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ABSTRACT Autonomous underwater vehicle (AUV) plays an increasingly important role in ocean explo-
ration. Existing AUVs are usually not fully autonomous and generally limited to pre-planning or pre-
programming tasks. Reinforcement learning (RL) and deep reinforcement learning have been introduced
into the AUV design and research to improve its autonomy. However, these methods are still difficult to apply
directly to the actual AUV system because of the sparse rewards and low learning efficiency. In this paper,
we proposed a deep interactive reinforcement learning method for path following of AUV by combining the
advantages of deep reinforcement learning and interactive RL. In addition, since the human trainer cannot
provide human rewards for AUV when it is running in the ocean and AUV needs to adapt to a changing
environment, we further propose a deep reinforcement learning method that learns from both human rewards
and environmental rewards at the same time. We test our methods in two path following tasks—straight line
and sinusoids curve following of AUV by simulating in the Gazebo platform. Our experimental results show
that with our proposed deep interactive RL method, AUV can converge faster than a DQN learner from only
environmental reward. Moreover, AUV learning with our deep RL from both human and environmental
rewards can also achieve a similar or even better performance than that with deep interactive RL and can
adapt to the actual environment by further learning from environmental rewards.

INDEX TERMS Autonomous underwater vehicle, interactive reinforcement learning, deep Q network, path
following.

I. INTRODUCTION
In recent years, the role of autonomous underwater vehi-
cle (AUV) in ocean exploration has become more and more
important. Equipped with a series of chemical and biologi-
cal sensors, AUV can conduct continuous operation without
human intervention in the ocean environment. In addition,
it can work independently adjusting to the changes of marine
environment to complete the ocean observation task. Because
of the less investment, good maneuverability and flexible
control, AUV has been widely applied in many fields, such
as scientific observation, resource investigation, oil and gas
engineering, military applications etc.

However, today’s marine applications put forward higher
and higher requirements for the autonomy of AUV. Existing
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AUVs usually do not have good autonomy and are generally
limited to pre-planning or pre-programming tasks. They work
well in known and structured environments, but not in uncer-
tain and dynamic ones. Therefore, to realize the autonomy
of AUV, it is necessary for it to have strong abilities of
environmental perception and understanding, adjustment of
control policies, and task planning. The path planning and
following of AUV, which determines the application prospect
of AUV in the marine field, can only be realized with accurate
control technology, in consideration of its energy consump-
tion, motion characteristics, speed constraints, etc. Therefore,
autonomous control that can adapt to the changes of marine
environment is the core technology to realize the autonomy
of AUV.

Proportion Integral Differential (PID) control is the most
popular traditional control methods and has been successfully
applied to AUV [1]. However, the traditional control methods
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cannot respond and adjust to unpredictable environmental
changes in real time, and cannot meet the autonomy of AUV.
On the other hand, robot learning based on reinforcement
learning (RL) [2] has been introduced into the AUV design
and research to improve its autonomy [3]. Reinforcement
learning is a method for a robot controller to learn optimal
control policy through interaction with the environment. The
policy defines which action the controller should take when
the robot is in a certain environmental state. Under the current
policy, after the controller tries to select and execute an action
in a certain state, it will receive a reward signal provided by
the reward function defined in advance by the designer in the
environment. This reward signal reflects the quality of the
actions performed by the controller and is used to update the
control policy. The goal of the controller is to learn a policy
that maximizes the total cumulative reward.

Recently, Yu et al. [4] applied the latest deep reinforcement
learning (DRL) developed by researchers at Google Deep-
Mind [5] to AUV path following task. Deep reinforcement
learning combines the advantages of deep learning (DL)
[6] and reinforcement learning, and can realize the end-to-
end autonomous learning and control with the raw high-
dimensional environment perception information input to the
behavior action. Yu et al. claimed that AUV with DRL can
achieve better control effect than a PID controller in simula-
tion experiments. However, because it is difficult to define an
effective reward function and it usually provides very sparse
reward signals, the robot needs a lot of time and samples to
explore and test before learning an effective control policy.
Therefore, the traditional reinforcement learning and deep
reinforcement learning methods are still difficult to apply
directly to the actual AUV system.

