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ABSTRACT Estimation of absolute temperature distributions is crucial for many thermal processes in
the nonlinear distributed parameter systems, such as predicting the curing temperature distribution of
the chip, the temperature distribution of the catalytic rod, and so on. In this work, a spatiotemporal
model based on the Karhunen-Loève (KL) decomposition, the multilayer perceptron (MLP), and the long
short-term memory (LSTM) network, named KL-MLP-LSTM, is developed for estimating temperature
distributions with a three-step procedure. Firstly, the infinite-dimensional model is transformed into a finite-
dimensional model, where the KL decomposition method is used for dimension reduction and spatial basis
functions extraction. Secondly, a novel MLP-LSTM hybrid time series model is constructed to deal with
the two inherently coupled nonlinearities. Finally, the spatiotemporal temperature distribution model can
be reconstructed through spatiotemporal synthesis. The effectiveness of the proposed model is validated by
the data from a snap curing oven thermal process. Satisfactory agreement between the results of the current
model and the other well-established model shows that the KL-MLP-LSTMmodel is reliable for estimating
the temperature distributions during the thermal process.

INDEX TERMS Spatiotemporal modeling, nonlinear distributed thermal processes, Karhunen-Loève
decomposition, multilayer perceptron, long short-term memory.

I. INTRODUCTION
In the industrial field, many thermal processes can be
characterized by the nonlinear distributed parameter systems
(DPSs), in which the input and output states vary both in
time and space domain [1]. There are plenty of these ther-
mal processes, such as the curing process of a snap cur-
ing oven in the integrated circuit (IC) packaging industry,
the exothermic catalytic reaction of a catalytic rod in the
chemical industry, the endothermic catalytic reaction of a
packed-bed reactor in the chemical industry, the thermal
process of a lithium-ion battery in the automobile industry,
and so on [2], [3]. Mathematically, such systems are often
described by partial differential equations (PDEs) using the
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first-principle modeling [4]. Some efficient methods have
been proposed to solve PDEs, for example, Anitescu et al.
has presented a practical approach using artificial neural
networks (ANNs) and an adaptive collocation strategy [5].
However, the complex process and nonlinear system usually
make it difficult to obtain accurate PDEs for the industrial
thermal processes. As well known, the data-driven spatiotem-
poral model based on the historical data can describe the spa-
tiotemporal dynamics in DPS without the prior knowledge.
Therefore, it has been widely applied in modeling nonlinear
distributed parameter processes [6]–[11]. The modeling chal-
lenges in DPSs can be presented as follows: 1) the analytical
model is hard to derive for the complex process; 2) the tem-
perature distribution in DPSs is time/space coupled, which
contain infinite-dimensional characteristics that is difficult to
model; 3) the complex nonlinear dynamics often exist not
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only in the time direction, but also in the space direction;
4) the complicated nonlinear structure in the temporal model
approximating the actual condition is hard to be determined.

A spatiotemporal variable of DPSs can be expressed by
an infinite number of spatial basis functions and the corre-
sponding temporal coefficients [12]. For the data-driven spa-
tiotemporal model, the key is to choose proper spatial basis
functions for dimension reduction and construct the nonlin-
ear finite-order (low-order) temporal estimation model. Then
spatiotemporal model can be constructed by spatiotemporal
synthesis. Clearly, both spatial basis functions and temporal
model influence the accuracy of the model.

Therefore, the selection of spatial basis functions is critical
to the spatiotemporal modeling performance. There are a
wide variety of methods, such as the weighted residual
method (WRM) [13], the finite-difference method (FDM)
[14], [15], the finite-element method (FEM) [16], the spec-
tral method (SM) [17], and the Karhunen-Loève (KL)
method [18], [19]. The KL decomposition method has been
widely used by lots of researchers, and it turns out to be a
suitable and effective approach for data modeling [20]–[22].
Accordingly, a data model based on the KL decomposi-
tion method is a powerful tool for complicated DPS [23].
In addition, by separating the time and space information
of the nonlinear DPS, the KL decomposition can achieve
a more accurate lower-order model, which can capture the
dominant dynamics of the PDE system described by a few
dominant (slow) modes.

