well as
cloud service node selection. We delve into each of these
components in the next few sections.

IV. LoPECS RUNTIME
The first major contribution of this paper is the design and
implementation of the runtime layer to dynamically map
various tasks onto the underlying heterogeneous computing
units. This runtime layer is crucial to simultaneously enable
multiple autonomous driving tasks on computing and energy
resource constrained edge computing systems.

Figure 3 shows the design of the LoPECS Runtime.
To manage heterogeneous computing resources, we utilized
OpenCL, an open standard for cross-platform, parallel pro-
gramming of diverse computing units [31]. OpenCL provides
the interface for LoPECS to dispatch various applications to
the underlying computing resources.

On top of OpenCL, we designed and implemented a Het-
erogeneity Aware Scheduler to manage and dynamically dis-
patch incoming tasks. Our scheduler is a two-layer design: the
inter-core scheduler dispatches incoming tasks, such that they
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FIGURE 4. The heterogeneity aware scheduler design.

are added to the queue of different heterogeneous computing
units based on resource availability and task characteristics.
Then within each computing resource queue, the inner-core
scheduler determines the order of execution based on the
priority and dependency of each task.

A. THE HETEROGENEITY AWARE SCHEDULER
As in Figure 4., theHeterogeneity Aware Scheduler classifies
tasks into two different categories by identifying data depen-
dencies based on the Directed Acyclic Graph (DAG) analysis.
It differentiates underlying kinds of computing resource by
the foreknowledge of their heterogeneity. It is the offline
profiling results of various autonomous driving tasks on kinds
of configured units.

1) CLASSIFYING TASKS BY DEPENDENCIES
Dependencies can appear between tasks, where the next task
relies on the output of one or multiple previous tasks and it
has to wait until all the previous tasks are finished. So, we can
identify the data dependency between jobs by profiling the
DAG graph of applications while accepting task submission.
With dependencies, we can group task into two pools: one for
dependent task and the other for independent.

2) RESOURCE ALLOCATION BETWEEN TASK POOLS
We trigger different scheduler to control the resource allo-
cations between two types of job pools. If there are only
independent jobs, the Dif-Min policy in Inter-core Scheduler
is developed to dynamically control the resource among these
tasks. As Dif-HEFT policy in Inner-core Scheduler is applied
to the independent job pool instead, all of the resources
allocated to this pool will be allocated to a single task.

B. INTER-CORE SCHEDULER
In detail, the Inter-core Scheduler is triggered for dispatch
interdependent tasks to the selected processor. Note that we
constrain that each task is only scheduled to one type of
computing unit, thus there is no dependencies between tasks.
To this end, the inter-core scheduling can be defined to be
scheduling independent autonomous driving tasks on hetero-
geneous multi-core platform [36].

Task scheduling in heterogeneous environments has been
proven to be a NP-complete problem and no absolute opti-
mum exists. In [34], authors made a comparison of 11 inde-
pendent task scheduling heuristics, including Min-Min [29],
Max-Min [39], Genetic Algorithm (GA) [40]. The results
show that Min-Min has the best comprehensive performance.

However, it is still incapable in the cases where cores have
big performance difference or application is consists of
a large number of short-time tasks. Viewing these short-
comings, to construct a efficient Inter-Core Scheduler for
autonomous driving runtime, we propose an improved heuris-
tic named Dif-Min.

In order to better describe the scheduling heuristic, let us
first give some definitions as follows [37].
Metatask: a collection of independent tasks to be assigned,

Metatask = {ti|0 < i ≤ γ }

U : the task queue holding unmapped tasks. When schedul-
ing starts, U =Metatask.
Q: the set of heterogeneous cores for scheduling, Q = {cj|

0<j ≤ χ}
EET(ti,cj): We use the ETC-Table to store the EET value.

Each EET(ti,cj) in table shows the Expected Execution Time
of task ti|ti ∈Metatask, when it is running on the unit
cj|cj ∈ Q. If unit ck is the duplicate core of cj, we will
have EET(ti,cj)=EET(ti,ck ). The EET value includes the
computation time as well as the time to move the executable
and data associated with task ti from its known source to the
destination core. For cases when it is impossible to execute
task ti on core cj, the value of EET(ti, cj) is set to infinity.
mat(cj): Machine availability time for core cj,0<j ≤ χ .

