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ABSTRACT This paper presents an efficient planning algorithm, called Direct-Projection Rapidly-exploring
Random Tree (DP-RRT), to address the motion planning with end-effector pose constraints for anthropo-
morphic manipulators. The key of this planning problem is to find constraint-satisfying configurations on
the constraint manifolds and connect them to generate a collision-free and smooth path. In the previous
works, the configurations that satisfy pose constraints are generally calculated by the numerical iteration
methods based on Jacobian projection techniques. However, such approaches have many technical chal-
lenges, such as joint limits and singularity, many numerical iterations and much computing time. In this
work, we propose a Direct Projection method based on the analytic inverse kinematics (IK) that can
directly project configurations onto the constraint manifolds instead of the numerical iteration methods. The
proposed DP-RRT algorithm combines the Direct Projection method with the Rapidly-exploring Random
Tree (RRT) algorithm, where the RRT algorithm is employed to explore the ambient space by growing
tree branches, and the Direct Projection method is used to project the tree branches onto the constraint
manifolds for constructing a constraint-satisfying path. As the analytic IK solver is used to calculate
the constraint-satisfying configurations, the DP-RRT algorithm is characterized by high efficiency and
no numerical iteration. Besides, avoiding joint limits and singularity, as well as the smoothness of the
end-effector and the joints trajectory are also considered. The effectiveness of the proposed algorithm is
demonstrated on the Willow Garage’s PR2 simulation platform in a wide range of pose-constrained cases.

INDEX TERMS Motion planning, direct projection, pose constraints, analytic inverse kinematics, anthro-
pomorphic manipulator.

I. INTRODUCTION
The manipulator motion planning is one of the challenging
problems in the field of robot manipulators, which involves
finding a collision-free path under certain constraints from
an initial to a goal configuration among a collection of
obstacles. This problem is known to be a PSPACE-hard
problem [1] and its complexity increases with the num-
ber of the robot’s degrees of freedom (DOFs) and the
task constraints. Sampling-based motion planners [2]–[4] are
generally regarded as the state-of-the-art method for such
high-dimensional planning problems due to the outstanding
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advantages in efficiency, easy implementation and the abil-
ity to handle a multitude of different constraints [5]. But
these planners are difficult to solve the motion planning with
pose (position and/or orientation) constraints imposed on the
robot’s end-effector [6], [7], which are ubiquitous in industry
and our daily life, e.g., moving a cup full of water from
one place to another while keeping it vertically all along the
motion; opening a door or rotating a valve.

There are two main factors prohibiting the adoption of
sampling-based planningmethods for these problems. Firstly,
it is difficult to directly compute feasible configurations
that lie on the desired constraint manifolds [8], [9]. For
the task-constrained motion planning, one always wants to
find a direct way that can quickly generate configurations
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FIGURE 1. An overview of the DP-RRT algorithm for the motion planning with pose constraints (MPPC) problem
implemented on the PR2 simulation robot.

meeting the task constraints. However, position and orienta-
tion of the robot’s end-effector usually are coupled, which
complicates the solution to the analytic inverse kinemat-
ics (IK) of the desired position or orientation. Secondly,
the probability that a randomly sampling configuration in
configuration space (C-space) lies on the desired constraint
manifolds is extremely low and usually null. The constraint
manifold is the space composed of all constraint-satisfying
configurations, which is a zero-measure space of the ambient
space or C-space. Intuitively, the desired constraint manifolds
have small volumes in C-space and thus the probability of
sampling from the constraint manifolds is very low. In the
previous works [6]–[19], the numerical iteration methods
based on Jacobian projection techniques have been generally
used to generate configurations that satisfy pose constraints.
However, such approaches have many technical challenges,
such as avoiding joint limits and singularity, requiring many
numerical iterations and much computing time.

In this paper, we focus on the motion planning with
pose constraints (MPPC) of anthropomorphic manipula-
tors by a Direct Projection method that can directly
find the constraint-satisfying configurations without the
numerical iteration. By combining the Direct Projec-
tion method with the Rapidly-exploring Random Tree
(RRT) [3] algorithm, an sampling-based planning algorithm
termed Direct-Projection Rapidly-exploring Random Tree
(DP-RRT) is presented for planning on the constraint man-
ifolds. In detail, we first decompose the MPPC problem
into two independent subproblems of the lower-dimensional
subspace, namely motion planning along end-effector paths

(MPEP) [10] and motion planning with orientation con-
straints (MPOC) [11], [12]. Then the Direct Projection
method based on the analytic IK of the anthropomor-
phic manipulator is proposed to project configurations
of the ambient C-space onto the constraint manifolds.
Finally, the DP-RRT algorithm uses the RRT algorithm to
explore the ambient C-space by growing tree branches and
employs the Direct Projection method to project the tree
branches onto the constraint manifolds for constructing a
constraint-satisfying path. An overview of the DP-RRT algo-
rithm for the MPPC problem is presented in Figure 1.
Contributions: The proposed DP-RRT algorithm can be

applied to solve the general MPPC problems for anthropo-
morphic robots, which are generally solved by numerical iter-
ation methods based on Jacobian projection techniques. Our
approach is different from the previously proposed numerical
iteration methods, where the Direct Projection method is
adopted to project configurations onto the constraint mani-
folds. The planning time of the DP-RRT algorithm is signif-
icantly reduced, because the analytic IK solver is applied to
compute the constraint-satisfying configurations directly.