After choosing the dominant spatial basis functions, it is
easy to obtain the system temporal coefficients. Then the
input and output information of the nonlinear temporal
model can be derived from the system input and the sys-
tem temporal coefficients. Finally, the temporal model can
be constructed by using traditional system identification
techniques, which mainly includes statistical inference and
machine learning methods. For example, Montaseri et al.
employed a Multilayer Neural Network (MNN) to construct
the finite-dimensional model and applied the model to predict
future states in the model predictive control (MPC), and the
simulation results indicated this model satisfied all consid-
ered control objectives [24]. Qi et al. presented a fuzzy-
based spatiotemporal multi-modeling approach for nonlinear
DPS to improve model accuracy [25]. Liu et al. developed
extreme learning machine (ELM) for the low-order model,
and the temperature distributions of the whole battery can be
estimated based on the identified low-ordermodel in real time
[26]. Lu et al. adopted a least-squares support vector machine
(LS-SVM) to model nonlinear time dynamics successfully
and applied this spatiotemporal method on a practical cur-
ing thermal process [27]. Xu et al. proposed a spatiotem-
poral model which integrated the finite Gaussian mixture
model (FGMM) with principal component regression (PCR)
for complex nonlinear DPSs, and this model showed strong
ability to track and handle the complex nonlinear dynam-
ics [28]. However, all the aforementioned temporal models
do not consider the intrinsic structure of low-order models.

As a result, they cannot deal with the situations with two
coupled nonlinear dynamics such as the inputs and outputs of
many DPS processes with complex nonlinearities. Xu et al.
proposed a dual LS-SVM temporal model combined with the
KL method to confirm the model structure [29]. This model
turned out to be a high accuracy spatiotemporal model while
it treated the two modules equally without considering their
features and differences, respectively.

The complicated nonlinear structure can be decomposed
into two parts: a nonlinear function relating to the input
and a counterpart relating to the output [29]. The former
function can be represented by a variety of models such as
SVM [30], MLP [31], ELM [32], fuzzy [33], etc. As for
the latter function, it is suitable to choose a time series
model. As we know, the long short term memory (LSTM)
is a specific recurrent neural network (RNN) architecture
designed to model time series, and it is more accurate than
the RNN [34]. Accordingly, the LSTM has been widely
used in time series prediction [35]–[38], whereas it has not
been adopted in DPS spatiotemporal model in the related
literature. This paper will focus on the MLP-LSTM hybrid
temporal model.

In this work, a novel data-driven spatiotemporal model,
which combines the KL method with the MLP-LSTM tem-
poral model is established to overcome these challenges
aforementioned. The KL method is used for dimension
reduction and extracting the spatial basis functions, and
the MLP-LSTM temporal model is adopted to solve the
two inherently coupled nonlinearities based on the temporal
coefficients and system inputs. In this way, the KL-MLP-
LSTM can approximate the real DPS situation of the two
coupled nonlinear dynamics more accurately. The proposed
spatiotemporal model is verified by a snap curing oven
thermal process.

The main contributions of this paper are summarized as:
1) The KL method for spatiotemporal separation: With

this modeling mechanism, the spatiotemporal variable
can be decoupled into sets of unit orthonormal spatial
basic functions and corresponding time coefficients.

2) The MLP-LSTM for temporal modeling: With the
MLP-LSTM, the temporal model can satisfactorily
describe the actual situations with two inherently cou-
pled nonlinearities and therefore work more efficiently.

3) Comparisons with the experiment on a curing oven
validate the effectiveness of the proposed method.

The remaining part of this article is organized as follows.
The problem is described briefly in Sections II. In Section III,
the spatiotemporal modeling method based on the KL-MLP-
LSTM is constructed. Section IV gives the experiment result
of a snap curing oven thermal process to verify the applicabil-
ity of the proposed method. Finally, a brief summary is given
in Section V.

