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ABSTRACT This paper is about the formulation and numerical solutions of simultaneous optimal experi-
ment design and optimal tracking control problems. Our motivating example is a robot arm that is mounted
on a kitchen wall over the hotplates in order to assist humans with cooking. The robot arm can take over
simple tasks such as stirring, automatic seasoning, or adding ingredients to a pot following a given recipe.
Here, one of the main challenges is that the robot has to learn about the mass, inertial and other properties
of the objects it is picking up while satisfying control tasks. Thus, we are facing a classical dual control
problem, where system excitation for the purpose of learning has to be trade-off with other objectives such
as tracking performance. After reviewing existing approaches, we propose a new formulation which allows
to implement a trade-off between experiment design as well as tracking objectives in a systematic way by
exploiting recent ideas from the field of economic experiment design. The approach is tested with a dynamic
robot arm model performing a simple but illustrative cooking maneuver where learning and control goals
are in conflict.

INDEX TERMS Experiment design, tracking control, dual control.

I. INTRODUCTION
Feldbaum’s seminal work on dual control [8], as originally
published in the early 1960s, had a major influence on control
theory development during the past 50 years [35]. This is due
to the fact that in many model based closed-loop systems the
task of designing optimal control inputs based on given state
and parameter estimates is in conflict with the task of opti-
mizing the accuracy of future state and parameter estimates.
Especially, when a nonlinear process is affected by external
disturbance that have to be estimated online and that vary
rapidly, it is desirable that the controller takes the accuracy
of the estimator into account in order to improve the overall
performance of the closed system [34].

Although one might argue that standard optimal control
formulation and its traditional variants lack of the ability
to deal with the aforementioned control task, many other
controllers from the field of adaptive control are designed
with the consideration of both learning and control targets.
There are in general two categories of adaptive control: one
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class adopts dual control perspective and the other belongs
nondual adaptive controllers. The learning behavior in the
non-dual controllers is ‘‘accidental’’ or ‘‘passive’’ [35]. For
those nondual adaptive controllers, iterative learning con-
trol (ILC) is widely applied in robotic applications [6], [32],
especially for tracking aim. The main idea behind ILC is
to iteratively find an input sequence such that the output of
the system is as close as possible to a desired output [24],
[26]. A complete survey about the recent development of ILC
can be referred to [1], [4]. In contrast to nondual controllers,
an intentional probing signal is generated for dual controller.
Such controllers from the field of adaptive control have a
longer history of investigating how to achieve a tradeoff
between nominal performance as well as learning objectives.
One challenge is that numerical algorithms for solving the
dual control problem in higher dimensional spaces are often
based on approximate dynamic programming, which turn out
to be rather computational expensive [21], [38]. There is thus
a great need for searching different approximations that can
lead to tractable formulations without losing dual features.
For an overview about other attempts to solve the dual control
problem approximately by using techniques from the field
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of adaptive control, the reader is referred to the overview
articles [35].

The question of how to design control inputs in such a
way that the information content of the associated experi-
ment is maximized, is addressed rigorously in the field of
optimal experiment design [7], [10], [27]. The connections
between experiment design and the intended model appli-
cation have been analyzed in the linear system community
and we refer to [12], [22] for an overview. This work has
later been extended towards a joint design of identification
and control as for example discussed in [13] and [15]. Notice
that optimal experiment design problems have been analyzed
for nonlinear dynamic systems, too. Here, we refer to [20],
where nonlinear dynamic systems with unknown parameters
are covered as well as to [33], where the case that nonlinear
systems are affected by both unknown but time-invariant
parameters as well as time-varying process noise is studied.

Concerning the real-time adaption strategies for online
optimization of dynamic processes in the presence of
model-plant mismatches we refer to [5]. Other process
optimization techniques are discussed in [29], where an inter-
esting variant of optimal experiment design is proposed.
Furthermore, extensions of model predictive control towards
dual control are suggested in a variety of articles [11], [16],
[23], [30].

Similar techniques can sometimes—based on a slightly
different assumptions and notation but very similar
intentions—also be found under the name ‘‘output model
predictive control’’, which can be interpreted as a variant
of model predictive control where estimation and control
aspects are simultaneously taken into account [14], [28].

