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ABSTRACT When multiple wireless body area networks (WBANs) exist in close proximity to each other,
the inter-user interference considerably degrades the signal to interference plus noise ratio of the packets
arriving at each WBAN coordinator. Also, the propagation paths within each WBAN experience fading
due to the continuous changes in the body posture and mobility of the human body. The most preferred
coexisting mechanisms specified in the IEEE 802.15.6 standard is the channel hopping mechanism, which
fails to consider the varying radio environment and obtained reward in its channel selection. Thus, our
paper investigates this channel selection problem for interference mitigation in a time-varying environment.
We formulate this channel selection problem as a finite repeated potential game and propose two learning
algorithms, Stochastic Learning Algorithm (SLA) and Stochastic Estimator Learning Algorithm (SELA) to
achieve the Nash Equilibrium (NE) of the game. Numerical results show the convergence of the learning
algorithms to the NE point of the game. The performance evaluation and impact of parameters on these two
algorithms are also analyzed in our paper.

INDEX TERMS Channel hopping, IEEE 802.15.6, interference mitigation, stochastic estimator learning
algorithm, stochastic learning algorithm, potential game, Q-learning algorithm, WBAN.

I. INTRODUCTION
One of the most successfully emerged proactive health care
systems, now in the world, is the wireless body area networks
(WBAN). These networks can provide continuous health
monitoring and real-time feedback to the user or medical per-
sonnel without hindering the user’s lifestyle. A singleWBAN
consists of a number of sensor nodes and a coordinator node
placed on different parts of a human body, which are capa-
ble of establishing wireless communication. The coordinator
node is responsible for collecting, processing and transmit-
ting the sensed physiological information. The perseverant
interests in these networks have led to the development of the
communication standard forWBAN, IEEE 802.15.6, in 2012.

IEEE 802.15.6 standard for WBAN defines the physical
and medium access control (MAC) sublayers, which allow
the devices (sensor nodes) to operate on low power, with
low complexity, in or around the human body. The standard
requires up to 10 coexisting WBANs to function properly in
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a 6 m3 volume [1]. However, IEEE 802.15.6 does not specify
any wireless channel access coordination among theWBANs
at the MAC sublayer. This could lead to severe co-channel
interference among the coexisting WBANs (see Fig.1). Also,
the propagation paths within each WBAN experience fading
due to different reasons such as energy absorption, reflection,
diffraction, shadowing by body parts, changes in the body
posture and mobility of the human body. So in a broader
sense, our aim is to design and develop an efficient coexisting
mechanism for multiple WBANs in a time-varying radio
environment.

Most of the existing proposals for interference mitigation
in other networks fail to become possible solutions, due to
the dense deployment of users (WBANs), frequent topology
changes in the network, and the mobility of the WBANs
[2], [3]. The popular power control games adopted in cellu-
lar networks become less effective, due to low power con-
sumption and group-based node structure of WBAN. Also,
schemes developed for static and low mobility scenarios in
a wireless sensor network (WSN) have been found unsuit-
able forWBANs. Thus, interference mitigation for coexisting
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FIGURE 1. Example of coexisting WBANs.

WBANs becomes more challenging when compared to the
cellular and wireless sensor networks [4].

The optional mechanisms specified in the standard for
interferencemitigation among coexistingWBANs are beacon
shifting, channel hopping and active superframe interleaving
[1]. Their applicability to the different operating frequency
bands is also given in the standard. Coexisting WBANs can
adopt one of the mechanisms based on its effectiveness,
feasibility, and traffic volume in the network. In beacon
shifting, WBANs can schedule the beacon transmission with
backoff mechanism for an idle period. However, this method
becomes ineffective if the number of coexisting WBANs is
large because the performance would decline due to lack of
idle period.

In channel hopping, the hub (coordinator) may change its
operating frequency periodically by hopping to a randomly
selected new channel after dwelling in the current channel
for a fixed number of superframes as communicated to the
sensor nodes. The operating frequency bands along with the
numbers of channels available to each WBAN are given in
the standard [1]. No message exchange among the coexisting
WBANs is required in channel hopping and beacon shifting
mechanisms, while superframe interleaving involves mes-
sage exchange among the coexisting WBANs, resulting in
null interference. From the standard, we know superframe
interleaving is suitable only for the static environment and can
cause considerable packet delay when the coexistingWBANs
are more. Even the channel hopping mechanism may not be
suitable for a dynamic environment if the number of channels
in the frequency band is fewer than the coexisting WBANs.