It is the earliest time core cj can be available for next round
dispatch.
ct(ti,cj): The completion time for task ti on core cj.

ct(ti,cj) =mat(cj)+EET(ti,cj),
Makespan: The execution time of Metatask. Makespan =

max ct(ti,cj), ti ∈Metatask, cj ∈ Q.
Therefore, the purpose of Inter-core scheduler is to make

wise task dispatching to minimize makespan in autonomous
driving on top of heterogeneous hardware. ForDif-Min, as its
name saying, it will use performance difference and minimal
completion time as the basis for heuristics.

To do so, eq.1 and eq.2 are proposed to describe the perfor-
mance difference of task ti on different cores, one indicates
the absolute performance difference and the other shows
the relative performance difference. In another word, these
two difference indicators demonstrate how much maximal
benefits we can get if the task is properly scheduled.

(1) The ratio of the best execution time over the worst one
of one computing unit:

Div(ti) =

|x|
max((EET (ti, cj)))

j=1

|x|
min(EET (ti, cj))

j=1

(1)

(2) The difference between the best and the worst execution
time of each task on each computing unit:

Sub(ti) =
|x|
max
j=1

(EET (ti, cj))−
|x|
min
j=1

(EET (ti, cj)) (2)
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FIGURE 5. Execution flow of inter-core scheduling.

In Dif-Min, we also proposed ET-table, 1∗χ dimension,
where χ is the number of computing units. ET-table is used to
record the sum of execution time of tasks had been allocated
to each computing unit. In another word, ET-table records the
working load each computing unit has taken.

As shown in Figure.5, beginning with U = Metatask, Dif-
Min first find out the task ti withDiv(ti) =Min(Div(t),t ∈ U ).
After that, it maps the task ti to the computing unit cj that
can complete all the assignment including ti in the shortest
time, i.e. Min(ET(cj)+ EET(ti,cj)). Once task ti is dispatched,
we update the ET-table by adding the execution time of ti
in M (cj). The computing unit with minimal sum result is
the first unit target for next round scheduling, since it can
provide the most available time slots for future execution.
When task ti finishes, we remove it from task queueU and we
repeat this process until all tasks have been scheduled, i.e U
is empty. The time complexity of Dif-Min is O(χ∗γ ), where
χ is the number of computing unit and γ is the number of
tasks inMetatask. Comparedwith the complexity ofO(χ∗γ 2)
in Min-Min, Dif-Min can effectively reduce the scheduling
complexity.

If the task with largestDiv(ti) is not unique, we further give
priority to the task with largest Sub (ti) and dispatch that task
first. If the task with largest Sub(ti) is not unique too, we then
randomly select a task from the candidates. The performance
difference, Div(ti) and Sub(ti), can be viewed as the room
for performance improvement when the task ti is accelerated
to the most extend. Thus, task ti with maximum difference
deserves acquirement of the fastest unit since it can contribute
the most to the execution time reduction.

C. INNER-CORE SCHEDULER
After Inter-Core Scheduling, all computing units have been
assigned with tasks, which are queued to be processed.
Now the Inner-core scheduler takes over. Different from
the Inter-Core scheduling, the inner-core scheduling should
mine the dependency between tasks. A task turns to be ready
only after all its preceding tasks have been executed. Thus,
Inner-core scheduler can be described as scheduling multiple

TABLE 3. Data setup.

dependent tasks involved in the applications to a certain
number of heterogeneous processors, expecting to finish the
application in the shortest time [40], [42]. In [38], author
concludes in a comprehensive way, HEFT (Heterogeneous
Earliest Finish Time) is the optimal choice.

In eq.3, inHEFT the dependency weight of task ti includes
the weight of its succeeding tasks, the average communi-
cation cost of data between task ti and tj when they are
executed in different units, and the average execution cost of
ti. We incorporate the feature of computing unit into HEFT
and propose a heterogeneity aware version namedDif-HEFT.
In Dif-HEFT, the priority of ti has been augmented with its
absolute performance difference Div(ti) value. Knowing how
much improvement gap between units, the decision on target
unit will try to accelerate the execution of ti to themost extend
meanwhile follow up the preexisting dependency topology.