II. RELATED WORK
To address the motion planning with pose-constrained tasks,
the iterative projection strategies (Figure 2), which itera-
tively project unsatisfying samples in C-space closer to the
constraint manifolds by a projection operator, have been
verified to be effective. The iterative projection technique
was originally proposed for the kinematic closure con-
straints of closed-chain robots by the randomized gradient
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FIGURE 2. In the iterative projection method, the seed configurations qs
represented by gray dots are pushed onto the constraint manifolds (blue
space) iteratively and then connected to form a branch.

descent (RGD) algorithm [13], [14]. The Tangent Space Sam-
pling and the First-Order Retraction [15] were proposed to
solve the task constraints imposed on the manipulator’s end-
effector, which are more invariant and effective than the RGD
algorithm. More recently, Berenson et al. [16] unified the
representation of pose-related constraints by the Task Space
Regions (TSRs) and presented the Constrained Bi-directional
Rapidly-exploring Random Tree (CBiRRT) [9] to solve the
general end-effector constraints. In order to further improve
the efficiency of the projection operation, planners such as
Tangent Space RRT [8], Atlas RRT [17] and Tangent Bundle
RRT [18] were proposed to iteratively project samples onto
the approximation of constraint manifolds: tangent spaces
or tangent polytopes. Kingston et al. [6] summarized the
previous works and presented a framework that can decouple
the constraints from sampling-based planners. Although iter-
ative projection strategies based on Jacobian pseudoinverse
are feasible, these methods have many technical challenges,
such as avoiding joint limits and singularity, requiring many
numerical iterations and thus taking a lot of computing time.

As for the MPEP problem of redundant anthropomorphic
arms, we need to find a sequence of collision-free joint
motions so that the robot’s end-effector can track the desired
Cartesian path. Since there are infinitely many IK solutions
(self motion) for a redundant manipulator due to its kinematic
redundancy, the robot can be with different joint movements
to move along the same path. This provides means for avoid-
ing obstacle under the condition of meeting the primary task.
Thus, the MPEP can be considered as a special case of the
redundancy resolution [19] based on the kinematic control
of the manipulator, where the redundancy resolution enables
the robot to achieve appropriate configurations under the
constraints of velocity [20]–[23], acceleration [24], [25] or
avoiding collisions. However, these approaches would suffer
from the singularity and much iteration time problem, as they
work at the velocity or acceleration level with the numerical
iteration method. An alternative approach is the analytical
inverse kinematics-based motion planning methods [10], [26]
at the position level, which can only track a position path

with improved efficiency. However, it is not suitable for the
manipulator to track a path with both position and orientation
constraints because of the nonlinear coupling between them.

III. CONSTRAINT REPRESENTATION
AND DIRECT PROJECTION
In this section, a generalized representation of pose con-
straints will be provided firstly, which can be divided into
position constraint and orientation constraint. Then the con-
straint manifolds will be introduced to describe the gen-
eral MPPC problem. Finally, the Direct Projection method
based on the analytical IK solver of 7-DOF anthropomorphic
manipulators will be given to show how to project the config-
urations onto the constraint manifolds directly.

A. POSE CONSTRAINT REPRESENTATION
Pose constraints usually take the form of the position and/or
orientation constraints of the robot’s end-effector. In this
work, a 6-dimensional vector function [x(t), y(t), z(t), α(t),
β(t), γ (t)]T is adopted to specify the end-effector pose con-
straints, where we assume that the vector function only
depends on a single parameter t . The vector function consists
of a translation component P(t) = [x(t), y(t), z(t)]T and a
3-dimensional rotation component described by Roll-Pitch-
Yaw (RPY) Euler angles φ(t) = [α(t), β(t), γ (t)]T .

Cr
=


x(t)
y(t)
z(t)
α(t)
β(t)
γ (t)

 , where



x(t) ∈ (xmin, xmax);
y(t) ∈ (ymin, ymax);
z(t) ∈ (zmin, zmax);
α(t) ∈ (αmin, αmax);
β(t) ∈ (βmin, βmax);
γ (t) ∈ (γmin, γmax).

(1)

The first three rows of Cr limit the positions of the robot’s
end-effector in the direction of x, y and z axes (in meters)
and the last three rows limit the rotations about these axes
(in radians).

B. CONSTRAINT MANIFOLDS
The C-space (denoted byQ) consisting of all possible config-
urations is a key concept in motion planning. The advantage
of using C-space is that it allows us to describe the robots of
complex geometric shape with a single point in the space Q.
For example, the configuration of a robot arm with n joints
can be represented by an n-dimensional vector containing n
joint positions, q = (q1, q2, . . . , qn). Therefore, the robot
motion planning is equivalent to the path planning of a single
point in Q. The free C-space Qfree ⊆ Q consists of all the
collision-free configurations in Q, where the robot does not
collide with obstacles or itself. The basic motion planning
problem is to find a continuous path τ inQfree from an initial
state qinit ∈ Qfree to a goal state qgoal ∈ Qfree, such that

τ (0, 1) → Qfree

τ (0) = qinit; τ (1) = qgoal (2)
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FIGURE 3. (a) A general kinematic model of the 7-DOF anthropomorphic manipulator in analogy with a human arm. The
configuration of the anthropomorphic manipulator consists of the main-arm joints (q1, q2, q3 and q4) and the wrist joints (q5,
q6 and q7). The symbol of S, E, W, T means shoulder, elbow, wrist, end-effector respectively. (b) Spherical wrist, three revolute
axes intersect at a single point W . (c) D-H parameters of the anthropomorphic manipulator.

The above motion planning only focuses on the collision
avoidance, without considering the pose constraints imposed
on the robot’s end-effector. It means that the manipulator’s
configuration parameters q1, q2, . . . , qn are independent to
each other. However, for the MPPC problem, these parame-
ters q1, q2, . . . , qn are correlated due to the nonlinear equality
constraints F(q) = Cr imposed on the robot. Supposing there
are k (n > k > 0) equality constraints and thus a (n − k)-
dimensional sub-manifold can be delineated in C-space Q.
The lower-dimension sub-manifold is also known as con-
straint manifolds MC ⊂ Q, where all the configurations
must meet the constraints F(q) = Cr .

