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ABSTRACT This paper presents a novel off-policy game Q-learning algorithm to solve H∞ control
problem for discrete-time linear multi-player systems with completely unknown system dynamics. The
primary contribution of this paper lies in that the Q-learning strategy employed in the proposed algorithm
is implemented in an off-policy policy iteration approach other than on-policy learning, since the off-policy
learning has some well-known advantages over the on-policy learning. All of players struggle together to
minimize their common performance index meanwhile defeating the disturbance that tries to maximize the
specific performance index, and finally they reach the Nash equilibrium of game resulting in satisfying
disturbance attenuation condition. For finding the solution of the Nash equilibrium, H∞ control problem is
first transformed into an optimal control problem. Then an off-policy Q-learning algorithm is put forward
in the typical adaptive dynamic programming (ADP) and game architecture, such that control policies of
all players can be learned using only measured data. More importantly, the rigorous proof of no bias of
solution to the Nash equilibrium by using the proposed off-policy game Q-learning algorithm is presented.
Comparative simulation results are provided to verify the effectiveness and demonstrate the advantages of
the proposed method.

INDEX TERMS H∞ control, off-policy Q-learning, game theory, Nash equilibrium.

I. INTRODUCTION
The H∞ control is a robust control method which is aimed
at designing the controllers to attenuate the negative effects
in performance of dynamical systems caused by external
disturbances meanwhile guarantee the stability of systems if
no disturbance exists [1]–[3]. This issue can be handled using
the zero-sum game theory, that is, solving a game Bellman
equation in the zero-sum game framework results in getting
theH∞ controller policies [4], [5]. The truth of more complex
and large-scale systems with multiple subsystems and mul-
tiple controllers in practical engineering applications makes
anti-interference control ofmulti-player systems valuable and
more complicated, thereby attracting increasing attention of
researchers to H∞ control for multi-player or multi-agent
systems [6]–[9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiguang Feng .

By reviewing the existing results on H∞ control for
dynamical systems, it is not difficult to find that most of
researchers are concerned about model-based H∞ controller
design using the variety of methods, such as linear matrix
inequality (LMI) [10]–[12], zero-sum game [13]–[17] and
pole assignment [18]–[20], etc. The requirement of these
methods that the dynamics of systems should be accurately
known a priori prevents them from applications for sys-
tems with inaccurate or even completely unknown models.
Reinforcement learning (RL) that can deal with controller
design or decision-making problem in uncertain or unknown
environment is an alternative tool to solve H∞ control for
systems without the information of system dynamics. For
discrete-time (DT) systems, Al-Tamimi et al. [21] proposed
a model-free Q-learning algorithm for the linear zero-sum
game with the application toH∞ control. Kiumarsi et al. [22]
used an off-policy RL method to get a model-free solution
to the H∞ control of linear systems. Kim and Lewis [23]
developed a model-free H∞ control algorithm for unknown
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linear systems by using RL method based on an actor-critic
structure. Rizvi and Lin [24] presented an output feedback
Q-learning algorithm for the linear quadratic zero-sum game
withH∞ control problem. For continuous-time (CT) systems,
Modares et al. [25] dealt with the H∞ tracking controller
design for nonlinear systems. Jiang et al. [26] presented
a novel data-driven RL approach to solve the H∞ control
problem for nonlinear systems with completely unknown
dynamics and constrained control input. Luo et al. [27] solved
the data-driven H∞ control problem of nonlinear distributed
parameter systems by using the off-policy learning method
and an off-policy RL learning algorithm was proposed for
H∞ control design [28]. Kiumarsi et al. [29] designed a
model-free H∞ optimal tracking controller for affine non-
linear systems with input constraints. Fu and Chai [30] pro-
posed an online adaptive algorithm for learning the Nash
equilibrium solution for nonlinear zero-sum game problem.
It is worth pointing out that the designed H∞ controllers in
the aforementioned literature are only for single-player sys-
tems. On the other hand, the existing reports on multi-player
games [31]–[36] usually ignore the negative effects caused
by disturbances on performance of systems. What we focus
here is how to attenuate the influence of disturbances for
multi-player systems using only measured data even in the
completely unknown environments.

Most related results are H∞ control of multi-agent and
multi-player systems [6]–[9]. In [7] agents have their
individual dynamics and anti-interference problem has
been investigated for continuous-time multi-player systems
in [6], [8], [9]. The main difference of multi-player sys-
tems from multi-agent systems is all players in multi-player
systems are capable of accessing the state of the over-
all systems, which makes us try to find a different
manipulation from multi-agent systems to design H∞ con-
trollers. Like [6], [8], [9], the model-free H∞ controller
design will be taken into account for multi-player sys-
tems in this paper, while the difference of nature of
discrete-time sampling from continues-time processes makes
it more complicated to solve H∞ control problem from
the discrete-time system perspective, and multiple play-
ers and completely unknown dynamics of players increase
this difficulty. Moreover, in view of the advantages of
off-policy learning over on-policy learning shown in our pre-
vious result [37] wherein the off -policy Q-learning method
was proposed for multi-player systems without the con-
sideration of disturbance, developing an off-policy game
Q-learning algorithm to solve H∞ control problem for
discrete-time linear multi-player systems using only mea-
sured data becomes our target. To our best knowledge,
this problem has not been reported up to now. Besides,
the anti-interference control has many practical applica-
tions, such as Van der Pol’s oscillator systems [6], F-16
aircraft systems of DT or CT [14], [21], [22], [35], rotational/
translational actuator (RTAC) nonlinear benchmark prob-
lems [38], and industrial operational control [39], etc.

In the ADP architecture, this paper proposes a novel
off-policy game Q-learning algorithm for finding multi-
ple controllers that not only guarantee the stability of
multi-player systems, but also the disturbance is limited
within a disturbance attenuation bound. The contributions of
this paper are summarized as follows:

1) Unlike the on-policy algorithm [21], [23], [36],
[39]–[41] and the off-policy RL method [27], [28]
which only consider single-player systems, this paper
employs the idea of off-policy Q-learning and extends
it to multi-player systems for handling H∞ control
of multi-player systems. Compared with the existing
H∞ control algorithms of multi-agent systems [7] and
multi-player systems [6], [8], [9], there are two dif-
ferences, one is model-free H∞ controller is designed
in this paper for discrete-time dynamics of sys-
tems rather than continuous-time dynamics of sys-
tems [6]–[9] and the other is that all players in the
focused systems cooperatively work hard for achiev-
ing their common objective, i.e. minimizing the spe-
cific performance and defeating external disturbances,
which is not like the way in [6], [8], [9] where
players competed each other for optimizing its own
performance.