Wt(ti) =
|x|
Avg
k=1

(EET (ti, ci))

+ max
ti∈Succ(ti)

{
Wt(tj)+

|x|
Avg
k=1

(Comm
tionck

(ti, ci))
}

(3)

Pri(ti) = Wt(ti)+ Div(ti) (4)

With Dif-HEFT, we can take a simple two-step solution:
Task selection. According to the DAG, Pri(ti) value of each
task ti| ti ∈ U is calculated. The task ti with Max(Pri(ti)) is
selected as the candidate to be allocated in this round. If more
than one tasks have the same priority, we will select the ti
with Max(Sub(ti)). If there still has competition, a random
selection will be used. Unit Selection. According to the
Matching principle in [36].Dif-HEFTwill map the selected ti
to the unit cj withMin( ct(ti,cj))| cj ∈ Q. When ti is finished ,
we remove it from U and update the remaining dependency
to find next candidate task.

D. SIMULATION EVALUATION AND ANALYSIS
In this section, we use simulation to evaluate the performance
of proposed LoPECS Runtime.

1) EXPERIMENT SETUP
To make simulation, we need to set up four kinds of data
in Table III. The number of tasks and processors directly
determines the complexity of scheduling. EET table stores
the expected execution time and EET(ti, cj) is the expected
execution time of task ti on processor cj. We generate the EET
table and the execution trace according to our profiling for
autonomous driving workloads in [46].
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FIGURE 6. Comparison of heterogeneity aware scheduler and
user-specific policy.

2) EXPERIMENT RESULT
In the experiment, we generate 100 sets of task execution
time data for each group with different number of tasks
and processors. In Fig 6, we give the makespan comparison
results of Heterogeneity Aware Scheduler vs. User-Specific
Policy. That is because for now all the autonomous driving
system leaves the complexity of task coordination to user and
no mature work can be found. Here, all makespan data has
been normalized. We can clearly see that in most cases, with
Heterogeneity Aware Scheduler their makespan can averagely
be reduced by 10%. In the best case, 20 tasks running on
4 processors, its acceleration can be up to 27.5%. Through
further analysis, we can find that this part of efficiencymainly
comes from the improvement of Heterogeneity Aware Sched-
uler in two folds: dispatch of task to its hardware preferable
units and avoidance of overusing the most powerful core.
We can also find there exist a performance downgrade in the
case of 40 tasks running on 5 processors. That is because
in some case Heterogeneity Aware Scheduler may suffer
resource equalization and some node will always be invalid
for dispatch. However, it happens in very low frequency.

V. QoE ORIENTED SERVICE CLASSIFICATION
Quality of Experience is the intuitive feeling of user when
it’s served by some service. It can be described as abstract
comfort level, but very difficult to be quantified. To the end
user of autonomous car, its intuitive feeling is safety and
usage time. For a mounted battery, battery life is the core
concern for their experience.

To this end, in LoPECS we introduced a QoE Oriented
Service Classification layer. It can classify tasks distributed at
the edges into QoE-Time, QoE-Energy and QoE-Insensitive
three categories. Such classification is based on how their
execution state can be sensed by end user. QoE-Time and
QoE-Energy are tagged for those tasks, whose execution has
a significant impact on QoE in terms of a user noticeable
latency or energy cost. Therefore, any efforts on execution
time reduction and energy saving should be applied on them
to further improve the user experience. Offloading is one of
optional way for explore a better user experience.

In the scenario of autonomous driving, each cloudlet node
has a fixed communication range. Within the range, the data
communication cost can be squeezed to least extend. If out

of range, the clients have to spend a large amount of time
and energy for unworthy data transfer. For the three services
introduced before, SLAM is very time-sensitive and requires
a position update every 5 ms. If it’s offloaded, even in com-
munication range the offloading delay is larger than 5 ms and
the resulted user experience is unacceptable even fatal. Thus,
Offloading is not the options for SLAM-like QoE-Time tasks.
For Objection Recognition and Speech Recognition, system
can tolerate a latency as large as 100ms. It indicates the length
of task execution doesn’t matter in the way of QoE as long as
the task can be completed within 100ms. Thus, it leaves great
room for energy reduction by offloading task to cloudlet.

In some areas, there may deploy multiple cloudlet nodes
and an autonomous vehicle will passes through a number
of effective communication ranges. As a result, we should
comprehensively consider the state of devices as well avail-
ability and distribution of cloudlets in area. And thenwemake
selection by searching for a target cloudlet i in the area that
can maximize user experience in expectation.