Thus, the major challenges for interference mitigation of a
dense system of WBANs are the following: (i) they are dis-
tributed; (ii) they exchange no information with their neigh-
bors; (iii) they undergo block fading, i.e., the interference
channel gain may remain constant for a slot but varies from
slot to slot. Here, slot refers to the time duration for which a
WBAN dwells in a channel before changing it. Our objective
in this work is to design a mechanism that enables all the
coexisting WBANs to choose those new channels for hop-
ping that minimize the aggregate interference. Every WBAN
selfishly tries to minimize its interference. This motivates

us to solve the formulated optimization problem using game
theory. But the existing game-theoretic solutions described
in the ‘Related Works’ section work well only in a static
radio environment and also they demand information from
other players. So we need to consider distributed, uncoupled
solutions that can adapt to time-varying changes in the envi-
ronment and the coordinators can learn desirable information
from their actions.

The main contributions of the paper can be summaried as
follows:
• We formulate the channel selection of the coexisting
WBAN coordinators for interference mitigation in a
time-varying enviornment as an exact potential game,
where utility is the weighted aggregate interference. It is
shown that the channel selection (action) profile which
globally minimizes the interference is a pure strategy
Nash Equilibrium (NE) of the game.

• Weconsider two learning algorithms that can achieve the
NE points of the formulated game. Both the algorithms
are distributed and do not require information exchange
between the players. Also, we study the performance
of these algorithms in both static and dynamic environ-
ments. The convergence behavior of these algorithms
are also analyzed.

The rest of the paper is organized as follows. Section II
gives a brief description of related works. Section III explains
the system model and defines the system utility. Section IV
explains the channel selection as a potential game and how
stochastic learning algorithm and stochastic estimator learn-
ing algorithm help in achieving NE in a time-varying environ-
ment. Section V presents the simulation results and the paper
is concluded in Section VI.

II. RELATED WORKS
Several works have been done in the past years to address
the severity of mutual interference in WBANs. Based on the
technique adopted by the existing solutions, we can classify
them into time spacing, frequency spacing, standard mod-
ifications, and hybrid solutions. Most of the works from
[4]–[8] are based on time spacing where the simultaneous
transmissions that interfere within the coexisting WBANs
are avoided. Major drawbacks of these schemes are that all
WBANs should be using same communication protocol, large
number of WBANs could lead to large packet transmission
delay, and scheduling of the transmission involves periodic
exchange of information between the coexisting WBANs.

In [9], inorder to mitigate inter-WBAN interference the
authors select a low power operation having suitable mod-
ulation scheme, data rate, and the duty cycle based on the
measured SINR value. The hybrid solutions for interference
mitigation are discussed in [10], [11]. In [10], first an interfer-
ence prediction module estimates the interference based on
distance and RSSI; and later a resource arbitrator allocates
orthogonal time slots, frequencies, and codes to WBANs.
A distributedmutual interferencemitigation for Zigbee-based
WBAN was proposed in [11] where each WBAN monitors
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the activity of all interfering WBANs in its vicinity. Based
on the collected information, each WBAN reschedules its
transmissions to empty time slots or switch to another idle
channel.

Frequency spacing solutions in [12]–[14] use the frequency
channels that are available for WBAN in [1]. These solutions
allocate orthogonal channels either to an interfering sensor
node or to interfering WBAN as a whole. The authors of
[12] present a distributed interference mitigation mechanism
for cluster tree Zigbee networks. On detecting high data and
beacon collision, the nodes transmit the data on multiple
channels determined by the coordinator. In [13] the channel
assignments are broadcasted to allow all the WBAN devices
to know the assigned channels for all their neighbors. In [14],
authors propose channel switching based on the measured
interference level. Even though frequency spacing schemes
are highly suitable for dynamic environments, they face spec-
tral inefficiency problem, and also are limited by the number
of channels free of interference from networks like ZigBee,
WiFi, etc.