2) Under the premise of ensuring the PE condition, prob-
ing noises have to be added in the behavior control
policy for each player when learning the target policies.
The unbiasedness of solution to Nash equilibrium for
zero-summulti-player games using the off-policy game
Q-learning algorithm is rigorously proven for the first
time.

The structure of this paper is shown below. In Section II,
the H∞ control problem of multi-player linear DT sys-
tems is proposed and the conversion of H∞ control into
zero-sum game is presented. Section III focuses on solving
the problem of multi-player zero-sum games with exter-
nal disturbance. Moreover, the on-policy game Q-learning
algorithm is proposed and the solution to the Nash equilib-
rium using this kind of algorithm is proven to be biased.
In Section IV, an off-policy game Q-learning algorithm is
developed together with the proof that the Nash equilibrium
solution learned by the proposed algorithm is unbiased. The
Section V is the simulation experiments that are used to
verify the effectiveness and contributions of the proposed
method. Finally, a brief conclusion of this paper is given in
Section VI.
Notations 1: Rp denotes the p dimensional Euclidean

space. Rp×q is the set of all real p by q matrices. Positive
definite matrix is assumed that in the case that Q is a square
matrix of order n and x is any non-zero vector, xTQx > 0.
If xTQx ≥ 0, it is a semi-positive definite matrix. ‖·‖ denotes
the vector norm. The superscript T is used for the transpose.
⊗ stands for the Kronecker product. vec(L) is used to turn any
matrix L into a single column vector.
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II. PROBLEM STATEMENT
In this section, the H∞ control problem for linear DT
multi-player systems is proposed first. And then it is con-
verted into a zero-sum game problem that all players work
together for minimizing the specific performance index,
while the disturbance makes the performance worst on the
opposite. Thirdly, the value function and the Q-function
defined in terms of the performance index are proven to be
quadratic.

A. H∞ CONTROL PROBLEM
Consider the following linear DTmulti-player system subject
to exogenous disturbance

xk+1 = Axk +
n∑
i=1

Biuik + Edk (1)

where xk = x(k) ∈ Rp is the system state with initial state x0,
uik = ui(k) ∈ Rmi (i = 1, . . . , n) are the control inputs and
dk = d(xk ) ∈ Rq is the external disturbance input. A ∈ Rp×p,
Bi ∈ Rp×mi , E ∈ Rp×q and k is the sampling time instant.
Definition 1 [22], [38]: System (1) has L2-gain less than

or equal to γ if
∞∑
k=0

(xTk Qxk +
n∑
i=1

uTikRiuik ) ≤ γ
2
∞∑
k=0

‖dk‖2 (2)

for all dk ∈ L2[0,∞). Q ≥ 0, Ri > 0 and γ ≥ 0 is a
prescribed constant disturbance attenuation level.

The H∞ control is to find a feedback control policy u such
that the system (1) with dk = 0 is asymptotically stable and it
satisfies the disturbance attenuation condition (2). As claimed
in [1], theH∞ control problem can be equivalently expressed
as

J (x0,U , dk )=min
U

max
dk

∞∑
k=0

(xTk Qxk+
n∑
i=1

uTikRiuik−γ
2
‖dk‖2)

(3)

where U = {u1k , u2k , . . . , unk}, which means the set U is
composed of n players with each of them is a controller.
As one can know from (3), the objective of these playersU is
to fight with the disturbance for minimizing the performance
in (3), while the disturbance dk could also be viewed as a
player that tries to maximize (3). This is a typical zero-sum
game problem.
Definition 2 (Saddle Point Solution [6], [42]): A set of

policies (u∗1k , u
∗

2k , . . . , u
∗
nk , d

∗
k ) is called the game theoretical

saddle point if it satisfies the form

J (x0, u∗1k , u
∗

2k , . . . , u
∗
nk , d

∗
k ) = min

U
max
dk

J (x0,U , dk )

= max
dk

min
U

J (x0,U , dk ) (4)

which indicates the Nash equilibrium condition holds, that is

J (x0,U∗, dk ) ≤ J (x0,U∗, d∗k ) ≤ J (x0,U , d
∗
k )

where U∗ =
{
u∗1k , u

∗

2k , . . . , u
∗
nk

}
.

In such zero-sun game (3), the saddle-point solution exists
if and only if there exists a function V (xk ) satisfying the
following Hamilton-Jacobi-Isaacs (HJI) equation [35], [43].

V ∗(xk )

= min
U

max
dk

∞∑
l=k

(xTl Qxl +
n∑
i=1

uTilRiuil − γ
2
‖dl‖2)

= min
U

max
dk

(
xTk Qxk+

n∑
i=1

uTikRiuik−γ
2
‖dk‖2+V ∗(xk+1)

)

= xTk Qxk +
n∑
i=1

u∗Tik Riu
∗
ik − γ

2 ∥∥d∗k ∥∥2
+V ∗(Axk +

n∑
i=1

Biu∗ik + Ed
∗
k ) (5)

where V ∗(xk ) is viewed as the optimal value function.
The arguments provided above has illustrated that H∞

control is closely related to zero-sum game (3). The ultimate
target of designing H∞ control policies in this paper can be
achieved by seeking the saddle-point solution to the zero-sum
game.

Similar to [21], [31], [44], the optimal Q-function referring
to (3) can be defined as

Q∗(xk ,U , dk )=xTk Qxk+
n∑
i=1

uTikRiuik−γ
2
‖dk‖2+V ∗(xk+1)

(6)

Thus, the following relation holds

V ∗(xk ) = min
U

max
dk

Q∗(xk ,U , dk ) = Q∗(xk ,U∗, d∗k ) (7)

B. QUADRATIC FORM PROOF OF VALUE
FUNCTION AND Q-FUNCTION
Definition 3 (Admissible Control Policies [21], [33]):

Suppose dk = 0, the control policies u1(xk ),u2(xk ),. . . ,un(xk )
are defined as admissible with respect to (3) on � ∈ Rp,
denoted by ui(xk ) ∈ 9(�) if u1(xk ), u2(xk ), . . . , un(xk ) are
continuous on �, u1(0) = 0, u2(0) = 0, . . . , un(0) = 0,
u1(xk ), u2(xk ), . . . , un(xk ) stabilize (1) on � and (3) is finite
∀x0 ∈ �.