In order to speed up the robot learning, researchers pro-
pose interactive reinforcement learning (IRL) [7] based on
reward shaping [8] in traditional reinforcement learning.
Interactive reinforcement learning allows designers and even
non-technical personnel to train robots by evaluating their
behavior. In this way, human experience and knowledge can
be embedded into autonomous learning of robot to speed up
its learning.

Therefore, in this paper, we combine the advantages of
deep reinforcement learning and interactive RL by proposing
deep interactive reinforcement learning for AUV path follow-
ing tasks. In addition, since the human trainer cannot provide
human rewards for AUV and AUV needs to adapt to a chang-
ing environment when it is running in the ocean, we propose
a deep reinforcement learning method that learns from both
human rewards and environmental rewards at the same time.
We test our methods in two tasks—straight line and sinusoids
curve following of AUV by simulating in Gazebo. The exper-
imental results show that AUV with our deep interactive RL
method learns much faster than with a DQN learner from
environmental reward. Moreover, our deep RL learning from
both human and environmental rewards can also achieve a
similar or even better performance than the deep interactive

RL method and adapt to the actual environment by learning
from environmental rewards.

II. RELATED WORK
PID controller is the most popular traditional controller for
AUV and has been successfully applied in many control engi-
neering tasks [1]. The disadvantage of PID controller is that
its effect will be affected by the disturbance in the complex
environment. However, due to the simple structure, the con-
trol of many underwater robots is still designed with PID.
Although the traditional control methods such as PID con-
troller can basically meet the control requirements of AUV,
they cannot adapt to unpredictable environmental changes in
real time and cope with the uncertainty of external environ-
ment. Therefore, they cannot realize the autonomy of AUV.

Reinforcement learning (RL) [2] has been successfully
applied in many robot tasks [3], and has been introduced
into the autonomous control of AUV. Compared with the
traditional control methods of AUV, a robot with reinforce-
ment learning can achieve online parameter adjustment and
can well cope with environmental changes and uncertainties.
Even in the absence of accurate system model or high cou-
pling system, root learning with RL can also obtain good
control effect. For example, Yuh proposed an adaptive control
algorithm based on neural network [9]. In the algorithm,
a cost function is designed as reward function and the rein-
forcement learning method is used to realize adaptive control.
Different from the traditional adaptive control method, Yuh
and other simulation experiments show that AUV with rein-
forcement learning can not only deal with the environmental
changes and uncertainties, but also has good robustness to the
unmodeled system dynamics. El Fakdi and Carreras applied
the policy gradient based reinforcement learning method to
the underwater robot in the submarine cable tracking task,
and showed good tracking results [10], [11].

In addition, similar to the Actor-Critic algorithm [12] in
reinforcement learning, Cui et al. [13] designed two neural
network models using reinforcement learning: one is used to
evaluate the long-term control performance of the system;
the other is used to compensate the unknown dynamic of
the system, such as unknown nonlinear characteristics and
interference. The simulation results of Cui et al. show that
their proposed reinforcement learning algorithm based on the
dual neural network converges faster than the general neural
network model and PD controller, and has better stability
and control effect. In addition, in order to solve the problem
of high-dimensional sensory information input, Yu et al. [4]
applied the deep reinforcement learning method [5] to AUV
path following task, which can achieve better control effect
than PID control in their simulation experiments.

However, in traditional reinforcement learning and deep
reinforcement learning, the reward function is pre-defined by
the agent designer before robot learning, which determines
the quality of the final learned control policy and the learn-
ing speed to a large extent. To define an effective reward
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function is not easy, which often needs many debugging and
is very time-consuming. More importantly, much experience
and knowledge are difficult to be embedded in an effective
reward function. An inefficient reward function means sparse
reward signal and low learning efficiency. The controller
needs a lot of learning samples and time to test and explore
before learning an optimal policy, which seriously limits the
application of the reinforcement learningmethod to the actual
AUV control system.