II. PROBLEM DESCRIPTION
According to the heat transfer laws, the general PDE
descriptions of the industrial thermal processes can be
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FIGURE 1. Schematic representation of the spatiotemporal separation.

expressed as follows:

ρc
∂ (y (S, t))

∂t
= ∇

2 (y (S, t))+ fc (y (S, t))

+fr (y (S, t))+ ρQ (S, t) , (1)

where y (S, t) is the spatiotemporal variable temperature at
location S = (x, y, z) and time t , ρ is the density parameter,
c is the heat capacity, ∇2

=
∂

∂x2
+

∂

∂y2
+

∂

∂z2
is the Laplacian

operator, fc (y (S, t)) and fr (y (S, t)) are unknown nonlinear
effects of convection and radiation, respectively. Q (S, t) is
the heating source.

Based on the principle that a continuous function can be
approximated by Fourier series [39], the DPS spatiotemporal
variable can be expanded as:

y (S, t) =
∞∑
i=1

φi (S)ai (t) . (2)

As only the first n slow modes contribute to the whole
system [23], equation (2) is reduced to the following finite
system in practical implementation:

y (S, t) =
n∑
i=1

φi (S)ai (t) . (3)

The spatiotemporal variables can be separated into two
parts: a set of spatial basis functions and corresponding
temporal model. It is vital to select proper spatial basis
functions and construct the corresponding finite-order tem-
poral model. Then, the spatiotemporal system can be recon-
structed through the spatiotemporal synthesis. The procedure
is displayed in Fig. 1.

According to the reported theoretical derivation and
analysis [29], the temporal variable ai (t) can be expressed
as

ai (t) = gi (u(t))+ hi (ai (t − 1)) , (4)

where the model ai (t) consists of two nonlinear blocks gi(·)
and hi(·).
As described above, the main difficulties and challenges

are summarized as follows:
1) The thermal process is time/space coupled, which

needs to be transformed into finite dimensions,
therefore the spatial basis functions should be well
chosen.

FIGURE 2. Schematic representation of the KL-MLP-LSTM based
spatiotemporal model.

2) The thermal dynamics leads to two nonlinear blocks in
the temporal model, which poses additional difficulty
for traditional modeling methods to approximate the
real situations.

III. KL-MLP-LSTM SPATIOTEMPORAL MODEL
A. THE WHOLE PROCESS OF THE PROPOSED MODEL
To address the above problems, a KL-MLP-LSTM hybrid
model is developed for spatiotemporal estimation of the ther-
mal process. The configuration of the proposed spatiotempo-
ral modeling is depicted in Fig. 2. The detailed descriptions
of the proposed model are shown as follows:

1) The KL decomposition method is used for extracting
the spatial basis functions and reducing the
infinite-dimensional model to a set of ordinary dif-
ferential equations. Details of the KL decomposition
method are described in Section III.B.

2) A data-based MLP-LSTM hybrid time series model is
constructed to match the dual-model structure and deal
with the two inherently coupled nonlinearities. Details
of theMLP-LSTMhybrid temporalmodel can be found
in Section III.C.

3) The spatiotemporal temperature distribution model
can be reconstructed through spatiotemporal synthesis.
Details of spatiotemporal synthesis are presented in
Section III.D.

B. KL DECOMPOSITION METHOD
The KL decomposition is a statistical analysis technique
which is very effective to obtain a low-dimensional model
from experimental or numerical data [18], [40]. It is a global
linear method and can preserve the global Euclidean structure
effectively [41]. The key idea of the KL method is to find the
spatial basis functions with the minimal number to represent
the dominant characteristics of the system.

For simplicity, suppose that {y(Si, t)|i = 1, · · ·,N ; t = 1 ·
··,L; S = (x, y, z)} is the process output obtained from exper-
iments distributed in time and space. The spatiotemporal
variable can be expressed as

y (S, t) =
∞∑
i=1

φi (S)ai (t) , (5)
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where {φi (S)}∞i=1 are the spatial basis functions and
{ai (t)}∞i=1 are the temporal coefficients. The spatial basis
functions {φi (S)}∞i=1 possess the following orthogonal
property:

(
φi (S) , φj (S)

)
=

∫
�

φi (S) φj (S)dS =

{
0 i 6= j
1 i = j.