Lemma 1 is given to show the quadratic forms of the
optimal value function and the optimal Q-function associated
with performance index (3).
Lemma 1: Assume that there are admissible control poli-

cies ui = −Kixk and disturbance policy dk = −Kxk ,
the quadratic forms of the optimal value function and the
optimal Q-function can be expressed as:

V ∗(xk ) = xTk P
∗xk (8)

and

Q∗(xk ,U , dk ) = zTk H
∗zk (9)

where P∗ and H∗ are positive definite matrices. And

zk =
[
xTk uT1k uT2k . . . uTnk dTk

]T (10)
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Proof:

V ∗(xk ) = min
U

max
dl

∞∑
l=k

(xTl Qxl +
n∑
i=1

uTilRiuil − γ
2dTl dl)

= min
Ki(i=1,2,...,n)

max
K

∞∑
l=k

[
xTl Qxl +

n∑
i=1

(−Kixl)TRi

×(−Kixl)− γ 2(−Kxl)T (−Kxl)

]

= min
Ki(i=1,2,...,n)

max
K

∞∑
l=k

xTl

[
Q+

n∑
i=1

(Ki)TRi(Ki)

−γ 2KTK

]
xl

= min
Ki(i=1,2,...,n)

max
K

∞∑
l=0

xTl+k

[
Q+

n∑
i=1

(Ki)TRi(Ki)

−γ 2KTK

]
xl+k (11)

where xl+k = (A −
∑n

i=1 BiKi − EK )lxk = Glxk . Further,
one has

V ∗(xk ) = min
Ki(i=1,2,...,n)

max
K

∞∑
l=0

xTk (G
l)T

×

[
Q+

n∑
i=1

(Ki)TRi(Ki)− γ 2KTK

]
(Gl)xk (12)

then, one has

V ∗(xk ) = xTk P
∗xk (13)

where

P∗ = min
Ki(i=1,2,...,n)

max
K

∞∑
l=0

(Gl)T
[
Q+

n∑
i=1

(Ki)TRi(Ki)

−γ 2KTK

]
(Gl)

Then, one has

Q∗(xk ,U , dk )

= xTk Qxk +
n∑
i=1

uTikRiuik − γ
2dTk dk + V

∗(xk+1)

= xTk Qxk +
n∑
i=1

uTikRiuik − γ
2dTk dk + x

T
k+1P

∗xk+1

= xTk Qxk +
n∑
i=1

uTikRiuik − γ
2dTk dk

+ (Axk +
n∑
i=1

Biuik − Edk )TP∗(Axk +
n∑
i=1

Biuik − Edk )

= zTk H
∗zk (14)

where

H∗

=



H∗xx H∗xu1 H∗xu2 . . . H∗xun H∗xd
H∗,Txu1 H∗u1u1 H∗u1u2 . . . H∗u1un H∗u1d
H∗,Txu2 H∗,Tu1u2 H∗u2u2 . . . H∗u2un H∗u2d
...

...
... . . .

...
...

H∗,Txun H∗,Tu1un H∗,Tu2un . . . H∗unun H∗und
H∗,Txd H∗,Tu1d

H∗,Tu2d
. . . H∗,Tund H∗dd



=



ATP∗A+ Q . . . ATP∗Bn ATP∗E
(ATP∗B1)T . . . BT1 P

∗Bn BT1 P
∗E

(ATP∗B2)T . . . BT2 P
∗Bn BT2 P

∗E
... . . .

...
...

(ATP∗Bn)T . . . BTn P
∗Bn + Rn BTn P

∗E
(ATP∗E)T . . . (BTn P

∗E)T −γ 2I + ETP∗E


(15)

By (13) and (14), one can get

P∗ = MTH∗M (16)

where

M =
[
I − KT

1 . . . − KT
n − KT

]T
�

Remark 1: Following the idea in [21], where the
quadratic forms of value function and Q-function for linear
single-player systems are proven, the rigorous proof that the
value function and Q-function defined for zero-sum game of
multi-player systems are quadratic is presented in this paper.

III. SOLVING MULTI-PLAYER ZERO-SUM GAME
In this section, the theoretical solution of the zero-sum
game for multi-player systems is first obtained according
to the Bellman equation of Q-function. Then the on-policy
game Q-learning algorithm is provided to solve this prob-
lem. Finally, it is proved that the Nash equilibrium solu-
tion obtained by the on-policy game Q-learning algorithm is
biased.

A. THEORETICAL SOLUTION
Now we are in the position to solve HJI equation based on
game theory. By Lemma 1, referring to HJI equation (5)
yields the optimal Q-function based Bellman equation below:

zTk Hzk = xTk Qxk +
n∑
i=1

uTikRiuik − γ
2
‖dk‖2 + zTk+1Hzk+1

(17)

The optimal control policy u∗i of each player i and the
worst-case disturbance d∗k should satisfy

∂Q∗(xk ,U ,dk )
∂ui

= 0 and
∂Q∗(xk ,U ,dk )

∂dk
= 0. Therefore, one has

u∗i (k) = −K
∗
i xk (18)

d∗k = −K
∗xk (19)
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where

K∗i = H−1uiui

[
HT
xui − (Huiu1K1 + · · · + Huiui−1Ki−1

+ Huiui+1Ki+1 + · · · + HuiunKn + HuidK )
]

(20)

K∗ = H−1dd

[
HT
xd − (Hdu1K1 + Hdu2K2 + · · · + HdunKn

]
(21)

Substituting K∗i in (20) and K∗ in (21) into (17) yields the
optimal Q-function based game Riccati equation (GRE).

(zk )TH∗zk = xTk Qxk +
n∑
i=1

(u∗i )
TRiu∗i − γ

2 ∥∥d∗k ∥∥2
+ (zk+1)TH∗zk+1 (22)

One thing to note is that Al-Tamimi et al. [21] and
Vamvoudakis et al. [35] have proved that the following
K∗i (i = 1, 2, . . . n) and K∗ can keep system (1) stable when
dk = 0 and achieve Nash equilibrium.

K∗i = (H∗uiui )
−1
[
(H∗xui )

T
− (H∗uiu1K

∗

1 + · · · + H
∗
uiui−1

× K∗i−1 + H
∗
uiui+1K

∗

i+1 + · · · + H
∗
uiunK

∗
n + H

∗
uidK

∗

]
(23)

K∗ = (H∗dd )
−1
[
(H∗xd )

T
− (H∗du1K

∗

1 + H
∗
du2K

∗

2 + . . .

+ H∗dunK
∗
n

]
(24)

Note that solving (23) and (24), that is, solving the
zero-sum game problem defined by (6), is to find the opti-
mal control policies satisfying the disturbance attenuation
condition (2).
Remark 2: Since the optimal control policies and distur-

bance policy in (23) and (24) are coupled, they are difficult
to be solved. Therefore, an on-policy game Q-learning algo-
rithm is going to be presented to overcome this difficulty
resulting in obtaining the control laws u∗i (k) = −K

∗
i xk and

disturbance policy d∗k = −K
∗xk .