This paper is about simultaneous experiment design and
optimal tracking control. The main contribution of the paper
is twofold:

1) We propose a novel formulation that combines an
economic optimal experiment design objective with a
tracking control objective in a systematic way. The
proposed simultaneous tracking and experiment design
problem formulation is invariant under affine transfor-
mations of the parameters.

2) We verify the effectiveness of proposed formulation via
a challenging case study. Here, our motivating example
is a cooking robot arm that picks up ingredients or tools
with unknown mass, rotational inertia, and other physi-
cal properties. One goal is to measure these parameters
whenever a new object is picked up which can be in
conflict with the given ultimate cooking tasks.

The corresponding problem formulation and robot arm
model are outlined in Section II. Section III reviews exist-
ing techniques from the field of optimal experiment design.
Section IV reviews the concept of least-squares tracking
control. The main contribution of this paper is presented
in Section V, where we propose a novel formulation that
combines an economic optimal experiment design objective
with a tracking control objective in a systematic way. This

formulation is inspired by recent developments in the field of
economic optimal experiment design [18]. However, a major
contribution of this paper with respect to [18] is that we spe-
cialize the algorithm for computing derivatives in the context
of least-squares tracking problems and also explain how to
combine economic OED objectives with a nominal tracking
performance objective. Section VI presents a case study of
a cooking robot, which has to perform a dual control task.
Section VII concludes the paper.

Notation: Besides mathematical standard notation,
we denote with Sn+ the set of symmetric and positive
semi-define matrices. Moreover, the syntax M† denotes the
pseudo inverse of a given matrixM , which can also be written
in the form

M†
= (MTM )−1MT

assuming that the matrix MTM is invertible.
Throughout this paper, the following assumptions are used.
Assumption 1: We assume that all functions are three

times continuously differentiable.
Assumption 2: We assume the Jacobian matrix of the

right-hand-side of dynamic functions, given by

∂f (z, u, p)
∂u

,

to be invertible for all feasible inputs u such that the Fisher
information matrix F(u, p) is well-defined.

II. A DYNAMIC MODEL FOR COOKING ROBOTS
Our motivating example is a cooking robot arm that picks up
ingredients or tools with unknown mass, rotational inertia,
and other physical properties. Notice that there exist several
suggestions for how to design advanced cooking robot sys-
tems, as for example proposed in [31] or [36], [37]. However,
in this paper, we concentrate on a simplified setting consisting
of a single robot arm whose movements are restricted to a
2-dimensional working space as sketched in Figure 1.

In our model of the robot arm, the horizontal and vertical
position of the robot arm is denoted by x and y, respectively.
Moreover, we assume that the robot has grippers at the end of
the arm, which can rotate. The corresponding rotation angle
is denoted by ϕ. We install three motors on the robot arm,
which can be used to control the forces in x- and y-direction
as well as the torque at the grippers. The kinetic energy Ek of
the system is

Ek =
1
2
(M+m)(ẋ2+ẏ2)+

1
2
I ϕ̇2+ml̄[ẋϕ̇ cos(ϕ)+ẏϕ̇ sin(ϕ)],

whereM andm are the mass of robot and object, respectively,
and I is the rotational inertia of the gripper with respect to the
center of rotation, i.e., we have

I = ml̄2 + Iobject,

where Iobject denotes the rotational inertia of the object with
respect to its center of mass. Notice that the mass of the
rotating part of the arm, including the grippers, is neglected.

VOLUME 8, 2020 25365



X. Feng, Y. Jiang: Scheme for Simultaneous Optimal Tracking Control and Experiment Design

FIGURE 1. Sketch of the robot arm.