With such observation, tomake offloading the vehicle-edge
Coordinator should firstly draw a distinction between
QoE-Time tasks and QoE-Energy tasks in the scenario of
autonomous driving on edge. Then, by identifying the user
experience features and the state of tasks and cloudlet,
the Coordinator determines whether the task should be
offloaded and which cloudlet it should move to. There lists
five rules the Coordinator must follow below:

1) Tasks are created and initialized locally. The device is
powerful enough to initialize task locally for the sake
of a short start-up time.

2) Tasks run on local.Tup is set as the indicator for
QoE-Time. If the task must be completed in a short time
T|T < Tup, due to some real-time execution require-
ment, it is QoE-Time task and any execution delay will
lead to a poor user experience, for example, SLAMmust
be finished in 5ms. Thus, such task should be kept in
device to make sure high frequency data manipulation.
For some short-time tasks, if they can be finished in
time T|T < Tup, we can leave them on local device as
well. That is because offloading tasks to the cloudlets
can speed up execution, but it is no more helpful to
improve the user experience since their QoE require-
ment has been already met in a local manner.

3) Tasks offloaded to the cloudlet. Tdown is set as the
indicator for QoE-Energy. If the task can tolerant a
execution time T|T > Tdown, its insensitivity in exe-
cution time leaves great chance for energy reduction.
Therefore, tasks can be offloaded to a proper cloudlet
for a better user experience in terms of energy can be
saved.

4) Offloading for Efficiency. For the task with execution
time T| Tup<T < Tdown, our decision on task offlod-
ing is decided by the cost function defined in eq. 9.
It is a user specific function and demonstrates user’s
expectation for efficiency of offloading at that time.
To guarantee each timewe can have efficient offloading
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in node i, there must be Coff
i < CL . That is to say

the cost for offloading must be lower than the one
consumed locally.

5) Cloudlet Selection for large communication range.
When offloading is meant to happen, we should
select the destination node from a group of available
cloudlets. The overhead of offloading comes from data
communication. To downgrade the cost to the most
we thus should limit offloading just be performed in
the largest communication range. The longer time the
client vehicle stays within the communication range,
the bigger time slice can be reserved for offloading
computation, and the more performance and energy
consumption benefits we can get.

VI. VEHICLE-EDGE OFFLOADING
The third major contributions of this paper is the design
and implementation of an offloading engine that dynamically
decides whether and how to offload a computing task for
a better User Experience in less power consumption and
prolonged battery life. With a lower power and longer life-
oriented vehicle-edge offloading strategy, all the questions of
yes-or-no and how-to in dynamic task offloading should find
its answers in the view of QoE.

A. VEHICLE-EDGE COORDINATOR
Thus, the core question of the vehicle-edge Coordinator is:
how to find out an offload-able task and its corresponding
destination cloulet node by following the listed five rules.
To formalize the question, we start by defining our parameter
space as follows:
m: the number of available edge cloudlet nodes;
Ri: communication range of edge cloudlet node, i = 1, 2,

. . .,m;
w workload to be offloaded (in terms of number of

instructions);
wi: remaining processing capacity in each edge cloudlet

load, i = 1, 2, . . .,m;
fL: edge client computing speed;
f ioff : computing speed of edge cloudlet node i,

i = 1,2, . . ., m;
v: current moving speed of the client vehicle,
BL: Battery life remains in client vehicle, shown in

percentage
(X, Y): current location of the client vehicle;
θ : current heading/orientation of movement of the client

vehicle;
Din, Dout : transmission data volume as input and output;
r iin : upstreaming communication bandwidth between

client vehicle and edge cloudlet node i;
r iout : downstreaming communication bandwidth between

client vehicle and edge cloudlet node i;
Pin : Power of client vehicle when upstream data trans-

ferred
Pout : Power of client vehicle when downstream data

transferred

(X is,Y
i
s ): edge cloudlet node physical location, i= 1, 2, . . .,

m;
t ia(i = 12. . . , m): the time of the vehicle staying within the

communication range of edge cloudlet node i;
t ia(i = 12. . . , m): the time edge cloudlet node i becomes

available;
With the parameter above, we can conclude the local exe-

cution state in terms of execution time and energy consump-
tion in Eq. 5 and Eq. 6. Here, α and β is the static power factor
and dynamic power coefficient respectively [43]. Eq. 7 and
Eq. 8 give the computing time and energy cost when execu-
tion offloaded into selected cloudlet i. Note that when we talk
about cost of time and energy, we only consider the device
side. To identify the efficiency of computation in device ver-
sus computation offloaded to remote cloudlet node i, we build
a cost function in Eq. 9. Here, η is the weight to balance the
need for low-power or low-latency. It’ a user predefined value
and can be dynamically adjusted by a function of BL . If η
set as 1, it’s purely a latency sensitive offloading strategy,
otherwise it is more apt to energy saving gradually. It shows
users’ expectation for execution.