B. ON-POLICY GAME Q-LEARNING ALGORITHM
The on-policy RL algorithms in [5], [45]–[47] are extended
to solve H∞ control problem for multi-player systems, and
thus the on-policy game Q-learning Algorithm 1 is proposed.
Remark 3: In Algorithm 1, the training data zk are gener-

ated by the iterative control policies (26) and iterative dis-
turbance policies (27). In this sense, Algorithm 1 is indeed
on-policy learning [39]–[41]. Moreover, the control policy
gainsK j+1

i are updated by solvingmatrixH j+1 in Q-function.
As j → ∞, H j+1 converges to the optimal value, and then
K j+1
i converge to the optimal value. This conclusion can be

made and proven using the similar way to [21], [44].

C. BIAS ANALYSIS OF SOLUTION LEARNED BY THE
ON-POLICY GAME Q-LEARNING ALGORITHM
For systems with single player, the existing results have
proven that biased solutions to iterative Bellman equation can

Algorithm 1 On-Policy Game Q-Learning for the Zero-Sum
Game
1: Given an n-tuple initial admissible controller gains for
K 0
1 ,K

0
2 ,. . . ,K

0
n and disturbance policy gain K 0. Let j = 0

and j represents the number of iterations, and i denotes
the player i (i = 1, 2, . . . , n+ 1). Set i = 1;

2: Evaluate policies by solve H j+1

zTk H
j+1zk = xTk Qxk +

n∑
i=1

(ujik )
TRiu

j
ik − γ

2
∥∥∥d jk∥∥∥2

+ zTk+1H
j+1zk+1 (25)

where zk+1 =
[
xTk+1 uj,Ti,k+1(i = 1, 2, . . . , n) d j,Tk+1

]T
.

3: Update the control and disturbance policy:

uj+1ik = −K
j+1
i xk (26)

d j+1k = −K j+1xk (27)

where

K j+1
i = (H j+1

uiui )
−1
[
(H j+1

xui )
T
− (H j+1

uiu1K
j
1 + H

j+1
uiui−1

× K j
i−1 + · · · + H

j+1
uiui+1K

j
i+1 + · · · + H

j+1
uiunK

j
n

+ H j+1
uid K )

]
(28)

K j+1
= (H j+1

dd )−1
[
(H j+1

xd )T − (H j+1
du1

K j
1

+ H j+1
du2

K j
2 + · · · + H

j+1
dun K

j
n)
]

(29)

4: If i < n + 1, then i = i + 1 and go back to Step 2.
Otherwise j = j+ 1, i = 1, and go to Step 5;

5: Stop when ∥∥∥H j−1
− H j

∥∥∥ ≤ ε
with a small constant ε(ε > 0). Otherwise go back to
Step 2.

be generated caused by adding probing noise. The sequel is
going to prove that this kind of biasedness of solutions still
exists when solving the optimal Q-function based Bellman
equation using the on-policy game Q-learning algorithm for
multi-player systems.

To satisfy the PE condition in Algorithm 1, probing noises
are added to ujik . Thus, the actual control inputs applied to the
system for collecting data are

ûjik = ujik + eik (30)

with eik = ei(k) being probing noises and ujik given by (26).
Theorem 1 will prove that there exists the bias of solutions
to (25).
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Theorem 1: Rewrite iterative Q-function based Bellman
equation (25) as

xTk (M
j)TH j+1M jxk

= xTk Qxk +
n∑
i=1

(ujik )
TRiu

j
ik

− γ 2dTk dk + x
T
k+1(M

j)TH j+1M jxk+1 (31)

where

M j
=

[
I − (K j

1)
T . . . − (K j

n)T − (K j)T
]T

Let H j+1 be the solution (31) with eik = 0 and Ĥ j+1 be the
solution to (31) with eik 6= 0. Then, H j+1

6= Ĥ j+1.
Proof: Using (30) with ei 6= 0 in (31), the Bellman

equation becomes the following

xTk (M
j)T Ĥ j+1M jxk

= xTk Qxk +
n∑
i=1

(ujik + eik )
TRi(u

j
ik + eik )− γ

2dTk dk

+ xTk+1(M
j)T Ĥ j+1M jxk+1 (32)

where

xk+1 = Axk +
n∑
i=1

Bi(u
j
ik + eik )+ Edk (33)

Further, (32) is rewritten as

xTk (M
j)T Ĥ j+1M jxk

= xTk Qxk +
n∑
i=1

(ujik + eik )
TRi

× (ujik + eik )− γ
2dTk dk

+

(
Axk +

n∑
i=1

Bi(u
j
ik + eik )− Edk

)T
(M j)T Ĥ j+1

×M j

(
Axk +

n∑
i=1

Bi(u
j
ik + eik )− Edk

)

= xTk Qxk +
n∑
i=1

(ujik )
TRiu

j
ik − γ

2dTk dk

+ xTk+1(M
j)T Ĥ j+1M jxk+1 + 2

n∑
i=1

eTikRiu
j
ik

+

n∑
i=1

eTik (B
T
i (M

j)T Ĥ j+1M jBi + Ri)eik

+ 2
n∑
i=1

eTikB
T
i (M

j)T Ĥ j+1M jxk+1 (34)

It can be seen that what we learned in Algorithm 1 needs
to satisfy (34) other than (25). By comparing (25) with (34),
one can find H j+1

6= Ĥ j+1, which indicates that the control
policies updated by (28) and (29) may be inaccurate and
produce bias if probing noise is added when implementing
Algorithm 1. This completes the proof. �

Remark 4: It can be noted that in Algorithm 1, the system
must update uj+1ik = −K j+1

i xk to generate data, which is a
typical feature of the on-policy reinforcement learning algo-
rithm, which has to produce deviation of solution during the
learning process.
Remark 5: One can also notice that the disturbance input

must be updated in the prescribed manner (27) and applied to
the system. However, this is not possible in practical applica-
tions, because the disturbance is generally independent and
random.

In order to avoid these shortcomings of the on-policy game
Q-learning algorithm mentioned in Remark 3 and Remark 4,
behavior inputs and behavior disturbance policy are going to
be introduced in this paper when learning the saddle point for
multi-player systems subject to disturbance, which indicates
we shall investigate the off-policy game Q-learning to solve
the zero-sum game problem. Therefore, the off-policy game
Q-learning method will be proposed in the next section.
Remark 6: Compared with [22], we extend its standard

H∞ control problem to multi-player zero-sum game systems,
and the rigorous proof of biased solution has been provided
in this paper.

IV. OFF-POLICY GAME Q-LEARNING TECHNIQUE
In this section, we propose an off-policy game Q-learning
algorithm to solve the zero-sum game problem, such that
the H∞ controllers of multi-player systems can be found
even when no information of system dynamics is available.
Moreover, it is proved that this algorithm will not produce
deviation of solution even though probing noises are added to
the behavior control policies. The structure of the off-policy
game Q-learning for the multi-player H∞ control problem is
shown in Fig. 1.