Based on traditional reinforcement learning, researchers
proposed interactive reinforcement learning method [7],
which allows people to observe and evaluate the robot’s
behavior, and use the evaluation as a reward signal to teach
the robot how to perform tasks. A robot with interactive rein-
forcement learning does not need to define reward function
in advance, but allows a human trainer to provide reward
signal by evaluating the robot’s behavior according to one’s
own experience and knowledge. The human reward signal
reflects the quality of robot’s behavior, and is used by the
robot to improve its behavior. Therefore, the robot can eas-
ily use people’s experience and knowledge to accelerate its
learning.

Thomaz and Breazeal [14] implemented a tabular
Q-learning [15] agent which can learn from both human
and environmental rewards by maximizing the accumu-
lated discounted sum of them. They also show that an
agent’s performance can be further improved if the human
teacher was allowed to provide action advice besides human
rewards. Knox and Stone [16], [17] proposed the TAMER
framework—a typical interactive reinforcement learning
method. The TAMER framework trains a regression model
to represent a reward function that gives a reward consistent
with the human’s feedback. TAMER has been tested in many
simulation domains [17], such as Cart Pole, Grid World,
Tetris etc., and even in a real robot navigation task [18].
The results showed that agents with TAMER can learn faster
than those with traditional reinforcement learning. In order
to make full use of the information in human feedback,
Loftin et al. [19] interpreted human reward as a kind of
categorical feedback strategy. In addition, unlike TAMER and
the work of Loftin et al., which take human reward signal as
feedback to the optimal control policy expected by the trainer,
Macglashan et al. [20] proposed the COACH algorithm by
further interpreting human reward signal as feedback to the
control policy that the robot is executing, and test it in the
robot navigation task. Their results show that COACH can
make the robot more effective in autonomous learning.

Carrera and Ahmadzadeh et al. [21]–[23] used a imitation
learning method [24] to achieve the autonomous valve rota-
tion task for AUV. They first asked the trainer to provide a
demonstration on how to operate the valve based on their
knowledge, and the AUV recorded the operation and learned
how to turn the valve using a dynamic primitive method.
However, this only maximizes the ability of AUV to perform
the task and cannot be applied to other tasks or adapt to
changes in the marine environment.

III. BACKGROUND
As a branch of machine learning, reinforcement learning is
usually modeled as an Markov decision process (MDP) [2].
MDP mainly consists of five elements: agent, environment,
state, action and reward. In reinforcement learning, an agent
interacts with the environment by acquiring the environment
state, performing actions and obtaining rewards. The basic
framework of reinforcement learning is shown in Figure 1.
Suppose that the environmental state at time t is st , and the
agent performs an action at after obtaining the state st , and
the environmental state is transformed from st to st+1 at time
t + 1. Then the environment generates feedback reward rt+1
to the agent in the new state st+1. The agent will update
the learned policy with the reward signal and perform a new
action at+1 in the new state. The agent will optimizes the
policy by continually interacting with the environment until
an optimal policy is learned. The agent’s goal is to maximize
the long-term cumulative rewards.

FIGURE 1. Illustration of learning mechanism in reinforcement learning.

In reinforcement learning, a general policy π maps states
to actions and has Markov property. The probability of taking
action a in the current state is only related to the current state,
and has nothing to do with other factors. The policy can be
formulated as:

π (a|s) = p(at = a|st = s). (1)

Maximizing a long-term cumulative rewards means the agent
needs to consider the rewards of the current time step as well
as the rewards of the future time. Assume at current time
step t and long-term cumulative rewards can be formulated
as R = rt + rt+1 + ... + rn. However, due to the uncertainty
of cumulative rewards, discounted future cumulative rewards
Gt is generally used in actual tasks:

Gt = Rt+1 + γRt+2 + γ 2Rt+3 + ... = Rt+1 + γGt+1, (2)

where γ is the discount factor, ranging from 0 to 1.
A value function with discounted cumulative rewards is

usually used to express the degree of goodness or badness for
an agent in a certain state. There aremainly two kinds of value
functions: state value function and action value function.
A state value function V (s) represents the expectation of
discounted cumulative rewards for an agent in state s:

V (s) = E[Gt |st = s], (3)
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where Gt represents the discount accumulated reward in
the future. The action value function Q(s, a) represents the
reward expectation of discounted cumulative rewards for an
agent performing an action at in a certain state st and follow-
ing the policy π (s) thereafter:

Q(s, a) = E[Gt |st = s, at = a]. (4)

The relation of action value function Q(s, a) and state value
function V (s) can be formulated as:

V (s) =
∑
a∈A

π (a|s)Qπ (s, a). (5)

A Bellman equation is formulated to express the relationship
between the state values of state st and state st+1:

Vπ (s) = E[Rt+1 + γVπ (st+1)|st = s]. (6)

The objective of reinforcement learning is to find an opti-
mal policy expressed as π∗, which can be obtained by maxi-
mizing the value function V(s) or Q(s, a) under all policies:

V ∗(s) = maxπV (s), (7)

Q∗(s, a) = maxπQ(s, a). (8)

Therefore, once the optimal value function is obtained,
the optimal policy can be found by greedily selecting actions
according to it.

By combining reinforcement learning with deep learning
[6], deep reinforcement learning (DRL) [5] fully embod-
ies the perceived advantages of representation learning in
deep learning and decision-making in reinforcement learning.
In deep reinforcement learning, the problem is still defined by
reinforcement learning, and the policy and value function can
be represented with deep neural network and optimized based
on an objective function.

A. DEEP Q-NETWORK
Mnih et al. proposed the first deep reinforcement learning
algorithm — deep Q-network (DQN) and tested in the Atari
games [5]. It combines deep learning and reinforcement
learning to successfully learn control policies directly from
raw high-dimensional inputs. Specifically, DQN combines
the neural network and Q-learning algorithm [15] to fit the Q
value of each action with the deep neural network. The state
value function Vπ (s) and action value function Qπ (s, a) are
approximated as V̂ (s, θ) and Q̂(s, a, θ), where θ represents
the weights. For the state value function V̂ (s, θ), the input
of the neural network is the eigenvector of state s, and the
output is the corresponding value function. For the action
value function, the input is the feature vector of the state,
and the output is the action value function with each action
corresponds to an output.

In DQN, a value function represented with deep neural
network is learned and optimized with state data. The DQN
algorithm uses two networks for learning: a prediction net-
work Q(s, a, θ) and target network Q′(s, a, θ ′). The predic-
tion network is used to evaluate the current state action and

updated at each time step. The target network Q′(s, a, θ ′) is
used to generate target value. The target network is directly
copied from the prediction network every certain number of
time steps and does not update its parameters. The objective
of introducing the target network in DQN is to keep the
target Q value unchanged for a period of time. In this case,
the correlation between the field prediction Q value and the
target Q value will be correlated to some extent, and the
network instability during training can be reduced.

Specifically, a DQN agent will select the action with
the largest Q value based on the outputted Q value by
the network. The experience replay mechanism [25], [26]
is also used in DQN. It stores the experience samples{
s, a, r, s′, ifend

}
(ifend flag indicates whether the task is

completed) obtained from the interaction between the agent
and environment at each time step into the experience replay
pool. When training the network, a small batch of samples is
randomly selected from the experience replay pool and the
current target Q value y is computed as:

yi =

{
Ri, if episode ends
Ri + γmaxaQ̂′(s′, a′, θ ′), otherwise.

(9)

This helps remove the correlation and dependence between
samples and makes the network more convergent. With the
mean square error loss function

L =
1
N

N∑
i=1

(yi − Q̂(s, a, θ))2, (10)

all parameters θ of Q network will be updated through gradi-
ent back propagation [27].