Local computing time:

tL = w/fL (5)

Local energy consumption: eL =(
a+ β ∗ f 3L

)
∗ w/fL (6)

Offloading computing time:

t ioff =
w/f ioff

+ Din/r iin + Dout/r iout
(7)

Offloading energy consumption:

eoff = pin ∗ Din/r iin + pout ∗ Dout/r iout
(8)

Cost function:{
cL = ηtL + (1− η)eL 0 ≤ η ≤ 1
cioff = ηt

i
off + (1− η)eioff

(9)

Rangei =

√(
X + t ic ∗ v ∗ sin θ − X

i
c
)2

+(Y + t ic ∗ v ∗ cos θ − Y
i
c)

(10)

Knowing the communication range of edge cloudlet
node Rangeii = 12. . .m and its coordinate (X ic,Y

i
c), by eq.10

the Coordinator can get t ic(i = 12. . .m), which is the time of
client vehicle staying in the communication range of cloudlet
i [44]. By follow Rule NO.5, the Coordinator considers the
cloudlet distribution and the cloudlet states , a maximum
(t ic − t

i
a) will be found out. Here, we use the available time t ia

to demonstrate when all the required resource can be standby
and when the cloudlet i can finish the last round offloading.
Thus, execution should be offloaded to cloudlet node i where
(t ic − t

i
a) is the maximal in all available cloudlet nodes.
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FIGURE 7. Offloading algorithm pseudo-code.

B. DYNAMIC TUNING OF Tdown
In our design, we have Tup = 5ms, Tdown = 100ms. Such
value setting is the results of our profiling on the time toler-
ance of each edge task. However, a practical task offloading
system may have noisy behavior due to continuous variations
in the state of vehicles and the cloudlets. It is necessary to
develop an adaptive approach to dynamically adjust entry
range of task offloading for stable user experience. Here,
we do not discuss Tup, since it set the baseline for real time
of autonomous tasks. Tdown is the target for improvement
and can be further brought down to digest more offloading
aiming for energy cost reduction, especially when the battery
is low. The relationship between the Tdown and saved energy
can be complex and hard to model. Therefore, we design
an adaptive Tdown tuning approach based on the model-
independent expert fuzzy control (EFC) technique to integrate
with the proposed coordinator [45].

C%(t) = {eL(t)− eioff (t) }/eL(t) (11)

EFC has two inputs:C%(t) and BL(t). InputC%(t) in eq 11.
reflects the energy saving in percentage by offloading and
BL(t) is the remaining battery of client vehicle at time slot t .
The output ofEFC is theTdown adjustment. It has five possible
values, i.e., f(+2), f(+1), f(0), f(−1) and f(−2) which denote
aggressively increasing, increasing, keeping, decreasing and
aggressively decreasing the boundary of Tdown respectively.
Note that no matter how Tdown will fluctuate, the resulted new
Tdown will not exceed 100ms otherwise it will harm the user
experience.

Table 4 gives the rule base of EFC. The control rules are
defined using linguistic variables corresponding to the two
inputs,C%(t) and BL(t). The fuzzification process converts
the numeric inputs into linguistic values such as NL(negative
large), NM(negative medium), NS(negative small), Z(zero),
PS(positive small), PM(positive medium) and PL(positive
large). The rules are in the form of If-Then statements. For
example, If C%(t) is PL and BL(t) is PL, the adjustment in
Tdown is f(-2). The rationale behind this rule is: when the

TABLE 4. The control rule base table.

vehicle is almost out of batteries meanwhile in last offloading
the gained energy efficiency is very limited, we should lower
down Tdown to permit through more tasks be offloaded for
the purpose of saving energy.With such fuzzy control, we can
make online decisions of Tdown to maximize user experiences
in energy cost based on vehicle states especially when battery
is low.