Here, l̄ is the distance between the object’s center of mass and
the object’s center of rotation. The potential energy Ep of the
system is

Ep = Mgy+ mgy− mgl̄ cos(ϕ). (1)

The Lagrangian function is given by

L = Ek − Ep

=
1
2
(M + m)(ẋ2 + ẏ2 − 2gy)+

1
2
I ϕ̇2

+ml̄ϕ̇[ẋ cos(ϕ)+ ẏ sin(ϕ)]+ mgl̄ cos(ϕ). (2)

In order to derive the equations of motion for the robot arm,
we use the Lagrangian formalism, which yields

d
dt

(
∂L
∂ ẋ

)
−
∂L
∂x
= ux − γx ẋ

d
dt

(
∂L
∂ ẏ

)
−
∂L
∂y
= uy − γyẏ

d
dt

(
∂L
∂ϕ̇

)
−
∂L
∂ϕ
= uϕ − γϕ ϕ̇,

(3)

where ux and uy are the horizontal and vertical motor forces,
and where uφ is the torque of the third motor, while γx , γy,
and γϕ are the friction coefficients. Therefore, substituting
equation (2) into equation (3) yields
(M + m)ẍ + ml̄[ϕ̈ cos(ϕ)− ϕ̇2 sin(ϕ)] = ux − γx ẋ
(M + m)(ÿ+ g)+ ml̄[ϕ̈ sin(ϕ)+ ϕ̇2 cos(ϕ)] = uy − γyẏ
I ϕ̈ + ml̄[ẍ cos(ϕ)+ ÿ sin(ϕ)+ g sin(ϕ)] = uϕ − γϕ ϕ̇.

In the following, we stack all differential states into one vector
z = (x, y, ϕ, ẋ, ẏ, ż)T and write the above differential equa-
tion in the form of a standard ordinary differential equation

of the form

ż = f (z, u, p),

where the vector

p =
(
m, l̄, Iobject

)T
contains the parameters, which are associated with the object
that is currently carried by the robot. Thus, this parameter
vector is not known in advance but has to be determined from
measurements whenever a new object is picked up.Moreover,
the right-hand side function f can be obtained by the above
linear equation system with respect to the variables ẍ, ÿ, and
ϕ̈. This elimination is always possible as the mass matrix M + m 0 ml̄ cos(ϕ)

0 M + m ml̄ sin(ϕ)
ml̄ cos(ϕ) ml̄ sin(ϕ) I


is invertible, as we have M ,m > 0 as well as I > ml̄2

for physical reasons. Notice that in our notation, the control
inputs u = (ux , uy, uϕ)T from the three motors are stacked
into one vector, too.

III. OPTIMAL EXPERIMENT DESIGN
Whenever the robot fetches a new object, we have to measure
the parameters p associated with the object in order to carry it
to a given target location. Following the traditional two-step
approach of first solving the identification and then solving
the control problem, we have to make a few experiments
first. This means that we send control inputs to the robot
arm and take measurements of the mechanical response using
cameras. If H : Rnx → RnH denotes the measurement
function and η the measurements for a given control input
u : R → Rnu , the parameters p ∈ Rnp can be estimated by
solving a Gaussian maximum likelihood estimation (MLE)
problem,

min
z,p

N∑
i=1

‖H (z(ti))− ηi‖26−1

s.t.

{
ż(t) = f (z(t), u(t), p), t ∈ [0,T ]

z(0) = z0(p).
(4)

Here, t1, . . . , tN denote the time points at which measure-
ments are taken and6 ∈ SnH++ the variance-covariance matrix
of the measurement error, which is assumed to be positive
definite. In general, the initial value z0 can be a function of
the parameter p, too.
In order to simplify our syntax, we eliminate the differen-

tial states.We use the notation ξ [t, u, p] to denote the solution
of the differential equation system

ż(t) = f (z(t), u(t), p), t ∈ [0,T ]

z(0) = z0(p) (5)
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for the state at time t . This syntax highlights the dependence
of the state z on the control input u and the unknown param-
eter p. Next, we introduce the shorthand

h(u, p) :=
(
H (ξ [t1, u, p])T , . . . , H (ξ [tN , u, p])T

)T
such that the parameter estimation problem (4) can be written
in the equivalent but unconstrained form

min
p
‖h(u, p)− η‖2

6−1
.

where η is one large vector containing a stacked version of all
measurements.