(6)

To obtain the most typical or characteristic spatial basis
functions {φi (S)}∞i=1 of the system by theKLmethod, an opti-
mization problem by minimizing the following objective
function should be solved [42]:

min
φi(S)

〈[
y (S, t)−

n∑
i=1

φi (S) (φi (S) , y (S, t))

]2〉
s.t. (φi(S), φi(S)) = 1, φi(S) ∈ L2(�), i = 1, · · ·, n,

(7)

where 〈f (S, t)〉 = 1
L

L∑
i=1

f (S, t) represents the ensem-

ble average; φi (S) is unique in the given constraint
(φi (S) , φi (S)) = 1. Applying the Lagrange multiplier
method, we have

J =

〈[
y (S, t)−

n∑
i=1

φi (S) (φi (S) , y (S, t))

]2〉

+

n∑
i=1

λ1 ((φi (S) , φi (S))− 1), (8)

and the necessary condition of its extreme value can be
expressed as

∫
�

R (S, ζ )φi (ζ ) dζ = λiφi (S)

s.t. (φi (S) , φi (S)) = 1, i = 1, · · ·, n,
(9)

where R (S, ζ ) = 〈y (S, t) , y (ζ, t)〉 is the spatial two-point
correlation function.

Because of the discretization of the data in space,
the numerical method should be used to solve (9), which can
be transformed into an N × N matrix eigenvalue problem
by discretizing the integral equation. Therefore, the maxi-
mum number of eigenvalues obtained at N sampled spatial
locations is N . Interpolation is applied to locations where the
sample points are unavailable.

To solve (9) efficiently, the spatial basis function φi (S) is
supposed to be expressed as follows:

φi (S) =
L∑
t=1

δity (S, t). (10)

Combining (9) and (10), we obtain∫
�

1
L

L∑
t=1

y (S, t) y (ζ, t)
L∑
k=1

δiky (ζ, k) dζ =λi
L∑
t=1

δity (S, t).

(11)

FIGURE 3. Schematic representation of the MLP.

Then, the former N × N matrix eigenvalue problem in (9)
can be transformed into a L × L matrix eigenvalue problem
as follows:

Cδi = λiδi, (12)

where Ctk = 1
L

∫
�
y (ζ, t) y (ζ, k)dζ is the temporal two-

point correlation function, and δi = [δi1, · · ·, δiL]T is the
ith eigenvector. Eigenvectors {δi}Li=1 and the corresponding
eigenvalues {λi}Li=1 are obtained by solving (12). Then, the
orthogonal spatial basis functions {φi (S)}Li=1 are constructed
by (10).

The eigenvalues are assumed to satisfy λ1 > λ1 >

· · · > λK and the corresponding spatial basis functions
are {φ1 (S) , φ2 (S) , · · ·, φK (S)} where K ≤ min (N ,L) is
the maximum number of nonzero eigenvalues. In theory,
the more real situations of the spatiotemporal system are
reflected, the more complicated the model will be built when
taking the whole spatial basis functions into consideration.
Therefore, it is necessary to choose n (n ≤ K ) dominant spa-
tial basis functions to approximate the major dynamics of the
spatiotemporal system. The parameter η denotes the ratio of
the sum of the n largest eigenvalues to the total sum of all
eigenvalues, which is written as:

η =

n∑
i=1

λi

/
K∑
i=1

λi, (n ≤ K ) , (13)

where n is determined according to (13) as the ratio η exceeds
99.9%.

C. MLP-LSTM TEMPORAL MODEL
ANNs have been a topic of great interest in the machine
learning community due to their ability to solve very difficult
problems [43]. The MLP is a feedforward neural network
which is trained with the backpropagation algorithm [44].
The MLP shown in Fig. 3 is a flexible and adjustable archi-
tecture whose integral structure general consisting of three
layers, i.e., an input layer, a hidden layer, and an output layer
[45]. The number of neuron in both input and output layers
depends on the actual situations.