A. DERIVATION OF OFF-POLICY GAME
Q-LEARNING ALGORITHM
In this part, we focus on the formulas derivation and presen-
tation of the off-policy game Q-learning algorithm.

From (25), one has

(M j)TH j+1M j
= (M j)T3M j

+

(
A−

n∑
i=1

BiK
j
i − EK

j

)T
(M j)TH j+1M j

×

(
A−

n∑
i=1

BiK
j
i − EK

j

)
(35)

where

3 = diag(Q,R1,R2, . . . ,Rn,−γ 2I )

Introducing auxiliary variables uji = −K
j
i xk and d

j
k = −K

jxk
to system (1) yields

xk+1 = Acxk +
n∑
i=1

Bi(uik − u
j
ik )+ E(dk − d

j
k ) (36)
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FIGURE 1. The structure of the off-policy game Q-learning for H∞ control.

where Ac = A −
∑n

i=1 BiK
j
i − EK

j, ui and dk are called the
behavior control policies and the behavior disturbance policy
which are used to generate data, while ujik and d

j
k are called the

target control policies and the target disturbance policy which
need to be learned. Along the system trajectory is (36), one
has

Qj+1(xk ,U , dk )− xTk A
T
c (M

j)TH j+1M jAcxk

= xTk (M
j)TH j+1M jxk

−

(
xk+1 −

n∑
i=1

Bi(uik − u
j
ik )− E(dk − d

j
k )

)T
(M j)T

×H j+1M j

(
xk+1 −

n∑
i=1

Bi(uik − u
j
ik )− E(dk − d

j
k )

)
= xTk (M

j)T3M jxk (37)

In view that Pj+1 and H j+1 are related as shown in (15)
and (16), then the following holds

xTk (M
j)TH j+1M jxk − xTk+1(M

j)TH j+1M jxk+1

+ 2

(
Axk +

n∑
i=1

Biuik + Edk

)T
Pj+1

n∑
i=1

Bi(uik − u
j
ik )

+ 2

(
Axk +

n∑
i=1

Biuik + Edk

)T
Pj+1E(dk − d

j
k )

−

n∑
i=1

(uik − u
j
ik )

TBTi P
j+1

n∑
i=1

Bi(uik − u
j
ik )

− 2
n∑
i=1

(uik − u
j
ik )

TBTi P
j+1E(dk − d

j
k )

− (dk − d
j
k )
TETPj+1E(dk − d

j
k )

= xTk (M
j)T3M jxk (38)

Further one has

xTk (M
j)TH j+1M jxk − xTk+1(M

j)TH j+1M jxk+1

+ 2xTk
[
H j+1
xu1 H j+1

xu2 . . .H
j+1
xun

] n∑
i=1

(uik + K
j
i xk )

+ 2
n∑
i=1

uTikG
j+1

n∑
i=1

(uik + K
j
i xk )

+ 2dTk (H
j+1
uid )T

n∑
i=1

(uik + K
j
i xk )

+ 2xTk (H
j+1
xd )(dk + K jxk )+ 2

n∑
i=1

uTikH
j+1
uid (dk + K jxk )

−

n∑
i=1

(
uik + K

j
i xk
)T

Gj+1
n∑
i=1

(uik + K
j
i xk )

− 2
n∑
i=1

(
uik + K

j
i xk
)T

H j+1
uid (dk + K jxk )

− (dk + K jxk )T (H
j+1
dd + γ

2I )(dk + K jxk )

= xTk (M
j)T3M jxk (39)

where

Gj+1 =


H j+1
u1u1 − R1 H j+1

u1u2 . . . H j+1
u1un

(H j+1
u1u2 )

T H j+1
u2u2 − R2 . . . H j+1

u2un

(H j+1
u1u3 )

T (H j+1
u2u3 )

T . . . H j+1
u3un

...
... . . .

...

(H j+1
u1un )

T (H j+1
u2un )

T . . . H j+1
unun − Rn


Manipulating (39) can get the following form

θ̂ j(k)L̂ j+1 =
∞∑
k=0

ρ̂k (40)
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where

ρ̂k = xTk Qxk +
n∑
i=1

uTikRiuik − γ
2dTk dk

L̂ j+1 =
[
(vec(L̂ j+1rz ))T , . . . , (vec(L̂ j+1n+1,n+1))

T
]T

θ̂ j(k) =
[
θ̂
j
rz, . . . , θ̂

j
n+1,n+1

]
with r = 0, 1, 2, . . . , n + 1, z = r, r + 1, r + 2, . . . , n + 1.
Besides,

θ̂
j
00 = xTk ⊗ x

T
k − x

T
k+1 ⊗ x

T
k+1

L̂ j+100 = H j+1
xx

θ̂ jss = −(K
j
sxk+1)

T
⊗ (K j

sxk+1)
T
+ uTs ⊗ u

T
s

L̂ j+1ss = H j+1
usus

θ̂
j
s+1,s+1 = −(K

jxk+1)T ⊗ (K jxk+1)T + dTk ⊗ d
T
k

L̂ j+1s+1,s+1 = H j+1
dd

θ̂
j
0s = 2xTk+1 ⊗ (K j

sxk+1)
T
+ 2xTk ⊗ u

T
s

L̂ j+10s = H j+1
xus

θ̂
j
0s+1 = 2xTk+1 ⊗ (K jxk+1)T + 2xTk ⊗ d

T
k

L̂ j+10s+1 = H j+1
xd

θ̂
j
st = −2(K

j
sxk+1)

T
⊗ (K j

t xk+1)
T
+ 2uTs ⊗ u

T
t

L̂ j+1st = H j+1
usut

θ̂
j
s,s+1 = −2(K

j
sxk+1)

T
⊗ (K jxk+1)T + 2uTs ⊗ d

T
k

L̂ j+1s,s+1 = H j+1
usd

with s 6= t and s, t = 1, 2, . . . , n.
Based on the above part, K j+1

1 ,K j+1
2 , . . . ,K j+1

n and K j+1

can be expressed as the form of L̂ j+1

K j+1
i = (L̂ j+1ii )−1

(
(L̂ j+10i )T −

[
(L̂ j+1i1 )TK j

1 + . . .

+(L̂ j+1(i,i−1))
TK j

i−1 + L̂
j+1
(i,i+1))

TK j
i+1

+ · · · + (L̂ j+1in )TK j
n + (L̂ j+1i,n+1)

TK j
])

(41)

K j+1
= (L̂ j+1n+1,n+1)

−1
(
(L̂ j+10,n+1)

T
−

[
(L̂ j+1n+1,1)

TK j
1

+(L̂ j+1n+1,2)
TK j

2 + · · · + (L̂ j+1n+1,n)
TK j

n

])
(42)

Theorem 2: (H j+1, K j+1
i , K j+1) are the solution of (40),

(41) and (42) if and only if they are the solution of (25), (28)
and (29).
Proof: We can see from the formula derivation that if

(H j+1, K j+1
i , K j+1) are solutions to (25), (28) and (29), then

(H j+1, K j+1
i , K j+1) will also satisfy (40), (41) and (42).