MC = {q = (q1, q2, . . . , qn) ∈ Q | F(q) = Cr
}. (3)

As mentioned, the region of constraint manifolds is not
known a priori. To generate the constraint-satisfying con-
figurations, the planning algorithms need to either itera-
tively project the C-space configurations onto the constraint
manifolds or directly compute analytical IK solutions that
inherently satisfy the equality constraints (Direct Projection).
However, computing the constraint-satisfying configurations
by the analytical IK method is difficult and even infeasible
due to the coupling of the end-effector position and orienta-
tion. Fortunately, for the anthropomorphic manipulators, it is
possible to generate such constraint-satisfying configurations
by the Direct Projection method.

C. DIRECT PROJECTION
To solve the MPPC problem, we need to project the C-space
configurations onto the constraint manifoldsMC . This paper
presents a Direct Projection method based on the analytic
IK that can directly project the C-space configurations onto
MC for anthropomorphic manipulators. As is the case with
human arms, anthropomorphic manipulators (Figure 3(a))
consists of three revolute joints in the shoulder, a revolute
joint in the elbow and three revolute joints in the humanoid
spherical wrist (Figure 3(b)). The key feature of the spherical
wrist is that it decouples the position from the orientation

of end-effector motion [27], [28]. That is, the wrist posi-
tion and orientation can be independently controlled by the
main-arm joints qarm (the first four joints) and the wrist
joints qwrist (the last three joints) respectively. This special
property makes it possible to derive IK solutions in an ana-
lytic way [29] by inverse position kinematics and inverse
orientation kinematics.

As shown in Figure 3(c), the Denavit-Hartenberg
(D-H) [30] parameters are given to formulate the kinematic
mode of a general 7-DOF anthropomorphic manipulator,
where d1, d3, d5 and d7 are the length of shoulder, upper
arm, forearm and end-effector respectively, and a1 is the
shoulder offset. Suppose that a desired pose of the end
effector frame {7} relative to the base frame {0} is expressed
as:

0
7T =

[
0
7R

0
7P

0 1

]
, (4)

where 0
7T is the homogeneous transformation matrix consist-

ing of a 3× 3 rotation matrix 0
7R for orientation and a 3× 1

translation vector 07P for position. As the robot’s end-effector
is mounted on the spherical wrist fixedly, we can calculate the
position of the wrist 06P relative to base frame {0} when the
end-effector position and orientation are known.

0
6P =

0
7P−

0
7R ·

6
7P, (5)

where 6
7P = (0, 0, d7)T is a constant vector.

Since the last three joint axes of the anthropomor-
phic manipulator intersect at the wrist, the wrist position
0
6P is determined only by the main-arm joints qarm =

(q1, q2, q3, q4). Obviously, there are four unknowns for three
scalar equations. Considering that the main-arm joint angles
can be easily solved if the position of shoulder is specified,
hence we choose the first angle q1 as the redundant variable.
The position of shoulder relative to the base frame {0} can
be computed as 0

1P=[a1 c1, a1 s1, d1]
T . Thus, the points of

shoulder (S), elbow (E) and wrist (W) can form a triangle,
and two sets of elbow joint angle q4 can be calculated by the

VOLUME 8, 2020 32521



J. Wang et al.: MPPC Based on Direct Projection for Anthropomorphic Manipulators

triangle cosine theorem

q4 = ±(π − acos2(d23 + d
2
5 − d

2
16, 2d3d5)), (6)

where d16 =
∥∥0
6P−

0
1P
∥∥ is the length of the triangle

hypotenuse.
According to (5), the position of the wrist 0

6P can be
calculated by the known end-effector pose 0

7T . Therefore,
the following formula can be further obtained:

0
5P =

0
1P+

0
1R ·

1
2P+

0
1R ·

1
2R ·

2
3P+

0
1R ·

1
3R ·

3
4P+

0
1R ·

1
4R ·

4
5P.

(7)

where 0
5P =

0
6P,

0
1P = (0, 0, d1)T , 2

3P = (0, 0, d3)T , 4
5P =

(0, 0, d5)T and 1
2P=

3
4P= (0, 0, 0)

T . Furthermore, the relation
(7) can be simplified to (01R)

−1
·(05P−

0
1P)=

1
2R·

2
3P+

1
4R·

4
5Pand

thenx7c1+y7s1−a1−z7 + d1
y7c1 − x7s1

=
d5c2c3s4+d5s2c4+d3s2d5s2c3s4−d5c2c4−d3c2

d5s3s4

. (8)

Two sets of solution can be obtained from (8),

q3 = asin2(y7 c1 − x7 s1, d5 s4)

q2 = atan2(k1k3 − k2k4, k1k4 + k2k3) (9)

for q3∈ [− π/2, π/2), and

q3 = π − asin2(y7 c1 − x7 s1, d5 s4)

q2 = atan2(k1k3 − k2k4, k1k4 + k2k3) (10)

for q3∈ [π/2, 3π/2). The notations ci and si are the abbrevia-
tions for cos(qi) and sin(qi) respectively, and k1=d5 c4+ d3,
k2 = d5 c3 s4, k3 = x7 c1 + y7 s1 − a1, k4 = z7 − d1.
So far, q2, q3, q4 can be obtained by inverse position

kinematic when the redundancy angle q1 is specified. On the
other hand, as the orientation of end-effector is determined by
qwrist , analytical IK solutions of qwrist can be solved through
inverse orientation kinematics described by 4