B. INTERACTIVE REINFORCEMENT LEARNING
In reinforcement learning and deep reinforcement learning,
the reward function is pre-defined by the controller designer
before agent learning. The reward function determines the
quality of the final control policy and the learning speed to
a large extent. However, it is not easy to define an effective
reward function since it often needs many debugging, and
much experience and knowledge are difficult to be embedded
in an effective reward function. An inefficient reward function
means that the controller needs a lot of learning samples and
time to test and explore, which seriously limits the application
of the traditional reinforcement learning method to the actual
robot system.

Therefore, on the basis of traditional reinforcement learn-
ing, researchers put forward interactive reinforcement learn-
ing [7], [14], [16], [17], [19], [20], [28]–[30]. In interactive
reinforcement learning, an agent learns in an MDP without
reward function. It allows people to observe and evaluate the
agent’s behavior, and give a reward signal based on their
judgement of agent’s action selection. The stand or fall of
reward signal reflects the quality of agent’s behavior. The
agent uses the reward signal delivered by the human trainer to
improve its behavior. The learning mechanism of interactive
reinforcement learning is shown in Figure 2.
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FIGURE 2. Illustration of interactive reinforcement learning with human
feedback.

IV. APPROACH
In this paper, we propose deep interactive reinforcement
learning to complete the underwater vehicle path following
task. In our proposed method, we use the DQN algorithm.
However, the robot learns from human reward instead of pre-
defined environment reward as in the original DQN. In our
proposed method, the trainer provides rewards Rh observing
the running state of AUV, and evaluating the actions selected
by AUV in the current state according to her knowledge. The
learning mechanism of DQN is shown in Figure 3.
In addition, since the human trainer cannot provide rewards

to train AUV all the time and AUV also needs to adapt to the
changing ocean environment in the task, we propose to allow
our proposed method to learn from both human reward and
environment reward at the same time.

We test our methods in two path following tasks: straight
line and sinusoids curve following. In both tasks, the input
to the behavior value function network of DQN is the state
of AUV. In the straight line following task, the input state s
is represented by the current course of AUV and the short-
est distance from AUV to the target path: S = {d c},
where d represents the distance from the position of AUV
to P(x,y)—the intersection point of the perpendicular line
to the horizontal axis at the position of AUV and the target
line, c represents the current course angle of AUV, as shown
in Figure 4. In the sinusoids curve following task, the slope
of the tangent line at the intersection point P(x,y) and desired
course angle are added as additional features to represent the
state: S = {d c k cd }, where d represents the distance
from the position of AUV to the intersection point P(x,y),
c represents current course angle, k represents the slope of
the tangent line at the intersection point P(x,y), cd represents
desired course angle, as shown in Figure 5. The action space
is the rudder value of AUV, and different actions correspond
to different rudder angle values.

The environment reward function is defined as the differ-
ence between the current course angle and the desired course
angle of AUV, considering the distance from AUV to the
target line/curve. The way we calculate the desired course

angle is similar to the line of sight (LOS) algorithm [31]. For
example, in the straight line following task, we choose the
current target path L with a fixed value from the intersection
point P(x, y) along the target line. Then the destination point
S(xd , yd ) is decided since the length of the current path L
is fixed. The desired course angle is computed as the angle
between the desired course from the current position of AUV
to the destination point S(xd , yd ) and the horizontal axis,
as shown in Figure 4.

In the sinusoids curve following task, the computation of
the desired course angle is a bit different from the straight line
following task. Specifically, we choose current target path L
with a fixed length along the tangent line at the intersection
point P(x, y). Then the desired course angle is computed as
the angle between the desired course from the current position
of AUV to the current target point S(xd , yd ) and the horizontal
axis, as shown in Figure 5.