Game theoretical solutions have been applied for inter-
ference mitigation in WBANs, which include power control
game and least interference channel selection. The power
control games consider both energy efficiency and coexist-
ing interference of WBANs in their scheme. In [15] and
[16], power control games make predictions of channel state
according to the received information and adjust transmit
power according to the predictions. Our own work in [17]
proposes distributed learning for interference mitigation for
WBANs in a static environment, where we formulate the
channel selection problem as a finite repeated potential game
and propose a distributed stateless Q-learning algorithm to
achieve the Nash Equilibrium (NE). There we also propose
an interference aware channel hoppingmechanism for a coor-
dinator to select the channel with the least interference as
the most probable for transmission. The legacy frequency
hopping involves three steps: channel measurements, channel
classification, and channel hopping. A channel is classified
into ‘good’ or ‘bad’ according to the predefined threshold and
the good channels are used with a uniform hop probability.
The selection of the predefined threshold does not take the
number of interferers into account, thus making the legacy
schemes less effective. The interference aware frequency
hopping [17] dynamically classifies channels into ‘good’ or
‘bad’ according to the observed (real) interference levels and
uses good channels with non-uniform hop probabilities. As an
extension of our work in [17], we propose learning algorithm
based solutions in a dynamic environment, in the present
work.

III. SYSTEM MODEL
The system comprises a set of coexisting WBANs N = {1,
2, . . . ,N} competing for a set of wireless channels M = {1,
2, . . . ,M} in a time-varying dense environment, forming a
wireless network of WBANs with each WBAN acting as
an autonomous entity distributed in space. Each WBAN is

composed of K sensor nodes with different priorities and
one coordinator (hub) placed in or around the human body,
forming a one-hop star topology. In each WBAN, the hub
shall operate in beacon mode with beacon periods, where
the scheduled access and random access are carried out by
TDMA and CSMA/CA, respectively. We assume that there
is null intra-WBAN interference in the network. The coordi-
nator node is responsible for selecting the channel used for
intra-WBAN communication. The proposed system model is
similar to the model considered in [18].

Practically, the co-channel interference between the coex-
isting WBANs decreases with an increase in their distances.
To picture the limited range of interference, the system is
represented by an undirected graph G = (V, E) where V is
the vertex set and E is the edge set. Each vertex corresponds
to a WBAN. Two WBANs m and n are connected by an edge
means that they interfere with each other when transmitting
in the same channel; and the interference gain between them
is denoted by wsmn, where s is the selected channel.

We assume that the available set of channels of each
WBAN undergo block fading, i.e., the interference gains are
constant in a time slot and vary randomly in the next time
slot. Within a WBAN, the propagation paths can experience
fading due to energy absorption, reflection, diffraction, shad-
owing by the environment surrounding the human body or
by changes in the body posture. Other reasons for fading
are the multipath propagation due to the environment around
the body. In our model, we are considering the fading due
to changes in the body posture in a hospital environment.
The channel model for calculating the interference gains for
different scenarios are described in [19] and are mentioned
section V.

Let the setGn represents the neighbors of WBAN n which
is given by

Gn = {m ∈ N : (m, n) ∈ E} . (1)

We assume that each WBAN chooses exactly one channel
for intra-WBAN communication at a time. Let an ∈ M be
the channel selection of WBAN n. So, the channel selec-
tion profile of the N coexisting WBANs being {a1, ...., aN },
the interference experienced by WBAN n can be defined as

In =
∑
m∈Gn

pmwanmnδ (am, an) (2)

where pm is the average transmit power of the sensors of
WBANm;Gn as given by (1); and δ (am, an) is the Kronecker
delta function given by

δ (am, an) =
{
1, am = an
0, am 6= an

}
. (3)

With an aim to minimize the interference in the system,
the system utility is defined as the weighted aggregate inter-
ference given by

U =
∑
n∈N

pnIn =
∑
n∈N

∑
m∈Gn

pnpmwanmnδ (am, an) . (4)
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Thus, our goal becomes minimizing the system utility given
in (4). Choice of the weighted aggregate interference as the
system utility results in balancing the transmit power and the
interference experienced. It also leads to near-optimal system
sum rate in the low SINR regime [18]. Its minimization can
be achieved through optimal channel selection profile. The
sum rate of the system is given by

rsum =
∑
n∈N

rn (5)

where rn is the rate ofWBAN n in bps/Hz, which is calculated
as

rn = log2

(
1+

1
K

K∑
k=1

gkn
N0 + In

)
(6)

where gkn is the received power at the hub of WBAN n from
sensor k, N0 is the noise power, and K is the number of
sensor nodes in a WBAN. The received power at the hub
of WBAN n from sensor k, can be calculated using Table 1.
Thus, the optimization of the system utility given in (4) is an
NP-hard problem even for a centralized system. Our aim in
this work is to find an optimum dynamic channel selection
profile a∗ = {a∗1, ...., a

∗
N } for minimizing the system utility

given in (4).