5R ·
5
6R ·

6
7R =

(04R)
−1
·
0
7R. And it can be expressed asc5c6c7−s5s7 −s5c7−c5c6s7 c5s6

c5s7+s5c6c7 c5c7−s5c6s7 s5s6
−s6c7 s6s7 c6

=(pij) , (11)

where pij are the elements of the (04R)
−1
·
0
7R. Thus, the fol-

lowing two sets of solutions can be derived

q5 = atan2(p23, p13)

q6 = atan2(
√
p223 + p

2
13, p33)

q7 = atan2(p32,−p31) (12)

for q6∈ (0, π), and

q5 = atan2(−p23,−p13)

q6 = atan2(−
√
p223 + p

2
13, p33)

q7 = atan2(−p32, p31) (13)

for q6 ∈ (−π, 0). To summarize, once q1 was chosen as the
redundant variable, the remaining joint angles q2 ∼ q7 can be

Algorithm 1 DirectProjection(qs = (qarm, qwrist ))
1: if OrientationConstraintTrue then
2: 8← φ(t);
3: qwrist ← InverOrienKinem(8, qarm);
4: else
5: 8← F(qs);
6: end if
7: if PositionConstraintTrue then
8: qarm← InverPositKinem(P(ti),8, q1);
9: qwrist ← InverOrienKinem(8, qarm);

10: end if
11: return q← (qarm, qwrist );

calculated analytically. For a given end-effector pose and an
appropriate redundancy angle, up to eight sets of analytical
IK solutions can be solved.

Based on the analytical IK of anthropomorphic manipu-
lators, the pseudo-code procedure of projecting a C-space
configuration qs onto the constraint manifolds is described
in Algorithm 1. In detail, for the MPOC problem with a
predefined orientation φ(t) (Lines 1 and 2), the inverse ori-
entation kinematics function InverOrienKinem() tries to cal-
culate the wrist angles qwrist for the given Euler angles 8
without changing the position of wrist (Line 3). Obviously,
the new configuration q consisting of the original qarm and
the calculated qwrist canmeet the given orientation constraints
(Line 11). From Eq. 12 and Eq. 13, we can see that up
to two configurations can be projected onto the orientation
constraint manifolds.

As to the position-constrained task MPEP, the robot’s
end-effector needs to follow the desired path P(t) ∈ R3

assigned with a path parameter t . In order to track the path,
we discretize P(t) into a series of way-points by a sequence
{t1, t2, . . . , tN }, and then complete the path planning between
the way-points. Thus, the MPEP problem is to find a
sequence of joint configurations {q(t1), q(t2), . . . , q(tN )} in
C-space that satisfy the forward kinematics F(q(ti)) =
P(ti), i = 1, 2 . . . ,N and such that no collision occurs
along the joint-space path (Figure 4). In order to seek the
configuration(s) q such that F(q) = P(ti), the proposed
Direct Projection method projects the configuration qs of
the ambient C-space onto the position constraint manifolds
(or null-space manifolds) directly. Firstly, we need to check
whether there are orientation constraints. If so, Euler angles8
is assigned the predefined orientation φ(t) (Line 2); otherwise
it retains the original orientation derived by Forward Kine-
matic function F() (Line 5). Then, the inverse position kine-
matics function InverPositKinem() calculates the main-arm
angles qarm with the given P(ti) and 8 (Line 8). Finally,
InverOrienKinem() calculates the qwrist with the given8 and
qarm (Line 9). Obviously, the new configuration q consisting
of qarm and qwrist can meet the given position constraints and
even orientation constraints (Line 11). As aforementioned,
up to eight new configurations can be obtained.
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FIGURE 4. P(t) is a desired trajectory which has a sequence of discrete
way-points. For each way-point, there are infinite IK solutions that can
form the position constraint manifolds (or null-space manifolds). For
instance, the position constraint manifolds MC(i ) consists of infinite IK
solutions q(ti ).

IV. DP-RRT ALGORITHM
To address the MPPC problem for anthropomorphic manip-
ulators, the DP-RRT algorithm is proposed to directly search
on the constraint manifolds for finding a collision-free
path. The proposed algorithm is based on a combined
Direct Projection method and the Rapidly-exploring Random
Tree (RRT) algorithm, which uses the RRT algorithm to
explore the ambient C-space by growing tree branches, and
employs the Direct Projection method to project the tree
branches onto the constraint manifolds for constructing a
constraint-satisfying path. Besides, avoiding joint limits and
singularity, as well as the smoothness of the end-effector and
the joints trajectory are also considered in this work.

A. ALGORITHM OVERVIEW
The DP-RRT algorithm, shown in Algorithm 2, starts with
a space-filling tree (V ,E) rooted at an initial node qinit ,
a vertex set Vpre&cur for storing nodes of the previous and
current constraint manifolds, and an empty vertex set Vcurrent
for storing nodes of the current constraint manifolds. Please
note that the vertex sets Vpre&cur and Vcurrent are specially
designed for cases with a series of constraint manifolds like
the MPEP problem.