VII. LoPECS IMPLEMENTATION ON JETSON
In this section we implement the aforementioned LoPECS
architecture with the runtime layer, the Realtime OS, and the
offloading engine, onto a Nvidia Jetson TX1 [24]. We exam-
ine the detailed performance and power consumption of such
implementation and demonstrate that we could successfully
support multiple autonomous driving services with only 11W
of power consumption, and thus proving the effectiveness of
the proposed LoPECS system.

A. HARDWARE SETUP
The system consists of four parts: the sensing unit, the per-
ception unit, and the decision unit, which are implemented on
Jetson TX1, and the execution unit, which is the vehicle chas-
sis. The vehicle chassis receives commands from the Jetson
TX1, and executes the commands accordingly. A 2200 mAh
battery is used to power the Jetson TX1 board.

The Jetson TX1 SoC consists of a 1024-GFLOP Maxwell
GPU, a 64-bit quad-core ARM Cortex-A57, and hardware
H.265 encoder/decoder. In addition, onboard components
include 4GB LPDDR4, 16GB eMMC flash, 802.11ac WiFi,
Bluetooth 4.0, Gigabit Ethernet, and accepts 5.5V-19.6VDC
input. Peripheral interfaces consist of up to six MIPI CSI-2
cameras (on a dual ISP), 2x USB 3.0, 3x USB 2.0, PCIe
gen2 x4 + x1, independent HDMI 2.0/DP 1.2 and DSI/eDP
1.4, 3x SPI, 4x I2C, 3x UART, SATA, GPIO, and others.
Jetson TX1 draws as little as 1 watt of power or lower
while idle, around 8-10 watts under typical CUDA load,
and up to 15 watts TDP when the module is fully uti-
lized. The four ARM A57 cores automatically scale between
102 MHz and 1.9 GHz, the memory controller between
40MHz and 1.6GHz, and theMaxwell GPU between 76MHz
and 998 MHz.

Regarding the hardware setup, a visual inertial camera
module [25] is connected to the TX1 board. This module
generates high-resolution stereo images at 60 FPS along with
IMU updates at 200 Hz. This raw data is fed to the SLAM
pipeline to produce accurate location updates and fed to the
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FIGURE 8. System integration.

CNN pipeline to perform object recognition. In addition,
the TX1 board is connected to the underlying chassis through
a serial connection. This way, after going through the sensing,
perception, and decision stages, TX1 sends commands to
the underlying chassis for navigation purpose. For instance,
after the SLAM pipeline produces a map of the environment,
the decision pipeline can instruct the vehicle to move from
location A to location B, and the commands are sent through
the serial interface. For speech recognition, to emulate com-
mands, we initiate a thread to constantly perform audio play-
back to the speech recognition pipeline.

B. SYSTEM ARCHITECTURE
Oncewe havemade a decision on the hardware setup, the next
challenge is to design a system architecture to tightly inte-
grates these services. Figure 8 presents the architecture of
the system we implement on the Jetson TX1. At the front
end, we have three sensor threads to generate raw data: the
camera thread generates images at a rate as high as 60 Hz,
the IMU thread generates inertial updates at a rate of 200 Hz,
and the microphone thread generates audio signal at a rate
of 44 KHz. The image and IMU data then get into the SLAM
pipeline to produce a position update at a rate of 200 Hz.
Meanwhile, as the vehicle moves, the SLAM pipeline also
extends the environment map. The position updates, along
with the updatedmap, then get passed to the navigation thread
to decide how the vehicle makes its next move. The image
data also gets into the object recognition pipeline to extract
the labels of the objects that the vehicle encounters. The
labels of the objects then get fed into the reaction unit, which
contains a set of rules defining the actions to take when a
specific label is detected.

For instance, a rule can be that whenever a passenger
gets into the vehicle, the vehicle should greet the passenger.
The audio data gets through the speech recognition pipeline
to extract commands, and then commands are fed to the
command unit. The command unit stores a set of predefined
commands, and if the incoming command matches one in the
predefined command interface, the corresponding action is
triggered. For instance, we implement a command ‘‘stop’’,
whenever the word ‘‘stop’’ is heard and interpreted, the vehi-
cle stops all its ongoing actions.