The vector x =
[
x1, x2, · · ·, xp

]T represents the p input
variables, and the numbers of neurons in the hidden layer and
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FIGURE 4. Schematic representation of the LSTM.

output layer are q and 1, respectively. The weightW =
[
wij
]

is a p× q matrix that connects the p inputs with the q hidden
layer nodes. The vector b =

[
bhj
]
(j ∈ [1, q]) is the biases

for the hidden layer nodes. The weight k =
[
kOj
]
(j ∈ [1, q])

is the vector that connects the q hidden layer nodes with the
single output. Therefore, the input-output of the MLP can be
expressed as:

y = g

 q∑
j=1

koj f

(( p∑
i=1

wijxi

)
+ bhj

)
+ bo

, (14)

where f (·) and g (·) are the activation transfer functions of
the neuron, which have many different forms such as step
function, sigmoid function, etc. [46].

As a special kind of RNN, Long Short Term Memory
(LSTM) is designed to overcome the limitations of long-term
dependency [47]. The LSTM can be applied for modeling
time series data with high nonlinearities and long interval
[48]. A normal LSTM consists of an input layer, a recurrent
hidden layer, and an output layer, and storage elements are
employed to transfer information from past output to current
output. Different from the other neuronal networks, the mem-
ory block is the basic unit of the hidden layer [49]. It is com-
prised of memory cells with self-connections memorizing the
temporal state, and two adaptive gating units (named input
gate and output gate) are used to control information flow in
the block. Fig. 4 shows the architecture of the LSTM.

The LSTM has three control signals, each of which is
a nonlinear function σ activated by a weighted sum of the

FIGURE 5. Procedure of the MLP-LSTM temporal model.

current input observation xt and previous output ht−1. The
forget gate ft , input gate it , and output gate ot can be expressed
as:

ft = σ
(
Wf · ht−1 +Wf · xt + bf

)
, (15)

it = σ (Wi · ht−1 +Wi · xt + bi), (16)

ot = σ (Wo · ht−1 +Wo · xt + bo), (17)

where Wf , Wi and Wo are the weight matrix of forget gate,
input gate, and output gate, respectively; bf , bi and bo are the
bias of forget gate, input gate, and output gate, respectively.
The forget gate ft determines whether to retain or forget the
previous state ct−1 of the LSTM. The input gate it decides
whether to update the state of the LSTM using the current
input, and the output gate ot determines whether to pass the
current state ht to the next iteration. The final output of the
LSTM is determined by the new cell state ct as follows:

c̃t = tanh (Wc · ht−1 +Wc · xt + bc) , (18)

ct = ft ⊗ ct−1 + it ⊗ c̃t , (19)

ht = ot ⊗ tanh (ct) , (20)

where c̃t is the new gated input at time t , ct−1 is the gated
previous state at time t − 1, Wc is the weight matrix of the
input cell state, bc is the bias of the input cell state, tanh is the
activation function, and ⊗ is the elementwise multiplication
operator.

The full procedure of the MLP-LSTM temporal model is
listed as follows and illustrated in Fig. 5.
Step 1: Maintain the two parts of the input data which

comes from system inputs u (t) and spatiotemporal separation
ai (t − 1).
Step 2: Apply the MLP to establish the dynamic relation-

ship between the input u (t) and the prediction ai (t). The
output of this MLP part is ai1 (t).
Step 3: Apply the LSTM to construct the effect of the

output from the previous ai (t − 1) on the prediction ai (t).
The output of this LSTM part is ai2 (t).
Step 4: Construct MLP-LSTM model.
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Based on the inputs and outputs in theMLP and the LSTM,
the output of the MLP-LSTM is ai (t) = α1 · ai1 (t) +
α2 · ai2 (t), i.e., ai (t) = gi (u(t)) + hi (ai (t − 1)). Then the
Adam algorithm [50] is used to train the model and optimize
the parameters to prepare for the following spatiotemporal
synthesis procedure.