For the MPOC problem with fixed orientation constraints,
the planning process is conducted on the orientation con-
straint manifolds from start to finish, thus the number of
constraint manifolds Num is one (Line 2 of Algorithm 2).
While the number of constraint manifolds is equal to the num-
ber of way-points N for the MPEP problem (Line 4). Then,
the proposed DP-RRT algorithm uses Vpre&cur to expand on
the current constraint manifolds iteratively. In each iteration,
the new nodes qnodes and the branches δ(qnear , qnodes) are

Algorithm 2 DP-RRT
Input: V←{qinit };Vpre&cur←{qinit };Vcurrent←∅;E←∅;
Output: G← (V ,E);
1: if OrientationConstraintTrue then
2: Num = 1;
3: else if PositionConstraintTrue then
4: Num = N ;
5: end if
6: for i = 1→ Num do
7: Vcurrent ← Initialize(Vcurrent );
8: for j = 1→ n do
9: qrand ← SampleFree(j);

10: qnear ← Nearest(Vpre&cur , qrand );
11: qs← Steer(qnear , qrand );
12: qnodes,δ(qnear , qnodes)←DirectProjection(qs);
13: qnew,δ(qnear , qnew)←SelectOptimum(qnodes);
14: if CollisionChecking(δ(qnear , qnew)) then
15: V ← V

⋃
{qnew};E ← E

⋃
{δ(qnear , qnew)};

16: Vpre&cur ← Vpre&cur
⋃
{qnew};

17: Vcurrent ← Vcurrent
⋃
{qnew};

18: end if
19: end for
20: Vpre&cur ← Initialize(Vpre&cur );
21: Vpre&cur ← Vcurrent ;
22: end for
23: return G← (V ,E);

directly projected onto the current constraint manifolds by
the Direct Projection method. There will be multiple nodes
and branches satisfying the constraints, but we only choose
the one that satisfies the limits of joint range, singularity and
the ‘‘shortest trajectory in joint space’’. Thus the function
SelectOptimum() is proposed to select the optimal node qnew
and the branch δ(qnear , qnew). Finally, in Line 14, a collision
detector is employed to checkwhether qnew and δ(qnear , qnew)
are collision-free by incremental checking the projected inter-
mediation nodes. If the path δ(qnear , qnew) is collision-free,
qnew will be added to V , Vpre&cur and Vcurrent , and then
δ(qnear , qnew) will be added to E in Lines 15∼17. In Line 19,
the above loop program iterates until the goal configuration
qgoal is reached.
For the MPEP problem, we can complete the motion from

the previous constraint manifolds to the current through the
above steps. Then Vpre&cur will replace Vcurrent as the data
structure to search the nearest node of the next loop while
Vcurrent will be emptied and prepared for adding the new
nodes of the new current constraint manifolds. The above
loop program is conducted N times as way-points P(ti) goes
by until the goal region is reached.

The complexity of the above DP-RRT algorithm is ana-
lyzed by the time complexity and the space complexity. The
time complexity can be calculated by the sum of the time
that all nodes are added to the tree. As the operations of
sampling, steer, direct projection, select optimal node and
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collision checking can be done in linear time for n itera-
tions (Lines 9-17 of Algorithm 2), the complexity can be
represented as O(n). The complexity of selecting the nearest
node depends on the number of vertices already in the tree,
thus it can be calculated as O(n2−n) ≈ O(n2) [31]. It can
be seen that the time complexity of the DP-RRT algorithm
is bounded by O(Num∗n2), where Num is the number of
constraint manifolds. The space complexity is defined as the
amount of memory used, which can be represented by the
number nodes in the tree. Thus, the space complexity of the
DP-RRT algorithm is O(Num∗n).

B. GENERIC COMPONENTS
The DP-RRT algorithm is typically composed of the follow-
ing generic components, including the Direct Projection of
the Space-filling Trees, the Selection of the Optimal Node,
the Collision Checking and the Vertex Sets.

1) DIRECT PROJECTION OF THE SPACE-FILLING TREES
Direct Projection of the Space-filling Trees is the core of the
DP-RRT algorithm, shown in Lines 8∼12 of Algorithm 2.
It starts with the RRT algorithm in C-space and uses the
Direct Projection method to directly project the new C-space
configuration (node) qs and branch δ(qnear , qs) onto the con-
straint manifolds. Specifically, in Lines 9 and 10, a ran-
dom node qrand is sampled in C-space and its nearest node
qnear is found in Vpre&cur . An attempt Steer() is made to
generate a new node qs and a straight path δ(qnear , qs) in
C-space bymoving a step-size ε in the straight line from qnear
toward qrand . It is usually that qs and δ(qnear , qs) are not on
the constraint manifolds. Then, in Line 12, the C-space qs
and δ(qnear , qs) are projected onto the constraint manifolds
directly by the Direct Projection method (Algorithm 1), thus
the new nodes qs and the branches δ(qnear , qnodes) can be
generated on the constraint manifolds. It should be noted
that as the intermediate nodes of the branch δ(qnear , qs) are
projected onto the constraint manifolds by the Direct Pro-
jection method (Figure 5), the branches δ(qnear , qnodes) can
satisfy the pose constraints with high accuracy. This is quite
different from [10], [26], where the branches between the
new and nearest configurations are generated by the linear
interpolation method.

2) SELECTION OF THE OPTIMAL NODE
Due to multiple solutions of the analytic IK, multiple nodes
qnodes on the constraint manifolds will be projected from qs
generated by the RRT algorithm (Line 12 of Algorithm 2).
So firstly we need to remove the nodes that near the singular-
ity or outside the joint limits. For the anthropomorphicmanip-
ulators with spherical wrists, the singularity can be decoupled
as the main-arm singularity and wrist singularity [32]. The
main-arm singularity occurs only when q4=0 or q4=π and
the wrist singularity happens only when q6 = 0 or q6 = π .
In Line 13 of Algorithm 2, if all the possible new nodes are
removed, qnodes will be an empty set.

FIGURE 5. A sketch of the DP-RRT algorithm. The whole process
generates random branches δ(qnear , qs) iteratively in C-space and the
random branches will be projected onto the constraint manifolds by
Direct Projection method (red solid arrow). Then, the optical new node
qnew and branch (yellow curve) will be retained while other nodes and
branches will be eliminated. Finally, collision detection is carried out to
determine whether the new node and branch should be added to the
space-filling tree.