If the distance between the AUV and the following line or
curve is directly added to the reward function, it may lead to
a large fluctuation of the reward value. Therefore, we intro-
duce an exponential transformation to define the reward
function as:

R = −0.9 · |cd − c| + 0.1 · 22−
d
10 , (11)

where c represents the actual current course angle of AUV,
d represents the actual distance from AUV to the target
line/curve, cd indicates the desired course angle. In this
case, when the action selected by AUV reduces the differ-
ence between the current course and the desired course or
the distance between AUV and the target path is smaller,
the received reward R will be larger, otherwise R will be
smaller. During the learning process, the experience received
feedback is stored as a sample in the experience replay pool.
A small batch of samples in the experience replay pool is
randomly selected to update the parameters of Q network as
the DQN algorithm.

V. EXPERIMENTS
To verify the effectiveness of our proposed method, we con-
ducted experiments with an extension to the open-source
robot simulator Gazebo in underwater scenarios. The
Autonomous Underwater Vehicle (AUV) Simulator [32] was
used in our experiment. However, we modified it to make fit
with the actual AUV system in our lab, as shown in Figure 6.
The AUV simulator uses the robot operating system (ROS)
to communicate with the underwater environment. It can also
simulate multiple underwater robots and intervention tasks
using robotic manipulators.

In our proposed deep interactive reinforcement learning
method, the human trainer needs to evaluate the state and
action of AUV. It is not easy to observe the exact action of
AUV in the simulated environment. Therefore, we developed
a human-machine interaction interface for the human trainer
to observe the attitude of AUV in real time using the Rviz
display tool, as shown in Figure 7. Rviz is a built-in graphical
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FIGURE 3. Learning mechanism of deep interactive reinforcement learning algorithm.

FIGURE 4. The desired course angle in the straight line following task,
where L represents the current target path, and d represents the distance
from AUV to the target line, S represents the current target point.

tool of ROS, which makes it very convenient for users to
develop and debug ROS through the graphical interface.

In our experiments, the AUV simulator selects and exe-
cutes an action a based on its current state s and learned
policy. The human trainer observes the action selected by
the AUV simulator in the current state from the visualized
interface and evaluates its quality according to her knowledge
and experience. The evaluationwill be taken as human reward
and delivered to the AUV simulator via the developed human-
machine interface. The AUV simulator will use it to update
the DQN network parameters to improve its control policy.

FIGURE 5. The desired course angle in the sinusoids curve following task,
where L represents the current target path, d represents the distance
from AUV to the target curve, S represents the current target point.

We trained three agents in our experiments: the DQNH
agent, a DQN agent learning from only human provided
reward as we proposed; the DQNHE agent, a DQN agent
learning from both environment reward and human provided
reward; theDQNE agent, a baseline agent where aDQNagent
learns from only environment reward. For both DQNHE
and DQNE agents, the environment reward is provided via
Equation 11. For the DQNH and DQNHE agents to learn
from human reward, the human trainer will give a reward
value +0.8 or +0.5 when she thinks the AUV’s movement
is good through the developed interface. When she thinks the
AUV’s action is bad, a reward value −0.8 or −0.5 will be
given. Specific reward value can be selected by the trainer
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FIGURE 6. The autonomous underwater vehicle simulator in the Gazebo
robotic platform used in our experiment.

FIGURE 7. Human-machine interaction interface for displaying of the
real-time attitude of AUV. Note that the solid green line represents target
path.

according to her experience, as below:

Rh =

{
+0.8 or + 0.5, good action
−0.8 or − 0.5, bad action.

(12)

When the DQNHE agent learning, the human reward Rh is
added to the environment reward R as the final reward value.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we present our experimental results tested in
two path following tasks: straight line following and sinu-
soids curve following. We compare our proposed DQN agent
learning from solely human reward, termed DQNH, DQN
agent learning from both human reward and environmental
reward, termed DQNHE, to the original DQN agent learning
from solely environment reward, termed DQNE.