D. SPATIOTEMPORAL SYNTHESIS
Combining the MLP-LSTM estimations of the output{
âi (t)

}L
i=1 with spatial basis functions {φi (S)}Li=1, we can

obtain the KL-MLP-LSTM spatiotemporal model as follows:

âi (t) = ĝi (u(t))+ ĥi (ai (t − 1)) , (21)

ŷ (S, t) =
n∑
i=1

φi (S)âi (t) . (22)

Based on all the procedures above, the KL-MLP-LSTM
spatiotemporal model of the DPS can be set up according to
the following steps:
Step 1: Impose systematic excitation u (t) to the DPS,

and the system output is {y (Si, t)}
N ,L
i=1,t=1, from which

the spatial basis functions {φi (S)}ni=1 and temporal coef-
ficients {ai (t)}

n,L
i=1,t=1 can be obtained by using the KL

decomposition method.
Step 2:Apply theMLP-LSTM to identify the system inputs

u (t) and temporal coefficients
{
âi (t)

}L
i=1 to finish the model

identification.
Step 3: Reconstruct the system model by spatiotemporal

synthesis and get the model prediction.

E. SUMMARY
To sum up, compared to the previous spatiotemporal models,
the proposed method has a dual-model structure, in which
the two inherently coupled nonlinearities are fully consid-
ered. Besides, compared to other dual-models [29], the pro-
posed model utilizes a hybrid model containing two different
sub-models to approximate the real situations.

IV. EXPERIMENTAL RESULT
In this section, a snap curing oven thermal process is
employed to demonstrate the effectiveness of the proposed
model. Curing is one of the most critical processes in the
semiconductor back-end packaging industry, and snap cur-
ing oven is a vital equipment to provide the required tem-
perature distribution during the curing process. The curing
quality of the chip profoundly affects the quality and the
life of the final product. It is essential to obtain the tem-
perature distribution model of the snap curing oven since
the chip quality requires high accuracy of the temperature
distribution. The snap curing oven system is shown in Fig. 6.
As shown in Fig. 7, the oven has four heaters controlled
by pulse-width modulation (PWM) signals which must be
persistently excited for modeling. As can be seen from Fig. 8,
sixteen thermocouples, i.e., 16 spatial nodes (s), distributed
uniformly in the same horizontal plane are employed for
temperature sensing in the process. Measurements from the

FIGURE 6. The snap curing oven system. (a) the actual snap curing oven
system; (b) diagram of the internal structure.

FIGURE 7. Input PWM signal of heater 1.

highlighted sensors (s1 − s5, s7 − s10, s12 − s16) are used
for modeling while measurements from the other two sensors
(s6, s11) are used for model validation. The output temper-
ature signal is collected under the dSPACE platform due to
its strong real-time performance, high reliability, and good
expansibility, etc. In total, about 2100 time series measure-
ments are collected by all the sensors in a sampling interval
1t = 10s in the experiment, which implies that the num-
ber of temporal nodes L is 2100. About 1100 samples are
adopted as training data and the other 1000 samples as testing
data.

The performance of the proposed model is evaluated by
the following five statistics which have different meanings
and widely adopted to evaluate the performance of the pre-
diction model. These five indicators can represent the com-
parative results of the methods from different perspectives.
In particular, RMSE describes the total spatiotemporal error
information of all sensors over all time periods. TNAE rep-
resents the total temporal error information at every sensor.
SNAE means the total spatial error information at every
moment.
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FIGURE 8. Sensor locations for modeling and validation.