The other problem is how to select the new node when
there are multiple nodes in qnodes. According to the differ-
ential kinematics of robot manipulators, differential motion
of the robot’s joints will lead to differential motion of its
end-effector. That is to say, the differential motion of the
robot’s end-effector can be caused by the differential motion
of its joints, but it may result from the jumping motion of the
joints. Considering that the joint angles between the adjacent
nodes should not change dramatically, we use the criterion of
‘‘shortest trajectory in joint space’’ to select the optimal node
qnew from qnodes. Thus, an Euclidean distance of joint angles
is adopted as the criteria of choose. As 2π radian yields the
same rotation as 0 radian for continuous joint (identification),
the Euclidean distance d(qnear , qnew) between vectors qnear
and qnew is defined as:

d(qnear , qnew) =

∥∥∥∥∥
7∑

k=1

12(qknear , q
k
new)

∥∥∥∥∥ , (14)

where qknear , q
k
new are the kth element of qnear and qnew respec-

tively. 1(qknear , q
k
new) = min{|qknear − qknew|, 2π − |q

k
near −

qknew|} is the S1 metric. We will discard the IK solutions that
lead to joint angles jump through this criteria. Therefore,
the joint angles between the nearest and new configurations
would not jump and the smoothness of the joint trajectories
can be achieved. According to the differential kinematics
of robot manipulators, the smoothness of the end-effector
trajectory can be ensured.

3) COLLISION CHECKING
In the RRT planner, a collision detector is employed to check
whether the straight path between the new node and the
nearest node are collision-free by incremental checking at
some interval from one end to the other along the path. For
the DP-RRT algorithm, the projected path δ(qnear , qnew) in
joint space is not a straight path. Instead of checking the
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FIGURE 6. The program flow sketch map of the tree expansion on the position constraint manifolds. Vpre&cur is a moving tree that moves
sequentially from {qinit } to MC(N). Vcurrent is a temporary tree that prepares the new nodes for Vpre&cur .

straight path between qnear and qnew, we incrementally check
the straight segments between the projected intermediation
nodes and the δ(qnear , qnew) is collision-free only when all
the segments are collision-free.

4) VERTEX SETS
There is only one vertex set V in RRT algorithm, which
is used to store the vertices of random space-filling trees.
However, for the cases of connecting a series of constraint
manifolds by sequence in the MPEP problem, the current
constraint manifolds Vcurrent and the current and previous
constraint manifolds Vpre&cur are needed. Vcurrent stores the
vertices corresponding to the current pose and Vpre&cur stores
the vertices corresponding to the current pose and the pre-
vious pose. Thus, two different connection modes can be
obtained, i.e. the forward motion from the previous constraint
manifolds to the current ones, and the self motion connecting
two vertices on the same constraint manifolds.

As shown in Algorithm 2, the initial node is located at
the previous constraint manifolds Vpre&cur = {qinit }, and
the space to be sampled is the current constraint manifolds
Vcurrent = ∅. For the fixed orientation tasks, the planning pro-
cess is conduct on the orientation constraint manifolds from
beginning to end (Lines 6∼22), thus the number of constraint
manifolds Num is one. For MPEP problem, the number of
constraint manifolds is equal to the number of way-points N
(Line 4) and the planned path can be the self motion or the
forward motion. As depicted in Figure 6 (1)-(3), the DP-RRT
algorithm starts from an initial node qinit in the previous con-
straint manifolds and repeatedly generates new nodes qnew on
the current constraint manifoldsMc(1) until n new nodes have
been added to Vcurrent . Then Vpre&cur will replace Vcurrent
as the data structure to search the nearest node of the next
loop while Vcurrent will be emptied and prepared for adding
the new nodes of the new current constraint manifolds. This
process corresponds to Figure 6 (4), (5) and Lines 20, 21 of
Algorithm 2. As presented in Figure 6 (6), the above loop
program is conductedN times as way-pointP(ti) goes by until
the goal region is reached.

V. PLANNING EXPERIMENTS
To demonstrate the validity of the proposed algorithm,
three sets of simulation experiments are performed by the
DP-RRT planner on the humanoid PR2 (Willow Garage)
simulation robot in the Robot Operating System (ROS) [33].

TABLE 1. Simulation results of case 1 (20 runs).

The ROS is a flexible framework for writing robot software
and creating complex and robust robot behavior across a
wide variety of robotic platforms, which has been widely
used and considered as the main development framework in
robotics. The CBiRRT planner [9], the RRT-connect plan-
ner [34], the Control_Based planner [21], the Task Space RRT
(TS-RRT) planner [35] and the Global Redundancy Resolu-
tion PRM (GRR-PRM) planner [36] are used as the com-
parative methods in these simulation experiments, which are
typically adopted to deal with such constraint tasks. All the
algorithms are run on ROS MoveIt! simulator [37] with an
open-source Open Motion Planning Library (OMPL) [38].

A. EXPERIMENTAL PLATFORM
The simulation platform of the PR2 is one of the repre-
sentative humanoid robots, which has been widely used to
verify the function and performance of the anthropomorphic
robot [12], [17], [39]. We consider the MPPC problems for
the 7-DOF anthropomorphic manipulator of the PR2 plat-
form. The main-arm joints of the PR2 manipulator consist of
four joints: shoulder pan joint (q1), shoulder lift joint (q2),
upper arm roll joint (q3) and elbow flex joint (q4), which
determine the position movement of the robot’s wrist. While
the orientation of the robot’s wrist can be controlled by the
wrist joints consisting of forearm roll joint (q5), wrist flex
joint (q6) and wrist roll joint (q7). The shoulder pan joint (q1)
is selected as the redundant joint for the analytical IK solution
of the main-arm configuration.