Now, the information content of the experiment can be
quantified by computing the so-called Fisher information
matrix [9], which we denote by

F(u, p) = ∇ph(u, p)6−1∇ph(u, p)T ,

where η is one large vector containing a stacked version of all
measurements. In our context, the Fisher information matrix
F(u, p) is regarded as a functional of the control input u.
It is well-known [22] that the inverse of the Fisher infor-

mation matrix approximates the variance-covariance matrix
which is used as a weighting in the cost function of the
maximum likelihood estimate. However,F(u, p) is in general
not invertible for all choices of u. For example, for our
cooking robot model, we will only be able to measure the
rotational inertia of the object by observing the states of
the system, if we actually rotate the object. Otherwise, for
example, if we only do up-and-down movements, we will not
be able to collect information about this parameter, which
leads to zero-entries in the associated rows and columns of
the Fisher information matrix. This example illustrates that it
is crucial to choose the control input u wisely in order to get
maximum information about parameters.

In optimal experiment design, a suitable u is found by
solving an optimization problem of the form

min
u

8(F(u, p̂)−1) s.t. u ≤ u ≤ u. (6)

Here, p̂ denotes the current estimate of the parameter at which
the Fisher information matrix is computed. The objective
function 8 : Snp+ → R is called the optimal experiment
design criterion, which measures the size of the variance
matrix of the parameters estimate. Examples for famous crite-
ria are the A-, E-, and D-criterion, where 8(F(u, p̂)−1) cor-
responds to the trace, maximum eigenvalue, or determinant
of the matrix F(u, p̂)−1. In this context, we make use of an
extended value definition, i.e., we set 8(F(u, p̂)−1) = ∞
whenever the matrix F(u, p̂) is not invertible. The vectors u
and u are introduced in order to model bound constraints on
the input u. Notice that optimal experiment design problem of
this form are known in the literature for a long time [27] and
many numerical algorithms for solving this type of problem
have been suggested [20], [33]. The classical optimal exper-
iment design scheme runs the following loop:
S1 Solve problem (6) and perform an experiment at the

optimizer u∗(p̂).

S2 Update a new parameter estimates p̂+ by solving the
MLE (4)

S3 If 8(F(u.p̂)−1) ≤ ε, then stop; otherwise, set p̂← p̂+

and repeat.
However, drawbacks of the traditional optimal experiment
design criteria are that

1) the A- and E-criterion as well as many other exiting cri-
teria [27] are not invariant under affine transformations
of the parameter, i.e., the problem formulation is highly
scaling dependent,

2) there is generally not much advice on how to choose8,
but this choice can itself be a modelling problem,

3) the only goal of the problem formulation (6) is to
measure parameters as accurately as possible, which
may not be the only objective in practice.

In the following section we will propose a novel optimal
experiment design problem formulation strategy in the con-
text of control problems, which aims at fixing these draw-
backs.

IV. OPTIMAL TRACKING CONTROL
In this section we assume that our ultimate goal is to solve an
optimal control problem of the form

min
z,u

∫ T

0

1
2

{
‖z(t)− zref(t)‖2Q + ‖u(t)‖

2
R

}
dt

s.t.

{
ż(t) = f (z(t), u(t), p), t ∈ [0,T ]

z(0) = z0(p),
(7)

where zref denotes a given reference trajectory that we want
to follow (= task). The second term ‖u(t)‖2R minimizes the
control effort. The weighting matrices Q and R are assumed
to be given and positive semidefinite. Notice that if we would
know the exact parameter p, we could solve this problem
numerically by using direct methods [2], [3]. In order to
briefly discuss this, we introduce the control parameterization

u(t) ≈
N−1∑
i=0

viξi(t),

where ξ0, . . . , ξN−1 ∈ L2[0,T ] are given orthogonal func-
tions while v ∈ RNnu denotes the control coefficient vector.
This notation includes the important special case that we
use piecewise constant control approximations, which can be
made arbitrarily accurate by choosing sufficiently large N .
Next,

ζ [t, v, p] = ξ

[
t,
N−1∑
i=0

viξi, p

]
denotes the solution of the differential equation recalling that
ξ has already been defined in the previous section. By using
this notation, we can approximate the tracking objective by
an expression of the form∫ T