IV. POTENTIAL GAME AND DISTRIBUTED
LEARNING ALGORITHMS
Since the channel selection decision at each WBAN is car-
ried out independently, each individual selection could affect
the transmission of data in the neighbouring WBANs. This
motivates us to formulate this as a game. So we consider a
finite repeated potential game 9 =

(
N, (An)n∈N , (un)n∈N

)
,

where N is the set of coexisting WBANs who are the players
of the game and un is the utility function of WBAN n. The set
of action profiles of all WBANs is given by AAA =

∏
n∈N An

where An = M is the set of available channels for player n
and

∏
represents the Cartesian product. Generally the utility

function of a WBAN is denoted as un (an,a−na−na−n). However,
the individual utility function of a WBAN is only dependent
on its own channel selection and its neighbors. Thus the utility
function can be reduced to un

(
an,aGnaGnaGn

)
, where aGnaGnaGn is the

channel selection of WBAN n’s neighbours defined in (1).
The individual utility function is chosen as

un
(
an,aGnaGnaGn

)
= pnIn (7)

where pn is the average transmit power of the sensors of
WBAN n and In is given by (2). It should be noted that the
experienced interference is a random variable in a slot. Thus,
WBAN players experience random rewards in each slot.
Theorem 1: The formulated channel selection game is an

exact potential game that has atleast one pure strategy NE.
The optimal channel selection profile a∗ ∈ A, which glob-
ally minimizes the weighted aggregate interference is a pure
strategy NE point of game 9.

Proof: To prove this theorem, we consider the following
potential function:

φ = −
1
2

∑
nεN

∑
mεGn

pnpmwanmnδ(am, an) (8)

which can be rewritten as

φ = −
1
2
U (9)

where U is the system utility specified in (4). The change
in the utility function of a player by unilaterally changing
its channel selection is same as the change in the potential
function. Thus the proposed channel selection game is an
exact potential game with φ as its potential function. Suppose
by contradiction that a∗ is not a pure strategy NE. Therefore
WBAN n can improve by deviating to a new profile â such
that un(â) < un(a∗) which implies φ(â) > φ(a∗). Thus,
contradicting that a∗maximises φ, or minimizes the weighted
aggregate interference.

Important properties of an exact potential game are the
following [18], [20]:
Property 1. Any global or local maximum of the potential

function is also a pure strategy NE of the game.
Property 2. Every improvement path in a potential game

is finite. The finite improvement path property
ensures that the behavior of players who play
best response in each iteration of the repeated
game converge to a NE in finite time. Since we
assume the interference is symmetrical (channel
reciprocity), the channel with least amount of
interference at WBAN m is also the the chan-
nel that generates least amount of interference
at WBAN n. Thus, this selfish best response
behavior by each player helps them to converge
to a NE.

Property 3. A potential game converges under round-robin,
random and asynchronous timing. It does not
converge under synchronous timing. Since the
coexisting WBANs are distributed networks,
the probability of all WBANs choosing their
channels at the same time is zero, thus conver-
gence of the game is assured.

According to Theorem 1, the NE of the channel selection
game coincides with the optimum channel selection profile,
a∗. Thus, now we need to consider a distributed learning
algorithm that achieves one of the NE point’s in the potential
game. Most of the existing learning algorithms depend on
the information from the other players while updating their
actions and also requires the environment to be static. But,
obtaining information from other WBANs is not possible and
the radio environment varies from time to time due to changes
in the human body posture. Thus in our work, we propose
schemes based on stochastic learning algorithm (SLA) and
stochastic estimator learning algorithm (SELA), which help
to achieve pure strategy NE from their individual rewards.
Also, we give a brief description of the Q-learning algorithm
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based scheme which we proposed earlier for a stationary
environment [17].