Now we need to prove that the solutions to (40), (41)
and (42) are the same as the solutions to (25), (28)
and (29).

It can be seen that the (40) is equivalent to the (38), so their
solutions are also the same. Subtracting (38) from (37),

one gets (25), Thus one knows that the solutions of (40), (41)
and (42) is equal to (25), (28) and (29). This completes the
proof. �

Algorithm 2 Off-Policy Game Q-Learning for the Zero-Sum
Game
1: Data collection: Collect system data xk and store them

in (40) by using (36);
2: Initialize the admissible control policies of multiple play-

ers K 0
1 ,K

0
2 ,K

0
3 , . . . ,K

0
n and disturbance policy gain(the

n+ 1 player) K 0. Set the iteration index j = 0 and i = 1
represents player i(i = 1, 2, . . . , n+ 1);

3: Performing the off-policy game Q-learning: use the
recursive least-square method to solve the L̂ j+1 in (40),
and then K j+1

i and K j+1 can be updated by (41) and (42);
4: If i < n + 1, then i = i + 1 and go back to Step 3.

Otherwise j = j+ 1, i = 1 and go to Step 5;
5: Stop when

∥∥∥K j
i − K

j−1
i

∥∥∥ ≤ ε (i = 1, 2, . . . , n + 1),
the optimal control policy is obtained. Otherwise, i = 1,
and go back to Step 3.

Remark 7: One thing to be noticed is that Algorithm 1 and
Algorithm 2 have the same solution, which was proven in
Theorem 2. Meanwhile, it concludes from Theorem 2 that,
if L̂ j+1 can be solved correctly, then the control policies
Ki will converge to the optimal value since Ki learned by
Algorithm 1 converge to the optimal values, that is, when
j→∞, uji→ u∗i .
Remark 8: The game Q-learning in Algorithm 2 is indeed

an off-policy Q-learning approach, since the target control
policies are updated but not applied to the real systems.
In Algorithm 2, arbitrary behavior control policies ui and
behavior disturbance policy dk that can make the system
stable are used to generate data, thereby overcoming the
shortcoming of insufficient system exploration, which is
also the most basic characteristic of the off-policy learning
[22], [31], [35], [44], [48]. While the policies uji = −K

j
i xk

and d jk = −K
jxk are the target policies and updated using

measured data.

B. NO BIAS ANALYSIS OF SOLUTION LEARNED BY
OFF-POLICY GAME Q-LEARNING ALGORITHM
In Section III, we have proved that Algorithm 1 will have an
impact on the learning results when probing noise is added.
Next, we will prove the superiority of Algorithm 2 over
Algorithm 1, that is, the probing noise will not affect the
system, and the Nash equilibrium solution learned is without
deviation.
Theorem 3: Add probing noises to the behavior control

policies in Algorithm 2. Let H j+1 be the solution to (37) with
ei = 0 and Ĥ j+1 be the solution to (37) with ei 6= 0, then
Ĥ j+1

= H j+1.
Proof: Probing noises are added to the behavior con-

trol policies ui + ei, the off-policy game Q-learning
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equation (37) is

x̂Tk (M
j)T Ĥ j+1M jx̂k
= x̂Tk (M

j)T3M jx̂k

+ x̂Tk

(
A−

n∑
i=1

BiK
j
i − EK

j

)T
(M j)T

× Ĥ j+1M j

(
A−

n∑
i=1

BiK
j
i − EK

j

)
x̂k (43)

Notice that if adding probing noises into system (36), then it
becomes

x̂k+1 = Acx̂k +
n∑
i=1

Bi(uik + eik + K
j
i x̂k )+ E(dk + K

jx̂k )

(44)

In this case, (37) becomes

x̂Tk (M
j)T Ĥ j+1M jx̂k

−

(
x̂k+1 −

n∑
i=1

Bi(uik + eik + K
j
i x̂k )− E(dk + K

jx̂k )

)T
× (M j)T Ĥ j+1

i M j

×

(
x̂k+1 −

n∑
i=1

Bi(uik + eik + K
j
i x̂k )− E(dk + K

jxk )

)
= x̂Tk (M

j)T3M jx̂k (45)

Substituting (44) into (45), (45) becomes (43). So the solu-
tion to (43) is the same as (37). From the proof of Theorem 2,
on can find that the solution to (40) is equal to that to (37).
Therefore, it is impossible for the off-policy game Q-learning
algorithm to produce bias when adding probing noises. The
unbiasedness of the off-policy game Q-learning method is
proved. �
Remark 9: Different from [22], where the off-policy RL

method is used to solve standard H∞ control problem for
systems with single controller. What this paper has done is
not only to extend the result in [22] to the case of H∞ control
for multi-player systems, but no bias of solution using the
off-policy game Q-learning and the biased solution using the
on-policy game Q-learning have been rigorously proven even
though complex derivation caused by multiple players in the
systems.
Remark 10: Compared with [31]–[33], [37], [44] that

ignored the negative impact of disturbance on performance of
multi-agent systems, this is the first time that the off-policy
game Q-learning Algorithm is proposed and applied to H∞
control of multi-player systems.
Remark 11: The proposed off-policy game Q-learning

Algorithm 2 does not require any knowledge of the sys-
tem dynamics, such that the control policies, which can
guarantees L2 gain less than γ or equal to γ and the
closed-loop multi-player system is asymptotically stable
when dk ≡ 0, can be found for unknownmulti-player systems

unlike [14], [17] which require the accurate system model to
be known.

V. SIMULATION RESULTS
In this section, through H∞ control simulations of
three-player and five-player systems, the effectiveness of
the proposed off-policy game Q-learning Algorithm 2 is
verified. Moreover, comparative simulation experiments
with [32], [33] where disturbance is ignored are carried out
to show the advantages of the proposed off-policy game
Q-learning algorithm for systems subject to external distur-
bance. It is assumed that the dynamics A, Bi and E are com-
pletely unknown during the learning process of algorithm.