A. STRAIGHT LINE FOLLOWING
In this experiment, we trained the DQNH, DQNHE and
DQNE agents in the straight line following task. Figure 8

FIGURE 8. Trajectories of DQNE agent learning in the straight line
following task. Note that X is the coordinate along the horizontal axis, Y is
the coordinate along the vertical axis.

FIGURE 9. Trajectories of the DQNH agent learning in the straight line
following task. Note that X is the coordinate along the horizontal axis, Y is
the coordinate along the vertical axis.

shows the trajectories of the DQNE agent learning at different
learning episodes in the straight line task. From Figure 8 we
can see that, at Episode 1, the trajectory of the agent fluctuate
dramatically along the target line at both sides. At Episode
10, the fluctuation of the learning trajectory was reduced to
some extent and at Episode 15, the agent can already follow
a line but still far away from the target one. Until the 50th
episode, the trajectory of the DQNE agent is quite close to the
target line.

Figure 9 shows the trajectories of the DQNH agent learning
at different learning episodes in the straight line following
task. From Figure 9 we can see that, at Episode 1, the tra-
jectory of the DQNH agent is similar to the one of the
DQNE agent and fluctuate along the target line at both sides.
At Episode 5, the fluctuation of the DQNH agent learning
trajectory was reduced to a large extent. At Episode 10,
the trajectory of the DQNH agent is already quite close to
the target line, achieving a similar performance to the DQNE
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FIGURE 10. Trajectories of the DQNHE agent learning in the straight line
following task. Note that X is the coordinate along the horizontal axis, Y is
the coordinate along the vertical axis.

agent at the 50th episode as shown in Figure 8. By comparing
the learning trajectories of DQNH agent in Figure 9 to those
of DQNE agent in Figure 8, we found that a DQN agent
learning from solely human reward converges much faster
than learning from solely environment reward.

Figure 10 shows the trajectories of the DQNHE agent
learning at different learning episodes in the straight line
following task. From Figure 10 we can see that, at Episode 1,
the trajectory of the DQNHE agent is similar to the
ones of the DQNE agent and DQNH agent. However,
at Episode 5, the fluctuation of the DQNHE agent learning
trajectory was dramatically reduced and even much bet-
ter than that of the DQNH agent. At Episode 10, the
trajectory of the DQNHE agent is also close to the tar-
get line, achieving a similar performance to the DQNH
agent. By comparing the learning trajectories of DQNHE
agent in Figure 10 to those of DQNH agent in Figure 9,
we found that a DQN agent learning from both human
reward and environment reward can further improve its con-
vergence speed, compared to learning from solely human
reward.

We also analyzed the tracking error of the DQNE, DQNH,
DQNHE agents along the learning process in the straight line
following task, as shown in Figure 11. From Figure 11 we can
see that, when the DQN agent learning from solely human
reward or both from human reward and environment reward,
the tracking error was dramatically reduced to a minimum
in about 10 episodes, while the DQNE agent learning from
solely environment reward achieves a similar performance
until around the 40th episode.

In addition, the cumulative environment rewards obtained
by the DQNE and DQNHE agents were analyzed and illus-
trated in Figure 12. Figure 12 indicates that the cumula-
tive rewards obtained by DQNHE agent quickly reach the
peak in around 10 episodes for the first time, while it takes
about 40 episodes for the DQNE agent to reach a similar
level. After that, both agents converged. These results suggest

FIGURE 11. Tracking error of the DQNE, DQNH, DQNHE agents along the
learning process in the straight line following task (averaged over data
collected in two trials).

FIGURE 12. Cumulative environment rewards obtained by the DQNE and
DQNHE agents in the straight line following task (averaged over data
collected in two trials).

that the additional human reward helps the DQN agent
converge faster.

B. SINUSOIDS CURVE FOLLOWING
In this experiment, we trained the DQNH, DQNHE and
DQNE agents in the sinusoids curve following task, which
is a much complex one than the straight line following task.