A. DISTRIBUTED WBAN CHANNEL
SELECTION USING SLA
In SLA, each WBAN chooses a channel according to the
mixed strategy probability distribution of the set of available
channels,M. Depending on its selected channel, eachWBAN
receives a random payoff. Then theWBAN updates its mixed
strategy of channel selection based on the received payoff.
If the obtained payoff is rewarding, then the probability
of selection of this channel in the next iteration increases.
The payoff obtained at the slot t on choosing a channel by
WBAN n is

Rn(t) =
rn(t)
r∗n

(10)

where rn(t) is the achieved rate of WBAN n at the time
t and r∗n is the maximum achievable rate when there
is no interference. Such a payoff is used for distributed
learning based resource allocation in wireless networks
[21]. The achieved rate of WBAN n is given in (6) and
r∗n = log2

(
1+ 1

K

∑K
k=1

gkn
N0

)
. When the variation in the

system utility during a period is trivial, the learning is
stopped.

The convergence of the SLA is given in [22] which
states that with sufficiently small size for b, the learning
algorithm asymptotically converges to pure strategy NE of
the game.

B. DISTRIBUTED WBAN CHANNEL
SELECTION USING SELA
With most of the classical learning algorithms, the players
update the probability vectors directly based on their instan-
taneous payoffs, as we have seen with SLA. If the payoff of
an action is rewarding, then the probability of selecting that
action in the next iteraion is increased. Otherwise, the prob-
ability of that action remains unchanged or decreased. In a

Algorithm 1 Stochastic Learning Algorithm (SLA)
Intialisations: Set t = 0 and set the initial mixed strategy of
each WBAN to pns (t) = 1/ |An| ,∀nεN,∀sεM.
Loop for t = 0, 1, 2, 3..
1. In the tth slot, each WBAN selects a channel an(t) accord-
ing to its channel selection probability vector pn(t).
2. Based on the selected action, each WBAN calculates the
received payoff using (10).
3. All the WBANs update their mixed strategy according to
the following rule:

pns(t + 1) = pns(t)+ bRn(t)(1− pns(t)), s = an(t)

pns(t + 1) = pns(t)− bRn(t)pns(t), s 6= an(t) (11)

where 0 < b < 1 is the learning step size and Rn(t) is the
normalised received payoff as defined in (10).

time varying environment, the probability of the validity of
an action based on the ‘old response’ decreases. So we con-
sider another learning algorithm, which utilizes a stochastic
estimator to operate in the non-stationary environment [23].
This algorithm is characterized by the indirect use of mean
payoffs of each action in the probability updation.

The stochastic estimator estimates the mean rewards of
each action and doubts the validity of the environmental
response by adding a zero mean normal distributed random
number to the mean reward of each action. The variance of
this normal distribution is directly proportional to the time
elpased from the instant when that action was last selected.
Thus, it improves the probability of actions that have not been
selected recently to be estimated as ‘optimal’. So, in stochas-
tic estimator even when an action is rewarded, it is possi-
ble that probability of choosing another action is increased;
because this learning algorithm increases the probability of
the action that has the highest estimated mean reward. The
SELA is powerful, flexible and ergodic, i.e., converges at the
optimal action with a distribution independent of the intial
state; and is defined by < A,B,P,T ,E > [23] where:
• A is the set of M actions available to each WBAN user.
• B is the set of possible received payoffs by a WBAN,
corresponding to the set of M possible actions. Since we
consider a normalised payoff in (10), the payoff at any
time belongs to [0, 1].

• P is the probability vector of choosing each action.
Pn(t) = {pn1(t), pn2(t), . . . , pnM (t)}, where pns is the
probability of choosing action s by WBAN n, i.e,.
an(t) = s.

• T is the learning algorithm described in Algorithm 2 that
modifies the probability vector Pn(t) at each iteration
using the calculated payoffs.