0

1
2

{
‖ζ [t, v, p]− zref(t)‖2Q + ‖u(t)‖

2
R

}
dt ≈

1
2
‖g(v, p)‖22 .
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Here, we have introduced the shorthand g = [g1, . . . , gN ]T

with

gi(v, p) =
1
h

Q
1
2 (ζ [ti, v, p]− zref(ti))

R
1
2
∑N−1

i=0
viξi(ti−1)


as well as the equidistant time mesh ti = ih, i ∈ {1, . . . ,N },
with h = T

N . Notice that this reformulation has the advantage
that the original continuous-time optimal control problem can
be approximated by an unconstrained and finite dimensional
nonlinear least-squares problem, which can be written as

min
v

1
2
‖g(v, p)‖22 . (8)

For the case that the parameter p is known, finite dimensional
optimization problems of this form can be solved with stan-
dard nonlinear programming solvers [25]. However, the main
problem that we are facing in this paper is that we do not
know p. In addition, in our robot example, measuring the
unknown parameters whenever a new object is picked up can
be in conflict with the given control tasks. Instead of adopting
traditional identification-control scheme, we want to design a
controller which can strike a balance between tracking control
and identification. A simultaneous experiment design and
optimal tracking control scheme will be discussed further in
the section below.

V. SIMULTANEOUS EXPERIMENT DESIGN AND OPTIMAL
TRACKING CONTROL
In this section, we are interested in economic optimal exper-
iment design problems [18] for tracking control. Recall that
our ultimate goal is to solve optimization problem (8), which
can be interpreted as a discrete-time approximation of the
original tracking optimal control problem (7). In the follow-
ing, we denote with v∗(p) a minimizer of problem (8) in
dependence of the parameter p. Clearly, if we would know the
exact parameter, denoted by p∗, we would control the system
by implementing the optimal control input v∗(p∗). However,
if we do not know p∗, we can solve problem (8) based on
an estimate p of the parameters only. This leads to a loss of
optimality, which is given by

1(p) =
1
2

∥∥g(v∗(p), p∗)∥∥22 − 1
2

∥∥g(v∗(p∗), p∗)∥∥22 ≥ 0.

Notice that the loss of optimality 1(p) is equal to zero for
p = p∗ but in general positive if we have p 6= p∗. Let us
introduce the shorthands

P(p) =
∂

∂p
g(v∗(p), p) and V (p) =

∂

∂v
g(v∗(p), p)

as well as

W (p) = P(p)TV (p)V (p)†P(p).

Here, the derivatives that are needed for computing V (p) can
be computed by using automatic differentiation as imple-
mented in ACADOToolkit [17]. The following result is based
on this notation.

Theorem 1: Let the function g be three times continuously
differentiable. If we can achieve perfect tracking with exact
parameters, i.e., if g(v∗(p∗), p∗) = 0, and if the matrix V (p∗)
has full rank, then the second order Taylor expansion of the
loss of optimality is given by

1(p) =
1
2
(p− p∗)TW (p∗)(p− p∗)+O(‖p− p∗‖32).

Proof: The first order optimality condition for the origi-
nal least-squares minimization problem (8) can be written in
the form

g(v∗(p), p)T
∂g(v∗(p), p)

∂v
= 0 (9)

for all p, which implies

∂

∂p
1(p∗) = g(v∗(p∗), p∗)T

∂g(v∗(p∗), p∗)
∂v

∂v∗(p∗)
∂p

= 0.

We apply the implicit function theorem to the stationarity
equation (9), which yields

∂v∗(p∗)
∂p

= −V (p∗)†P(p∗)

recalling that the matrix V (p∗) has full-rank. Next, we can
work out the second order derivative of the function1finding

∂2

∂p2
1(p∗) =

∂v∗(p∗)
∂p

T
V (p)TV (p)

∂v∗(p∗)
∂p

= P(p∗)V (p∗)V (p∗)†P(p∗) = W (p∗). (10)

The statement of the theorem is a consequence of Taylor’s
theorem. �

An important consequence of the above theorem is that
the expected loss of optimality can be approximated by an
expression of the form