The state trajectories of the system are assumed to be
subject to the following disturbance.

dk = e−0.0001ksin(2.0k) (46)

A. COMPARISON RESULTS OF ON-POLICY
LEARNING WITH OFF-POLICY LEARNING
In this part, a three-player system is used as the object of
simulation experiments when implementing on-policy game
Q-learning Algorithm 1 and off-policy game Q-learning
Algorithm 2.
Consider the following linear DT system with three-player

and disturbance input:

xk+1 = Axk + B1u1 + B2u2 + B3u3 + Edk (47)

where

A =

0.906488 0.0816012 −0.0005
0.074349 0.90121 −0.000708383

0 0 0.132655


B1 =

−0.00150808−0.0096
0.867345

 , B2 =

0.009518920.00038373
0


B3 =

−0.00563451−0.08962
0.356478

 , E =

0.01239560.068
−0.05673


Choose Q = diag(5, 5, 5) and R1 = R2 = R3 = 1. The
disturbance attenuation factor is selected to be γ = 1. Rewrite
(22) as

H∗ = 3+ GTH∗G (48)

where

G =


A B1 B2 B3 E
−K1A −K1B1 −K1B2 −K1B3 −K1E
−K2A −K2B1 −K2B2 −K2B3 −K2E
−K3A −K3B1 −K3B2 −K3B3 −K3E


The theoretical solution to (48) can be obtained by using

MATLAB. Thus, the optimal Q-function matrix H∗ and the
optimal controller gains (K∗1 , K

∗

2 , K
∗

3 ) and the worst-case
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TABLE 1. H∞ controller gains under three probing noises.

disturbance policy gain K∗ can be obtained below:

H∗ =



47.2688 28.7098 −0.0292 −0.2510
28.7098 40.9565 −0.0241 −0.2922
−0.0292 −0.0241 5.0883 0.5774
−0.2510 −0.2922 0.5774 4.7762
0.4329 0.2868 −0.0003 −0.0025
−2.7108 −3.4598 0.2395 1.5791
2.4375 2.8845 −0.0398 −0.2704

0.4329 −2.7108 2.4375
0.2868 −3.4598 2.8845
−0.0003 0.2395 −0.0398
−0.0025 1.5791 −0.2704
1.0044 −0.0270 0.0244
−0.0270 1.9705 −0.3786
0.0244 −0.3786 −0.7515


K∗1 =

[
−0.5665 −0.7300 −0.1098

]
K∗2 =

[
−0.4271 −0.2752 −0.0009

]
K∗3 =

[
2.2643 2.8476 −0.0329

]
K∗ =

[
2.2925 2.6572 0.0032

]
(49)

Three types of probing noise are used to demonstrate whether
the on-policy gameQ-learningAlgorithm 1 and the off-policy
game Q-learning Algorithm 2 would produce bias of solu-
tion to Q-function based iterative Bellman equations (25)
and (40), when adding probing noises. The following three
probing noises are considered.
1) Case 1:

ei =
100∑
j

0.5 ∗ sin(noisefeq(1, j) ∗ k) (50)

2) Case 2:

ei =
100∑
j

6 ∗ sin(noisefeq(1, j) ∗ k) (51)

3) Case 3:

ei =
100∑
j

10 ∗ sin(noisefeq(1, j) ∗ k) (52)

FIGURE 2. Case 1: Convergence of H when implementing the on-policy
game Q-learning.

where

noisefeq(1, j) = 500 ∗ rand(1, 100)− 200 ∗ ones(1, 100)

(53)

Table 1 shows the controller gains and the worst-case
disturbance policy learned by Algorithm 1 and Algorithm 2
under these three kinds of probing noises. It can be seen
that Algorithm 1 is affected by probing noises, and its final
controller gain is deviated from the theoretical value. How-
ever, Algorithm 2 is not affected by probing noises and can
converge to the theoretical optimal value.

Under Case 1, the convergence process of matrix H j,
the control policy gains and disturbance policy gain
(K j

1,K
j
2,K

j
3,K

j) can be seen in Fig. 2 and Fig. 3. Fig. 4 shows
the system state when implementing Algorithm 1.

Fig. 5 and Fig. 6 show the convergence state of matrix
H j, the control policy gain and disturbance policy gain
(K j

1,K
j
2,K

j
3,K

j) under Case 2, and Fig. 7 shows the evolution
process of the system trajectory under the learned control
policies using Algorithm 1.

Algorithm 1 was implemented under Case 3, it can be seen
from Fig. 8 and Fig. 9 that the convergence process of the
matrix H j, the control policy gains and disturbance policy
gain (K j

1,K
j
2,K

j
3,K

j), and Fig. 10 shows the state responses of
the system under the controller learned by Algorithm 1, and
Fig. 11 shows the system performance J under the control
policies learned by the Algorithm 1.
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FIGURE 3. Case 1: Convergence of Ki (i = 1, 2, 3) and K when
implementing the on-policy game Q-learning.

FIGURE 4. Case 1: The states x of system when implementing the
on-policy game Q-learning.

FIGURE 5. Case 2: Convergence of H when implementing the on-policy
game Q-learning.

Now, we start to plot simulation results using the learned
controller gains form Algorithm 2. The convergence results
of matrix H j, the control policy gains and disturbance policy
gain (K j

1,K
j
2,K

j
3,K

j) under Case 1 of probing noises are shown
in Fig. 12 and Fig. 13. Fig. 14 shows the state trajectory of the
system, and Fig. 15 shows the performance J of the system
when using Algorithm 2.

The signal to noise ratio is calculated as∑500
k=0(x

T
k Qxk +

∑3
i=1 u

T
i Riui)∑500

k=0 ‖dk‖
2

= 0.2867 < 1

FIGURE 6. Case 2: Convergence of Ki (i = 1, 2, 3) and K when
implementing the on-policy game Q-learning.

FIGURE 7. Case 2: The states x of system when implementing the
on-policy game Q-learning.

FIGURE 8. Case 3: Convergence of H when implementing the on-policy
game Q-learning.

It can be seen that the disturbance attenuation condition (2)
is satisfied.

As one can see in Fig. 4, 7 and 10, the state of sys-
tem has been obviously affected by adding probing noises
when implementing the on-policy game Q-learning. How-
ever, as shown in Fig. 14, the trajectory x of system
can quickly converge to a stable state, and the cost shown
in Fig. 15 is small than that when utilizing Algorithm 1.

B. VERIFICATION OF ANTI-INTERFERENCE
In this part, five-player are used to further verify the validity
of Algorithm 2. In addition, anti-interference of the proposed
Algorithm 2 for H∞ control of multi-player systems and
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FIGURE 9. Case 3: Convergence of Ki (i = 1, 2, 3) and K when
implementing the on-policy game Q-learning.

FIGURE 10. Case 3: The states x of system when implementing the
on-policy game Q-learning.

FIGURE 11. Case 3: The cost J of system when implementing the
on-policy game Q-learning.

the advantage over the methods without taking into external
disturbance account are demonstrated.