• E is the estimator which is defined by E(t) =
(D′(t),M (t),U (t)). D′n(t) is the Deterministic Estimator
Vector for WBAN n which contains the current deter-
ministic estimates of the mean rewards of the actions.
The mean reward of action s is defined as

d ′ns(t) =
Q
W

(12)

where Q is the total payoff received the last W times
action s was selected andW is called the ‘learning win-
dow’. Mn(t) is the Oldness Vector for WBAN n which
contains the time which has elapsed from the last time
each action was selected. mns(t) ε Mn(t) of action s is
given as

mns(t)= t − max
t ′

{
t ′ : t ′ ≤ t and an

(
t ′
)
= s

}
(13)

Un(t) is the Stochastic Estimator Vector of WBAN n
which contains the current stochastic estimates of the
mean payoffs of the actions. uns(t) ε Un(t) of action s
is given as

uns(t) = d ′ns(t)+N
(
0, σ 2

s (t)
)

(14)
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where σs(t) = min{αmns(t), σmax}. N
(
0, σ 2

s (t)
)
is a

random number from normal distribution with 0 mean
and variance equal to σ 2

s (t). α is a parameter that deter-
mines how fast the stochastic estimates deviate from
deterministic estimates, and σ 2

max bounds the variance
of the stochastic estimates preventing it from increasing
infinitely.

Theorem 2: The Stochastic Estimator Learning Algo-
rithm is ε-optimal in every stochastic environment that offers
symmetrically distributed noise. Thus, if action m is the opti-
mal one and pnm(t) = Pr[an(t) = m], then for every value
R ≥ R0(R0 > 0) of the resolution parameter there is a time
instant t0 < ∞ such that for every t ≥ t0 it holds that
E [pnm(t)] = 1

Proof: Proof of this theorem is given in [23].

C. Q-LEARNING ALGORITHM
As mentioned earlier, we also consider a standard reinforce-
ment technique, viz. Q-learning, that enables the WBANs to
learn their optimal channel selections in a static environment.

Like in SLA and SELA, the Q-learning algorithm doesn’t
assume any knowledge for the player about its environment,
rather player must learn from its environment. On perfor-
mance of each action, a reinforcement signal is generated that
is then used to evaluate the performed actions by updating
its Q-value. Each player of the game applies the Q-learning
independently by ignoring the action selection by the other
players.

Specifically, after playing the action an at iteration t and
recieving a reward of Rn(t), WBAN n updates its Q-table

Algorithm 2 Stochastic Estimator Learning
Algorithm (SELA)
Intialisations: Set t = 0, and set the initial probability vector
of each WBAN to pns (t) = 1/ |An|, and d ′ns(t) = mns(t) =
uns(t) = 0,∀nεN,∀sεM.
Loop for t = 0, 1, 2, 3..
1. Select the action an(t) = s according to the probability
vector.
2. Calculate the payoff received for the selected action s
according to (10).
3. Compute the new deterministic estimate for the action s
by (12).
4. Update the oldness vector of the selected action s by setting
mns(t) = 0 and for other remaining actions, oldness vector is
updated according to (13); i.e.,mni(t) = mni(t−1)+1,∀i 6= s.
5. For every action, compute the new stochastic estimate
uns(t) according to (14). Identify the optimal action ′m′ hav-
ing the highest stochastic estimate of mean reward.
6.Update the probability vector in the following way:

pns(t + 1) =
{

pns(t)− 1/R, s 6= m
1−

∑
s 6=m pns(t + 1) s = m

}
(15)

where R is called the resolution parameter.

using the equation

Qt+1n (an) = Qtn(an)+ λ(t)(Rn(t)− Q
t
n(an)) (16)

where λ(t) ∈ [0, 1] is a learning parameter. The convergence
of Q-learning with probability 1 happens if the conditions∑
∞

t=1 λ(t) = ∞ and
∑
∞

t=1(λ(t))
2
= ∞ hold. i.e., if the

Q-values are updated infinitely often. We use the following
form of {λ (t)}t≥1 in our work:

λ(t) = (β +1t (an))−ρ (17)

where β is an arbitrary positive constant,1t (an) is the number
of times the action an has been selected upto time t and
ρ ∈ [0, 1] is the learning rate parameter. The condition
that all actions are performed infinitely can be met using a
randomized policy, in which the probability of playing each
action is bounded by a sequence that tends to zero sufficiently
slowly as t becomes larger. Here we consider ε-greedy action
selection strategy, where the probability of selecting maximal
reward actions tends to 1 as t tends to ∞. The ε value is
updated as [24]:

εt = ε0t−1/N (18)

A player either selects a greedy action at time t with proba-
bility of (1− εt) or chooses to explore by selecting an action
randomly fromM with probability εt . So the action selection
in a WBAN can be given by

atn =
{

argmax Qtm(am), w. p. 1− εt
Uniform(1, 2, . . . ,M ), w. p. εt

}
(19)

Theorem 3: For the potential game 9, there exists an
ε > 0 such that under Q-learning with an action selection
strategy as given in (19), for sufficiently large t, the probabil-
ity that atn is a NE is 1.