Ep {1(p)} ≈ Ep
{
1
2
(p− p∗)TW (p∗)(p− p∗)

}
=

1
2
Tr
(
Ep

{
(p− p∗)(p− p∗)T

}
W (p∗)

)
≈

1
2
Tr

F
(∑

i

viξi, p̂

)−1
W (p̂)

 .
Next, we propose to minimize the sum of the nominal
least-squares tracking term and its associated loss of optimal-
ity, which leads us to the optimization problem

min
v

1
2

∥∥g(v, p̂)∥∥22 + 1
2
Tr

F
(
N−1∑
i=0

viξi, p̂

)−1
W (p̂)

. (11)

This optimization problem can be solved to local opti-
mality with standard nonlinear programming solvers. In this
paper, we use SQP methods [25]. Notice that in contrast
to the standard optimal experiment design framework from
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Section III, the optimization problem takes both the nominal
tracking performance

1
2
‖g(v, p)‖22

as well as an experiment design objective into account.
Remark 1: In order to differentiate our proposed formula-

tion (11) with existing method, we would first introduce the
formulation

min
v

1
2

∥∥g(v, p̂)∥∥22 + 1
2
Tr

α · F (N−1∑
i=0

viξi, p̂

)−1 ,
where α ∈ Snx+ is a weighting matrix. In general, the method
that is widely adopted in practice attempts to tune the weight-
ing matrix α in order to achieve a good tradeoff between
control and learning performance. In contrast to different
tuning methods, our proposed scheme provides a systematic
way to construct this weighting matrix α tailored for tracking
control. Specifically, the term

1
2
Tr

F
(∑

i

viξi, p̂

)−1
W (p̂)


can be interpreted as a weighted A-criterion. However, this
weighted A-criterion has a meaningful physical interpreta-
tion, as it corresponds to the expected loss of optimality.
Moreover, in contrast to many existing optimal experiment
design criteria [27], the proposed simultaneous tracking and
experiment design problem formulation (11) is invariant
under affine transformations of the parameters.

Under the assumption of unbiased and uncorrelated
Gaussian noise, the inverse of (approximate) Fisher infor-
mation matrix approximates the parameter estimation
variance-covariance matrix, i.e.,

F
(
N−1∑
i=0

viξi, p̂

)−1
≈ S(T , v, p̂).

Here, S(t, v, p̂) denotes the solution of forward propagating
Riccati equation of the following form at time t

Ṡ(t) = A(t, p̂)S(t)+ S(t)A(t, p̂)T

−S(t)C(t)T6−1C(t)S(t),

S(0) = Ŝ , (12)

where S(t) denotes the variance-covariance matrix of uncer-
tain parameters at time t ∈ [0,T ] and Ŝ the initial guess
of variance-covariance matrix. Moreover, the notation A(t, p̂)
and C(t) are given by

A(t, p̂) =
f (z(t), u(t), p̂)

z(t)
and C(t) =

H (z(t))
z(t)

, (13)

respectively. Therefore, the optimization problem (11) is
equivalent to solving the following dual control problem of
the form

min
v

∫ T

0

1
2

∥∥g(v, p̂)∥∥22 + 1
2
Tr
(
W (p̂)S(T , v, p̂)

)
. (14)

TABLE 1. Parameter reference.

Now, we run the following loop:
S1 Compute W (p̂) by using Equation (10).
S2 Solve problem (14) and perform an experiment at the

optimizer u∗(p̂).
S3 Update a new parameter estimates p̂+ by solving the

optimization problem (4)
S4 If 1

2Tr
(
W (p̂)S(T , v, p̂)

)
≤ ε, then stop; otherwise, set

p̂← p̂+ and repeat.
Finally, we mention that problem (11) cannot only be used

to design optimal input profiles offline, but it could also be
employed as an economic objective of a model predictive
controller (MPC) [28], which would solve optimization prob-
lems of the form (11) at every time step based on the cur-
rent parameter estimate in order to not only predict tracking
performance but also improve the quality of future parameter
estimates. However, a discussion of such dual MPC control
schemes is beyond the scope of this paper and left for future
investigations.
Remark 2: With the aim of guaranteeing the safety in

some critical cases, we suggest directly including the safety
constraints into the optimization problem. However, a direct
inclusion of such constraints is at the expense of performance
loss of proposed dual controller, since the controller cannot
excite the system as much as it can do to achieve the best
learning effect.