B. EXPERIMENTS AND RESULTS
We evaluate the performance of our algorithm by applying
it to three typical pose-constrained cases: end-effector orien-
tation constraint, narrow passage constraint and end-effector
path constraint. Since all the planners are randomized,
20 times repetitive experiments are performed for each
planner and the statistic data of comparative experiments
are given in Table 1 for Case 1, Table 2 for Case 2 and
Table 3 for Case 3. The first column in Table 1, 2 and 3
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FIGURE 7. The PR2 robot moves a cup from the green pose to the yellow pose in a cluttered environment while subjecting to upright
constraints by using the DP-RRT planner. Green: the start configuration. Yellow: the goal configuration. Red: the obstacles (a table, a baffle
on the table). Blue: the trajectory of the end-effector.

TABLE 2. Simulation results of Case 2 (20 runs).

TABLE 3. Simulation results of Case 3 (20 runs).

shows several evaluating indicators including average plan-
ning time (Avg.Time), minimum planning time (Min.Time),
maximum planning time (Max.Time), average number of
nodes (Avg.Nodes), path accuracy (Avg.Error) and success
rate. The algorithms based on different strategies are pre-
sented in the first row.

1) CASE 1: END-EFFECTOR ORIENTATION CONSTRAINT
When manipulating objects, it is often necessary to maintain
its orientation fixed. For example, the robot is asked to pick
a cup of water from one place to another while keep it from
tipping or spilling all along the motion [12], [40]. In this case,
orientation need to be specified in the planned trajectory. The
experiments in this paper only allow for enforcing an exact
value of the Euler angles, i.e., the yaw angle γ , pitch angle
β and roll angle α are set to zero. Thus, the constraint can be
represented as

Cr
=


x(t) ∈ (−∞,+∞)
y(t) ∈ (−∞,+∞)
z(t) ∈ (−∞,+∞)

α(t) = 0
β(t) = 0
γ (t) = 0

 . (15)

The first simulation experiment is represented in Figure 7,
the PR2 robot has to move a cup vertically from the green
pose to the yellow pose in a cluttered environment. Accord-
ing to the task, both the starting pose (green pose) and

the target pose (yellow pose) must satisfy the orientation
constraint with Euler angles α = β = γ = 0 radians.
In order to compare the performance of the proposed planner,
the CBiRRT planner and the TS-RRT planner are conducted
for the same scenario. The CBiRRT planner is a typical
projection-based planning method [16] that has been widely
used for pose-constrained tasks.While the TS-RRT is a popu-
lar task-space planningmethod [35] that samples and expands
nodes in the low-dimensional task space and thus can find
paths with fewer nodes than the C-space planners.

According to the averaged results of 20 times repetitive
experiments in Table 1, all the planners can complete the
task on the PR2 simulation robot with respect to success rate.
We can find that the proposed DP-RRT planner is obviously
superior to the CBiRRT planner in the indicators of planning
time, number of nodes and path accuracy. Besides, it con-
sumes less computing time and gets higher precision than the
TS-RRT planner, while there is little difference in the number
of extended nodes between the two approaches.

The advantage in planning time can be attributed to that
the DP-RRT planner uses the fast analytical IK technique to
sample configurations on the orientation constraint manifolds
directly rather than the numerical iteration methods. And the
high accuracy of the DP-RRT planner owes to the accuracy
of its intermediate nodes, which are all obtained by the direct
projection method rather than the linear interpolation meth-
ods. A typical result of the snapshots from the execution of
the DP-RRT planner is shown in Figure 7. The corresponding
Euler angles of the robot’s end-effector are fixed to zero with
high accuracy as shown in Figure 8(a) and the corresponding
joint position trajectories are smooth as shown in Figure 8(b).

2) CASE 2: NARROW PASSAGE CONSTRAINT
Narrow passage constraints are common in our daily life
and industrial environment, e.g., the PR2 robot is assigned
to take a long T-shaped broom through a hallway and then
into a room [41]. Sampling-based planners are notoriously
challenging at handling such problems efficiently as there are
some special restrictions on the orientation and/or position
of robot’s end-effector within the narrow passage. Indeed,
narrow passages represented in C-space is a small region
but critical to the connectivity of the free space [17]. Thus,
the probability of randomly sampling configurations in the
narrow passage space is extremely low by the uniform
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FIGURE 8. (a) The trajectory of Euler angles produced by the DP-RRT algorithm are fixed to zero with high accuracy. (b) The
smooth joint position trajectories can be obtained by the DP-RRT algorithm.

FIGURE 9. The PR2 robot operates a long stick from the green pose to the yellow pose through a narrow passage by the DP-RRT planner.
Green: the start configuration. Yellow: the goal configuration. Red: the obstacles. Light Blue: the narrow passage space. Blue: The trajectory
of the end-effector. (1), (2) and (3) are snapshots of using the DP-RRT algorithm, where the robot’s end-effector is limited in the narrow
passage space. (4) is a snapshot of the switching point between the DP-RRT and the RRT planner. (5) and (6) are snapshots of using the
RRT algorithm, where the end-effector of robot is outside of the narrow passage space.

sampling strategy. Solutions for the narrow passage prob-
lem are often to generate multiple trees simultaneously like
RRT-connect planner [34]. Another solution is to boost the
sampling density inside narrow passage and improve the con-
nectivity of roadmaps by the task space planner [35]. In other
words, the orientation and/or position of the end-effector
derived from the random sampling should be constrained
within the narrow passage space.