1) Spatiotemporal prediction error (e)

e (Si, t) = y (Si, t)− ŷ (Si, t) , i = 1, · · ·,N . (23)

2) Absolute relative error (ARE)

ARE =

∣∣y (Si, t)− ŷ (Si, t)∣∣
y (Si, t)

, i = 1, · · ·,N . (24)

3) Root mean square error (RMSE)

RMSE =

√√√√ 1
NL

N∑
i=1

L∑
t=1

(
y (Si, t)− ŷ (Si, t)

)2
. (25)

4) Temporal normalized absolute error (TNAE)

TNAE =
1
L

L∑
t=1

∣∣y (Si, t)− ŷ (Si, t)∣∣, i = 1, · · ·,N . (26)

5) Spatial normalized absolute error (SNAE)

SNAE =
1
N

N∑
i=1

∣∣y (Si, t)− ŷ (Si, t)∣∣, t = 1, · · ·, L. (27)

In the KL-MLP-LSTM spatiotemporal modeling process,
three dominant spatial basis functions (n = 3) have been cho-
sen according to the KL decomposition method. Fig. 9 shows
the selected spatial basis functions.

After getting the three spatial basis functions, a series of
low-dimensional time series data ({ai (t)}3i=1) can be obtained
by projecting high-dimensional spatiotemporal data onto the
spatial basis functions. The most critical procedure is to use
the MLP-LSTM to identify the model based on the input
signal u (t) and the temporal coefficients a (t). The structure
of the MLP has five layers, i.e., an input layer, three hid-
den layers, and an output layer. The MLP neural network
structure is confirmed as 4-25-17-17-1. The structure of the
LSTMnetwork has three layers, and the number of the hidden
layer nodes is 50. The time step length is 10, and the mini-
batch size is 32. In Adam algorithm, the learning rate is
0.001, and the other parameters are set as default. The first
two low-order actual temporal coefficients predicted by the
MLP-LSTMmodel, i.e., a1 (t) , a2 (t), are compared to those
obtained by the MLP and the dual LS-SVM [29] under the
same conditions in this example. Fig. 10 and Fig. 11 show
the a1 (t) , a2 (t) predicted by the two above-mentioned

FIGURE 9. The selected spatial basis functions. (a) spatial basis function
(i = 1); (b) spatial basis function (i = 2); (c) spatial basis function (i = 3).

FIGURE 10. The comparison of the actual temporal coefficients and its
prediction by MLP mode. (a) temporal coefficient a1; (b) temporal
coefficient a2.

FIGURE 11. The comparison of the actual temporal coefficients and its
prediction by dual LS-SVM mode. (a) temporal coefficient a1; (b) temporal
coefficient a2.

methods, respectively, and the corresponding results of the
proposed MLP-LSTM are demonstrated in Fig. 12. It is obvi-
ous that the predictions given by the MLP-LSTM can track
the tendency of the actual results very well and show the best
prediction performance among the three models.

Finally, the temperature distribution can be reconstructed
by synthesizing the obtained spatial basis functions and the
identified temporal model. Once the spatiotemporal model of
thermal process is obtained, the temperature predicted by the
temporal model under the designed testing input conditions
are compared with the actual measured temperature at the
indicated times to validate the proposed model. Fig. 13 shows
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FIGURE 12. The comparison of the actual temporal coefficients and its
prediction by MLP-LSTM mode. (a) temporal coefficient a1; (b) temporal
coefficient a2.

FIGURE 13. The real temperature distributions at the last sampling
(t = 21000s).

FIGURE 14. ARE distributions at the last sampling (t = 21000s). (a) ARE
distribution of the KL-MLP; (b) ARE distribution of the KL-dual LS-SVM;
(c) ARE distribution of the KL-MLP-LSTM.

the real temperature distributions over the spatial domain at
the last sampling (t = 21000s) and Fig. 14 displays the
ARE distributions of the predicted temperature by three dif-
ferent models at the same time. Compared with the KL-MLP
and the KL-dual LS-SVM, the maximum ARE of the
KL-MLP-LSTM is reduced from 3.42% and 1.04% to 0.19%,
respectively, which means the proposed method has a higher
prediction accuracy. The KL-MLP-LSTM can achieve the
best prediction performance due to the high accuracy of the
MLP-LSTM temporal model.

FIGURE 15. Performance comparisons of the three methods for sensor
s6. (a) performance of the KL-MLP for sensor s6; (b) performance of the
KL-dual LS-SVM for sensor s6; (c) performance of the KL-MLP-LSTM for
sensor s6.