VI. SIMULTANEOUS EXPERIMENT DESIGN AND
CONTROL OF COOKING ROBOTS
In this section, we solve Problem (11) for our cooking robot
model that has been introduced in Section II. In case of the
occure of large deviation, the safety constraint x ≥ −0.2(m)
is introduced. All model parameters are listed in Table 1.
Notice that in our case study, we assume that the parameter
vector

p =
(
m, l̄, Iobject

)T
is unknown. Initial estimates m̂, ˆ̄l, and Îobject for the object’s
mass, distance between rotation center and center of mass,
as well as the object’s moment of inertia are given in Table 1.
The true parameter values are in our case study equal to these
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FIGURE 2. Numerical result for the reference (dashed) and optimal
trajectory (solid) for the state x(t).

FIGURE 3. Numerical result for the reference (dashed) and optimal
trajectory (solid) for the state y (t).

estimates, but the controller does not know this. Moreover,
we assume that the position x, y, as well as the angle ϕ can be
measured. The corresponding variance matrix of the sensors
has the form

6 =

 σ 2
x 0 0
0 σ 2

y 0
0 0 σ 2

ϕ

 ,
where the standard deviations σx , σy, and σϕ are given
in Table 1, too. Recall that the function g(v, p) is obtained
by discretizing the least-squares objective function in the
optimal control problem (7). The corresponding weighting
matrices Q and R in the optimal control problem are in our
case study given by R = 0 ∈ S3+ as well as

Q = diag (1, 1, 1, 0, 0, 0) ∈ S6+.

The reference trajectory zref is pre-computed and shown in the
form of the dashed lines in Figures 2, 3, and 4, respectively.
We are using ACADO Toolkit [17] in combination with a
piecewise constant control discretization using 20 pieces in
order to solve Problem (11), numerically.

The solid lines in figures 2, 3, and 4 show the optimal
solution of Problem (11) for x, y, and ϕ, respectively. Notice

FIGURE 4. Numerical result for the reference (dashed) and optimal
trajectory (solid) for the state ϕ(t).

that it is optimal to deviate significantly from the reference
trajectory. For example, our reference for the angle ϕ is
close to 0 during the first three seconds. If we would follow
this reference trajectory closely, we could gather almost no
information about the parameter l̄ and the rotational inertia
I , as we have to actually rotate the object for identifying its
rotational properties. Clearly, it is optimal to deviate from the
reference and rotate (‘‘shake’’) the object carefully during the
first seconds in order to be able to learn about its physical
properties. A similar effect can be seen when studying the
optimal trajectory for the x-coordinate: during the first sec-
onds we deviate significantly from the reference in order to be
able to identify the object’s mass. Notice that such a behavior
is typical for dual controllers, which apply excitations from
the reference trajectory in order to learn.

VII. CONCLUSION
In this paper, we have presented a method for simul-
taneous optimal experiment design and optimal tracking
control. After reviewing the standard framework for both
optimal experiment design as well as optimal tracking con-
trol, we have proposed a novel way of formulating a dual
control objective. Here, the goal is to minimize the sum of the
nominal least-squares tracking performance and the expected
loss of optimality that has to be taken into account due to
unknown parameters that have to be learned from measure-
ments. A crucial result for ensuring computational tractability
has been presented in Theorem 1, which allows us to compute
a second order expansion of the expected loss of optimality.
Finally, we have analyzed a case study of a cooking robot,
which is carrying objects with unknown mass and geometric
properties. We have illustrated how the proposed formulation
can be used to compute optimal control excitations that allow
the robot to simultaneously identify parameters without devi-
ating too much from the given tracking reference trajectory.
Future work will investigate how the proposed formulation
can be extended for model predictive control schemes, which
re-optimize the control input based on the current parameter
estimate and incoming measurements.
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