This architecture provides very good separation of differ-
ent tasks, with each task hosted in its own process. The key to
high performance and energy efficiency is to fully utilize the
underlying heterogeneous computing resources for different

FIGURE 9. Resource utilization on TX1.

tasks. For instance, feature extraction operations used in the
frontend of SLAM as well as CNN computations exhibit
very good data parallelism, thus it would be beneficial to
offload these tasks to GPU, which frees up CPU resources
for other computation, or for energy efficiency. Therefore, in
our implementation, the SLAM frontend is offloaded to GPU,
while the SLAM backend is executed on CPU; the major
part of object recognition is offloaded to GPU; the speech
recognition task is executed onCPU.Wewill explore how this
setup behaves on the Jetson TX1 SoC in the next subsections.

C. INTEGRATED PERFORMANCE EVALUATION
In this subsection we study the performance of this system.
When running all the services on the system, the SLAM
pipeline can process images at 10 FPS on TX1 if we use CPU
only. However, oncewe accelerate the feature extraction stage
on GPU, the SLAM pipeline can process images at 18 FPS.
In our practical experience, once the SLAM pipeline is able
to process images at more than 15 FPS, we have a stable
localization service. As a reference, we also measured the
SLAM performance on an Intel Core i5 CPU, where at its
peak the SLAM pipeline processes images at 15 FPS. There-
fore, with the help of GPU, the TX1 SoC can outperform a
general-purpose CPU for SLAM workloads.

For the vision deep learning task using Jetson Inference
engine, we can achieve 10 FPS in image recognition. This
task is mostly GPU-bound. For our low-speed autonomous
driving application, the vehicle travels at a fairly slow speed
(at 3 m/s), where 10 FPS should satisfy our needs. For the
speech recognition, we use Kaldi [10] and it is CPU-bound.
We can convert an audio stream into words with 100 ms
latency. In our requirement, we can tolerate 500 ms latency
for such tasks. In summary, to our surprise, after we enable all
these services, TX1 can still satisfy the real-time performance
requirement. The main reason is that GPU performs most of
the heavy lifting, especially for SLAM and vision tasks.

Next we present the system resource utilization when run-
ning these tasks. As shown in Figure 9, when running the
SLAM task, it consumes about 28% CPU, 2% GPU, and 4%
of system memory. The GPU is mainly used to accelerate
feature extraction in this task. When running speech recogni-
tion, it consumes about 22% CPU, no GPU, and 2% system
memory. For vision-based deep learning task, it consumes
24% CPU, 70% GPU, and 22% of system memory. When
combining all three tasks together, the system consumes 60%
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FIGURE 10. Power consumption on TX1.

FIGURE 11. Client VS Cloud performance.

CPU, 72% GPU, and 28% of system memory, still leaving
enough headroom for other tasks.

Next we present the power consumption behavior.
As shown in Figure 10, even when running all these tasks
simultaneously, the TX1 module only consumes 11W, where
the GPU consumes 3.5 W, and the CPU consumes 4.2 W.
In other words, with an 11 W power envelope, we can enable
real-time robot localization, object recognition, and speech
recognition on a TX1 SoC module.

D. EDGE AND CLOUD COOPERATION
We deploy the cloud within the local area network. After
making this configuration, we have a local cloud that can
perform object recognition within 100 ms and speech recog-
nition within 200 ms, meeting the real-time requirement for
the robot deployment.

Regarding resource utilization and power consumption,
Figure 11 shows the resource utilization of offloading the
services compared to executing locally. When offloading the
tasks, we send the image or the audio file to the cloud and
then wait for the results. For speech recognition, offload-
ing consumes 5% of CPU vs. 20% CPU when executing
locally. For object recognition, offloading consumes 12%
CPU vs. 25% CPU and 70% GPU. When offloading object
and speech recognition tasks and executing the SLAM task
locally, the module consumes 5 W. Under this configuration
a 2200mAh battery can power the device for about five hours,
which represents a 2.5X boost in running time.

Based on these results, we conclude that in order to opti-
mize energy efficiency, we can deploy edge clouds to host
object recognition and speech recognition tasks. Especially in
a multiple-vehicle deployment, an edge cloud can be shared
by the vehicles.