A typical scenario is portrayed in Figure 9, the PR2 manip-
ulator need to move a long stick from the green pose to the
yellow pose through a narrow passage formed by two pillars.
The narrow passage prevent the stick to go through it, unless
an appropriate orientation is set [42]. Here the narrow passage
region is a rectangular space in light blue: Snp={(x, y, z) | x ∈
[0.2, 0.8], y ∈ [−0.8, 0.4], z ∈ [0, 2] (in meters), whose
space range depends on the constraint requirements of the
task. Euler angles (α, β, γ ) of the end-effector are set to
zero within the narrow passage space according to the envi-
ronmental prior information. Thus, the constraint can be
represented as

Cr
=


x(t) ∈ [0.2, 0.8]
y(t) ∈ [−0.8, 0.4]
z(t) ∈ [0, 2]
α(t) = 0
β(t) = 0
γ (t) = 0

 . (16)

To evaluate the DP-RRT algorithm, the comparative
simulation experiment is conducted by two typical plan-
ners: the RRT-connect planner and the TS-RRT planner.
To measure the efficiency improvement, we compare the

Avg.Time, Min.Time, Max.Time and Avg.Nodes of the plan-
ners, as shown in Table 2.

By comparing these date of planning time, the DP-RRT
planner for narrow passage constraint task is superior to the
RRT-connect planner and the TS-RRT planner obviously.
A typical result of the snapshots from the execution of the
DP-RRT planner is shown in Figure 9. The corresponding
Euler angles of the robot’s end-effector and the joint positions
are shown in Figure 10(a) and Figure 10(b) respectively.

3) CASE 3: END-EFFECTOR PATH CONSTRAINT
In many applications, the manipulator is assigned to trace
a given end-effector path while avoiding collisions. Door
opening is an evident example: the robot need grasp the door
handle and rotate a given circular path around the door-hinge
to open the door [43]. There are many other applications in
industry like painting [23]–[25], welding [44] and so on.

We tested our algorithm on a typical scenario shown
in Figure 11. The end-effector of PR2manipulator is arranged
to follow a circle path P(t) with a radius of 0.15 meters
through a small window (in red) and returns to its original
pose when finished. The Euler angles of the end-effector is
set to α=β=γ=0. Thus, the constraint can be represented as

Cr
=


x(t) = Px(ti)
y(t) = Py(ti)
z(t) = Pz(ti)
α(t) = 0
β(t) = 0
γ (t) = 0

 . (17)
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FIGURE 10. (a) The Euler angle trajectory of the whole motion is smooth by using the DP-RRT algorithm within narrow passage space,
no jumping occurs even at the switching point. In the beginning, Euler angles of robot’s end-effector are set to zero in the narrow
passage space by using the DP-RRT algorithm. When out of the space, the RRT planner is adopted. The output joint position trajectories
are smooth all along the motion and without jump even at the switching point. (b) The joint position trajectories are smooth throughout
the motion and without jumping even at the switching point.

FIGURE 11. The PR2 manipulator is assigned to track a circle path while avoiding collisions by the DP-RRT planner. Red: the obstacle.
Blue: the circle path.

FIGURE 12. (a) The two trajectories of the end-effector are produced by the DP-RRT planner with N=72 and
N=180 respectively, where the path accuracy can be greatly improved with the increase of the way-points. (b)
The joint position trajectories are smooth throughout the motion by the DP-RRT planner with N=72.

To compare the performance of the proposed planner,
the Control_Based approach and the GRR-PRM planner
are conducted for the same scenario. The Control_Based
approach is a typical kinematic control method [21] that uses
the Jacobian pseudoinverse technique to track a given path.
And the GRR-PRM planner focuses on finding the global
redundancy resolution [36] for tracking the task path.

In this case, the Control_Based approach with N = 72,
the GRR-PRM planner with N=72 and the DP-RRT planner
with N = 72 and N = 180 are applied and the performance
results are illustrated in Table 3. We can find that with the
same number ofway-pointsN=72, theDP-RRT planner gives
better results in terms of planning time but lose superiority in
path precision compared with the Control_Based planner and
the GRR-PRM planner. By increasing the way-points (N ),
the tracking error can be reduced, but the planning time and

the number of position constraint manifolds will increase.
In order to get higher tracking accuracy, we increase the
number of the way-points with N=180 and the results indi-
cate that the DP-RRT planner with N=180 outperforms the
Control_Based planner and the GRR-PRM planner in terms
of tracking error, while the average running time is about 9 s
for both the DP-RRT planner and the Control_Based planner.
The higher tracking accuracy can be achieved because the
number of intermediate nodes increases significantly with
the increase of way-points. And the intermediate nodes are
all obtained by the Direct Projection method. A typical
result of the snapshots from the execution of the DP-RRT
planner with N = 72 is shown in Figure 11. The cor-
responding path trajectory of the robot’s end-effector and
joint positions are shown in Figure 12(a) and Figure 12(b),
respectively.
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VI. CONCLUSION
In this paper, we have presented an efficient planning algo-
rithm to address the MPPC problem for anthropomorphic
manipulators. The algorithm is to combine the RRT algorithm
with the Direct Projection method, which uses the RRT algo-
rithm to explore the ambient space by growing tree branches,
and then directly projects the tree branches onto the constraint
manifolds for constructing a constraint-satisfying path. As the
Direct Projection method based on the analytic IK solver
is applied to calculate constraint-satisfying configurations,
our approach can be more efficient and accurate than the
numerical methods. Three different pose-constrained cases
were performed with a simulated PR2 robot in ROS MoveIt!
to verify the proposed DP-RRT algorithm compared with
several state-of-the-art planners planners. The results show
that our approach can provide significant benefits for motion
planning with pose constraints. The direct projection method
also has been successfully applied to the closed-chain motion
planning with orientation constraints for a class of dual-arm
robots in our work [45]. It is shown that the proposed method
is a widely-fit method for constrained motion planning of the
anthropomorphic manipulators.
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