Consider the following linear DT system with five players
and disturbance input:

xk+1 = Axk+B1u1+B2u2+B3u3+B4u4+B5u5+Edk (54)

where

A =

0.906488 0.0816012 −0.0005
0.074349 0.90121 −0.000708383

0 0 0.132655



FIGURE 12. Convergence of H when implementing the off-policy game
Q-learning.

FIGURE 13. Convergence of Ki (i = 1, 2, 3) and K when implementing the
off-policy game Q-learning.

FIGURE 14. The states x of system when implementing the off-policy
game Q-learning.

B1 =

−0.00150808−0.0096
0.867345

 , B2 =

0.009518920.00038373
0


B3 =

−0.00563451−0.08962
0.356478

 , B4 =

 0.1568
0.006018
−0.18235673


B5 =

 −0.1250.4
−0.4898

 , E =

0.01239560.068
−0.05673


Choose Q = diag(5, 5, 5) and R1 = R2 = R3 = R4 =
R5 = 1. The disturbance attenuation factor is selected to
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FIGURE 15. The cost J of system when implementing the off-policy game
Q-learning.

be γ = 1. Rewrite (22) as

H∗ = 3+


A B1 . . . B5 E
−K1A −K1B1 . . . −K1B5 −K1E
−K2A −K2B1 . . . −K2B5 −K2E
−K3A −K3B1 . . . −K3B5 −K3E
−K4A −K4B1 . . . −K4B5 −K4E
−K5A −K5B1 . . . −K5B5 −K5E



T

×H∗


A B1 . . . B5 E
−K1A −K1B1 . . . −K1B5 −K1E
−K2A −K2B1 . . . −K2B5 −K2E
−K3A −K3B1 . . . −K3B5 −K3E
−K4A −K4B1 . . . −K4B5 −K4E
−K5A −K5B1 . . . −K5B5 −K5E


(55)

Similarly, the theoretical solution to (55) can be obtained
using MATLAB software.

H∗=



17.2288 4.9395 −0.0033 −0.0201
4.9395 13.7043 0.0036 −0.0142
−0.0033 0.0036 5.0882 0.5769
−0.0201 −0.0142 0.5769 4.7722
0.1267 0.0482 −0.00003 −0.0002
−0.4418 −0.8204 0.2368 1.5517
2.0775 0.7744 −0.1219 −0.7964
0.0509 3.0606 −0.3236 −2.1330
0.4520 0.6807 −0.0375 −0.2479

0.1267 −0.4418 2.0775 0.0509 0.4520
0.0482 −0.8204 0.7744 3.0606 0.6807
−0.00003 0.2368 −0.1219 −0.3236 −0.0375
−0.0002 1.5517 −0.7964 −2.1330 −0.2479
1.0013 −0.0043 0.0216 −0.0008 0.0045
−0.0043 1.7146 −0.3948 −1.1682 −0.1654
0.0216 −0.3948 1.5203 0.4272 0.1239
−0.0008 −1.1682 0.4272 3.5806 0.3669
0.0045 −0.1654 0.1239 0.3669 −0.9302


K∗1 =

[
−0.2870 −0.6379 −0.0098

]
K∗2 =

[
−0.0950 −0.0392 −0.0004

]
K∗3 =

[
0.2282 0.1920 −0.0316

]

FIGURE 16. Convergence of H when implementing the off-policy game
Q-learning.

FIGURE 17. Convergence of Ki (i = 1, 2, . . . , 5) and K when implementing
the off-policy game Q-learning.

K∗4 =
[
−1.4928 −0.4988 0.0144

]
K∗5 =

[
0.0330 −1.1483 0.0188

]
K∗ =

[
0.3356 0.3481 0.0012

]
(56)

Firstly, five player are used to systems to verify the
effectiveness of the proposed off-policy game Q-learning
Algorithm 2. It can be seen from Fig. 16 and Fig. 17 that
the learned matrixH j, controller gains and disturbance policy
gain (K j

1,K
j
2,K

j
3,K

j
4,K

j
5,K

j) are not affected by the probing
noise, and they can quickly converge to theoretical optimal
values without deviation as shown in Table 2. Fig. 18 and 19
show the state trajectories and performance J of the sys-
tem under the learned control policies using off-policy game
Q-learning Algorithm 2.

The signal to noise ratio is calculated as∑500
k=0(x

T
k Qxk +

∑5
i=1 u

T
i Riui)∑500

k=0 ‖dk‖
2

= 0.4289 < 1

It can be seen that the disturbance attenuation condition (2)
is satisfied.

Secondly, we assume E = 0 which means the external
disturbance is not taken into account similar to the meth-
ods in [31]–[35], and implementing Algorithm 2 yields the
optimal controller gains shown in Table 2. Then, simulation
comparisons are going to be made under the following three
kinds of external disturbances.
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TABLE 2. Controller gains when considering the disturbance or not.

FIGURE 18. The states x of system when implementing the off-policy
game Q-learning.

FIGURE 19. The cost J of system when implementing the off-policy game
Q-learning.

FIGURE 20. Case 1: The states x of system when implementing the
off-policy Q-learning(E = 0).

1) Case 1:

dk = 0.5e−0.001ksin(2.0k) (57)

FIGURE 21. Case 1: The states x of system when implementing the
off-policy game Q-learning(E 6= 0).

FIGURE 22. Case 2: The states x of system when implementing the
off-policy Q-learning(E = 0).

2) Case 2:

dk = e−0.001ksin(2.0k) (58)

3) Case 3:

dk = 5e−0.001ksin(2.0k) (59)

Under the three kinds of disturbance, Fig. 20, 22 and 24
plot the state trajectories of the system under the con-
trollers without considering the external disturbances.
By comparing the results in Fig. 20, 22 and 24 with those
in Fig. 21, 23 and 25, it can be seen that under the same
external disturbance, the system state obtained by considering
the interference in the learning process always tends to be
stable, while the system state obtained without considering
the interference will be greatly affected by the external
disturbances.
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FIGURE 23. Case 2: The states x of system when implementing the
off-policy game Q-learning(E 6= 0).

FIGURE 24. Case 3: The states x of system when implementing the
off-policy Q-learning(E = 0).

FIGURE 25. Case 3: The states x of system when implementing the
off-policy game Q-learning(E 6= 0).

VI. CONCLUSION
In this paper, a novel off-policy game Q-learning algorithm
is proposed to solve the H∞ control problem for multi-player
linear DT systems. The proposed algorithm does not need
to know the dynamics model of the system in advance and
is complete data-driven. From rigorous theoretical proof and
the simulation results, the probing noise added to the system
will not affect the Nash equilibrium solution learned by the
proposed algorithm, which means the learning results can
converge to the optimal value without deviation. Finally,
the effectiveness of the proposed method is verified by the
simulation results.
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