VIII. RELATED WORK
Several works focus on the functionality of the autonomous
driving system. In [11], Franke et al. addresses the chal-

lenges that applying autonomous driving system in com-
plex urban traffic. They also propose an approach called
Intelligent Stop & Go. Junior is the first work to intro-
duce a full system of self-driving vehicles, which includes
sensor models and deployment and software architecture
design [12], [13]. Junior presents dedicated and compre-
hensive information about applications and software flow
diagram for autonomous driving. Urmson et al develop an
autonomous vehicle called Boss by using sensors including
GPS, radar, camera etc [14]. Boss consists of three lay-
ers: mission planning layer, behavioral layer, and motion
planning layer. Kato et al. present algorithms, libraries and
datasets that are required for recognition, decision making
and control [15].

There are also several works on evaluating the autonomous
driving system and optimizing the performance.
KITTI [16], [17] is the first benchmark suite for autonomous
driving system. It comprised rich stereo image data and
2D/3D object annotated data. According to different data
type, it also provided the dedicated method to gener-
ate the ground truth and calculate the evaluation metrics.
CAVBench is an edge computing benchmark for Connected
and autonomous vehicles, mainly focuses on the performance
and power consumption of edge computing systems for
autonomous vehicles [35].

Jo et al. apply the distributed system architecture into the
design of autonomous driving system [18]. And a system
platform is proposed tomanage the heterogeneous computing
system of the distributed system. The implementation of the
proposed autonomous driving system is presented in [19].

In [20], [21], an autonomous driving system based on
current award-winning algorithms is implemented and they
find three computational bottlenecks for CPU based sys-
tems. They compare the performance when heterogeneous
computing platforms including GPUs, FPGAs, and ASICs
is used to accelerate the computation. With the acceleration
approach, their system can meet the performance constraints
for autonomous driving system. However, more works can
be done on the design of the system to promote the perfor-
mance except for using hardware to accelerate the algorithms.
In [22], Gao propose a safe SOC system architecture. And
the security level of autonomous driving application is also
discussed. However, the performance is not considered in the
design of the system.

Recently, some work begins to enable edge comput-
ing in autonomous driving system. Zhang et al. propose
an Open Vehicle Data Analysis Platform (OpenVDAP) for
connected and autonomous vehicles [23]. OpenVDAP is a
full-stack edge-based platform including vehicle computing
unit, an isolation-supported and security & privacy-preserved
vehicle operation system, an edge-aware application library,
as well as task offloading and scheduling strategy. Open-
VDAP allows connected and autonomous vehicles to dynam-
ically examine each task’s status, computation cost and the
optimal scheduling method so that each service could be
finished in near real time with low overhead. Meanwhile,
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safety and security can also be a vital factor in the design of
autonomous driving system.

IX. CONCLUSION
Affordability is the main barrier blocking the ubiquitous
adoption of autonomous driving. One of the major contrib-
utors to the high cost is the edge computing system, which
can easily cost over $20,000 each. To address this prob-
lem, we built an affordable and reliable autonomous vehicle,
the DragonFly pod, and we target low-speed scenarios, such
as university campuses, industrial parks, and areas with lim-
ited traffic.

Within this cost structure, we had to simultaneously enable
localization, perception, and speech recognition workloads
on an affordable and low-power edge computing system.
This was extremely challenging as we had to manage these
autonomous driving services and their communications with
minimal overheads, fully utilize the heterogeneous comput-
ing resources on the edge device, and offload some of the
tasks to the cloud for energy efficiency.

To meet these challenges, we developed LoPECS, an edge
computing framework consists of an extremely lightweight
operating system: a runtime layer to fully utilize the hetero-
geneous computing resources of low-power edge comput-
ing systems; and an edge-cloud coordinator to dynamically
offload tasks to the cloud to optimize edge computing system
energy consumption. As far as we know, this is the first com-
plete edge computing system of a production autonomous
vehicle.

The results were encouraging we implemented LoPECS on
a Nvidia Jetson TX1 and we demonstrated that we could suc-
cessfully support vehicle localization, obstacle detection, and
speech recognition services simultaneously, with only 11 W
of power consumption, and hence proving the effectiveness
of the proposed LoPECS system.
In the next step, we plan to extend LoPECS to support

more heterogeneous edge computing architectures with more
diverse computing hardware, including DSP, FPGA, and
ASIC accelerators [32]–[34]. Besides low-speed autonomous
driving, we believe LoPECS has much broader applications:
by porting LoPECS to more powerful heterogeneous edge
computing systems, we can deliver the computing power to
L3/L4 autonomous driving; and with more affordable edge
computing systems, LoPECS can be applied for delivery
robots, industrial robots, etc.
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