Proof: Given in [24].
So in our game model of coexisting WBANs, WBAN n

selects a channel an ∈ M independently and receives an
individual reward. The payoff obtained at the iteration t on
choosing a channel an ∈M is

Rn(t) =
rn(t)
r∗n

(20)

as defined in (10) and can be calculated using local measure-
ments. The execution at each WBAN is as follows:
• WBAN n sets Qtn (an) = 0,∀anεM.
• At each iteration:
– selects its action by following ε-greedy algorithm

given in (19). i.e. It either selects the channel with the
best Q-value with a probability of 1 − εt or selects
a channel uniformly from the action set M with a
probability of εt .

– computes the reward Rn(t) and updates Qt+1n (an)
according to (16) using the learning parameter in (17).

– εt is updated as per (18).
The iteration is continued until the convergence is obtained.
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TABLE 1. Path loss model for body surface to body surface CM3 channel
at 2.4GHz [19].

TABLE 2. Scenarios and the distributions that give the best fit to those
scenarios transmitting from right wrist to receiver off the body at
2.36 GHz [19].

V. SIMULATION RESULTS
We consider a dense multi-WBAN system of 50WBANs ran-
domly located in a 10*10m2 hospital region. Even though we
assume that the WBAN’s are operating in the 2.4GHz band,
we consider availability of only 10 channels of 1MHz band-
width for channel selection. The reason for this assumption
is that 2.4GHz band is shared among many technologies like
Bluetooth, Bluetooth Low-Energy, ZigBee, WiFi, etc. But in
our problem formulation for interference mitigation, we are
only considering interference from coexisting WBANs. Thus
we are restricting our available channels to the number of
non-over lapping channels of WBAN’s 2.4GHz band and
WiFi’s channels 1, 6, 11. The transmission power of all
WBAN communications is set as pn = 0 dBm, ∀nεM and
the noise power as N0 = −70dBm. Also in each WBAN,
we assume the sensor node locations as random on the human
body at distance from the coordinator ranging from 100 to
1000 mm.

The channels are assumed to undergo block fading, i.e., the
fading remains constant in an iteration and randomly changes
in the next iteration. The intra-WBAN received power and
inter-WBAN interference at each coordinator are calculated
using respectively, CM3 and CM4 channel models in [19].
The parameters for path loss model for body surface to body
surface CM3 channel at 2.4GHz is given in Table 1. In [19],
they have also compiled a list of ‘best distribution fit’ for
the normalized received power for on-body to off-body com-
munications with all scenarios like the subject walking or
standing still, with varying distance and angle of orientation.
It is seen that the Lognormal distribution is the best matching
model of normalized received power while the subject is
standing still, independent of the location of the antenna on
the human body. Table 2 shows a few scenarios and their
distribuions that we have considered in our work.

A. CONVERGENCE BEHAVIOUR
For studying the convergence behavior of the considered
algorithms, we focus on a random WBAN from the dense

FIGURE 2. Evolution of channel selection probabilities in the SLA.

FIGURE 3. Evolution of channel selection probabilities in the SELA.

multi-WBAN system. All the 10 channels undergo fading
as described in Tables 1 and 2. The convergence behavior
of SLA and SELA for a random trial is shown in Fig.2 and
Fig.3, respectively. In both the learning algorithms, the initial
channel selection probabilities of all the channels are 0.1.
From Fig. 2, it can be seen that SLA converges at around
250 iterations. We can see that the random user starts select-
ing channel 5 with probability 1. Similar conclusions can be
drawn for SELA from Fig. 3. It can be seen that the user starts
selecting channel 3 with probability 1 from 200 iterations
onwards.