FIGURE 16. Performance comparisons of the three methods for sensor
s11. (a) performance of the KL-MLP for sensor s11; (b) performance of the
KL-dual LS-SVM for sensor s11; (c) performance of the KL-MLP-LSTM for
sensor s11.

Two untrained sensors (s6, s11) outputs are compared to
the experimental data for model performance validation.
Fig. 15 and Fig. 16 show the predicted temperatures in com-
parison with actual measurements of the test samples for
the sensor s6 and s11 by three different models. As can be
seen from these figures, the prediction performance of the
KL-MLP-LSTM is excellent for s6 as well as at s11. The
ARE of the three modeling methods for the sensor s6 and s11
are shown in Fig. 17. Whether for the sensor s6 or s11, most
of ARE values of the KL-MLP-LSTM are basically below
0.60%,while those of theKL-MLP and theKL-dual LS-SVM
are below 4.50% and 1.50%.

For further comparisons of these models over the time
and spatial domain, the criteria of RMSE, SNAE and TNAE
are adopted. Table 1 shows the RMSE of the three modeling
methods. It is obvious that the KL-MLP-LSTM has the best
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FIGURE 17. ARE comparisons of the three methods for sensor s6 and s11.
(a) ARE comparison for sensor s6; (b) ARE comparison for sensor s11.

TABLE 1. RMSE of three methods.

FIGURE 18. SNAE comparisons of the three methods.

FIGURE 19. TNAE distributions of the three methods. (a) TNAE
distribution of the KL-MLP; (b) TNAE distribution of the KL-dual LS-SVM;
(c) TNAE distribution of the KL-MLP-LSTM.

prediction performance with minimum RMSE of 0.50 com-
pared to those of the KL-MLP and the KL-dual LS-SVM.
Fig. 18 displays the SNAE of three different models. The
SNAE of the KL-MLP-LSTM is almost less than 0.50, which
means that its performance is much better than the other
two methods. Fig. 19 presents the TNAE of these models.
The maximum SNAE of the KL-MLP-LSTM is 0.45, while

those for the other twomodels are 5.65 and 1.71, respectively,
which indicates the proposed method has a greater prediction
capability.

All the results presented above indicate that the proposed
KL-MLP-LSTMmodel can perform better than the other two
models in the experiment, which demonstrates its excellent
performance in both the time domain and the spatial domain.
Since the KL-MLP model is a single-structure method, it is
difficult to obtain an excellent result. Although the KL-dual
LS-SVM model is a double-structure method with a higher
prediction accuracy, it does not consider the time series factor.
As the proposed KL-MLP-LSTM model in our paper is a
double-structure method considering the time series prob-
lem, it is more consistent with the practical DPS, and then
performs superior to the other methods.

V. CONCLUSION
In this work, a data-driven spatiotemporal model named
KL-MLP-LSTM is proposed. The model combines the KL
decomposition for dimension reduction and the spatial basis
functions extraction by a novel MLP-LSTM hybrid time
series model to deal with the two inherently coupled nonlin-
earities. Data set from a snap curing oven thermal process
is performed to validate the reliability of the spatiotempo-
ral KL-MLP-LSTM model reconstructed through spatiotem-
poral synthesis. In addition, the proposed KL-MLP-LSTM
is compared with the KL-MLP and the KL-dual LS-SVM.
The results indicate that the KL-MLP-LSTM model presents
the best prediction performance among the three methods.
The proposed spatiotemporal method can be applied to a
parabolic distributed parameter system with a feedback input
signal in any field, especially for a nonlinear system.

The contributions of this paper can be summarized into
the following aspects: 1) fast spatial basis functions compu-
tation; 2) perfect model structure matching; 3) high model
performance; 4) easy implementation. Though this proposed
model can work very well, we will continue this research
in the future and put attention on the following aspects:
1) simplify the model structure; 2) optimize the number and
the placement of sensors; 3) expand the model applications.
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