B. PERFORMANCE EVALUATION
We evaluate the performance of SLA and SELA in terms of
weighted aggregate interference defined in (4). We consider a
dense network of 50WBANs with a fixed set of values for the
LA parameters first. The learning step size b of SLA is set as
0.3. The parameters affecting the SELA algorithm are W , R,
α, σmax which are set as 10, 100, 0.001, 1, respectively. The
random channel selection scheme of IEEE 802.15.6 standard
is also considered for comparison purpose. In random channel
selection, each WBAN user randomly selects a channel in
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FIGURE 4. Convergence Behavior of Expected Weighted Interference vs.
Iterations for SLA, SELA and random selection in time varying
environment.

FIGURE 5. Convergence Behavior of Expected Weighted Interference vs.
Iterations for SLA, SELA, Q-learning and random selection in static
environment.

each slot. From Fig. 4, it can be seen that the performance
of the SELA algorithm matches up with SLA algorithm at
higher iterations. Since the interference varies from slot to
slot, the random channel selection gives the worst perfor-
mance when compared with the learning algorithms which is
seen in Fig. 4. Since convergence of Q-learning is not assured
in dynamic environment, it is not considered for comparison.

Fig.5 shows the expected weighted iterference of the net-
work in a static environment, by considering random channel
hopping, SLA, SELA and Q-learning algorithm. The path
loss measurements for the static environment is given in [19].
It can be seen from figure that the distributed Q-learning
algorithm performs best when compared to the other three
schemes in a static environment. It should be noted that all
the three learning algorithms perform much better than the
random hopping of IEEE 802.15.6 standard.

C. IMPACT OF PARAMETER VALUES
In this section, we study sensitivity of the convergence and
performance of the learning algorithms to the parameter

FIGURE 6. Impact of learning step size b in the SLA.

FIGURE 7. Impact of resolution parameter R in SELA.

values. Fig. 6 studies the effect of learning step size b on SLA.
It can be seen that selecting smaller b values greatly reduces
the convergence speed of the algorithm and selecting higher
b values greatly increase the convergence speed by trapping
the algorithm to a local optimum value.

Fig. 7 and Fig. 8 show the impact of resolution parameter
R and the internal parameter α, respectively in SELA algo-
rithm. In Fig. 7, by selecting large resolution parameter R,
it gives small probability updating factor which results in low
convergence speed to the algorithm. From Fig. 8, it can be
seen that selecting larger values of α result in the addition
of a random number from a normal distribution with large
variance to the mean reward. This leads to similar action
selection behaviour as that of random channel hopping. An α
value of 0.001 gives the least weighted interference with
good convergence. Fig. 9 shows the impact of σmax in SELA
algorithm. From the figure, it is clear that changing the value
of σmax doesn’t have much effect in the expected aggregate
interference in our model.

Fig. 10 shows the effect of ε0 in Q-learning algorithm on
the system utility. The best results for the system utility is
obtained when ε0 = 0.55, and the algorithm converges to the
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FIGURE 8. Impact of scaling parameter α in the SELA.

FIGURE 9. Impact of the σmax in the SELA.

FIGURE 10. Effect of ε0 on system utility in Q-learning algorithm.

optimal at around 2000 iterations. This means that by setting
ε0 = 0.55 sufficient exploration of all channels are carried out
before exploiting the maximal rewarding Q values. On setting

ε0 < 0.55 the network settles into a higher system utility over
time. This is due to insufficient exploration of all channels
before exploitation. On setting ε0 > 0.55, the time required
to converge to optimal value is very high.

VI. CONCLUSION
In this paper, we proposed the distributed learning based
schemes for interference mitigation of coexising WBANs in
a dynamic environment. We formulated the channel selection
for hopping by individual WBANs as an exact potential
game, where utility is the weighted aggregate interference.
It is shown that the channel selection (action) profile, which
globally minimizes the interference, is a pure strategy NE of
the game. In order to achieve this NE, we considered two
learning algorithms that are appropriate for dynamic radio
environment, SLA and SELA. The near-optimal performance
and convergence behavior of both the algorithms were evalu-
ated and found to be better than the random channel selection
specified in the IEEE 802.15.6 standard. The performance
of these algorithms were also compared with Q-learning
algorithm, which cannot be used for dynamic environment,
for a static environment. One possible extension of this work
is interference mitigation in a time-varying network topology
where the number of active WBAN users varies.
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