Figure 13 shows the trajectories of the DQNE agent learn-
ing at different learning episodes in the sinusoids curve fol-
lowing task. From Figure 13 we can see that, at Episode 1 and
10, the DQNE agent cannot finish the task at all. Until the
60th episode, the fluctuation was reduced and the agent can
already follow the sinusoids curve with the trajectory quite
close to the target curve. At Episode 100, the agent can almost
exactly follow the sinusoids curve.

Figure 14 shows the trajectories of the DQNH agent
learning at different learning episodes in the sinusoids
curve following task. From Figure 14 we can see that,
at Episode 1 and 10, the DQNH agent cannot finish the task
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FIGURE 13. Trajectories of DQNE agent learning in the sinusoids curve
following task. Note that X is the coordinate along the horizontal axis, Y is
the coordinate along the vertical axis.

FIGURE 14. Trajectories of DQNH agent learning in the sinusoids curve
following task. Note that X is the coordinate along the horizontal axis, Y is
the coordinate along the vertical axis.

either. At 20th episode, the DQNH agent can already follow
the sinusoids curve with the trajectory quite close to the target
curve, achieving a similar performance to the DQNE agent at
the 60th episode. At Episode 25, the AUV with DQNH can
almost exactly follow the sinusoids curve, achieving a similar
performance to the DQNE agent at the 100th episode.

Figure 15 shows the trajectories of the DQNHE agent
learning at different learning episodes in the sinusoids curve
following task. From Figure 15 we can see that, at Episode 1
and 10, the DQNHE agent cannot finish the task either.
At the 20th episode, the DQNHE agent can also follow the
sinusoids curve with the trajectory quite close to the target
curve. At Episode 25, the DQNHE agent can achieve a similar
performance to that of the DQNE agent at Episode 100.

The tracking errors of the DQNE, DQNH, DQNHE agents
along the learning process in the sinusoids curve following
taskwere shown in Figure 16. FromFigure 16we can see that,
when the DQN agent learning from solely human reward,
the tracking error was dramatically reduced to the lowest level

FIGURE 15. Trajectories of DQNHE agent learning in the sinusoids curve
following task. Note that X is the coordinate along the horizontal axis, Y is
the coordinate along the vertical axis.

FIGURE 16. Tracking error of the DQNE, DQNH, DQNHE agents along the
learning process in the sinusoids curve tracking task (averaged over data
collected in two trials).

in about 20 episodes, while the DQNE agent learning from
solely environment reward achieves a similar performance
until around the 70th episode. When learning both from
human reward and environment reward, the tracking error is
reduced the fastest.

In addition, the cumulative environment rewards obtained
by the DQNE and DQNHE agents were analyzed and illus-
trated in Figure 17. Figure 17 indicates that the cumulative
rewards obtained by DQNHE agent also quickly reach the
peak in around 20 episodes for the first time, while it takes
about 80 episodes for the DQNE agent to reach a similar level.
After that, both agents converged.

In summary, our results in both the straight line and sinu-
soids curve following tasks suggest that our proposed deep
interactive reinforcement learning method can facilitate a
DQN agent to converge much faster than learning solely from
environment reward. Moreover, our proposed DQNHE agent
learning from both human reward and environment reward
can combine the advantages of our proposed deep interactive
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FIGURE 17. Cumulative environment rewards obtained of the DQNE and
DQNHE agents in the sinusoids curve following task (averaged over data
collected in two trials).

reinforcement learning from human reward and learning from
environment reward. The DQNHE method facilitate AUV
to reach a similar performance to the one learning from
solely environment reward with the speed same to or even
better than the one learning from solely human reward. This
allows AUV to keep at the peak performance and adapt to the
environment even when the human reward is not available in
the ocean.

VII. CONCLUSION
In this paper, we proposed a deep interactive reinforcement
learning method for path following of AUV by combining
the advantages of deep reinforcement learning and interac-
tive RL. In addition, since the human trainer cannot provide
human rewards for AUV all the time and AUV needs to
adapt to a changing environment when it is running in the
ocean, we propose a deep reinforcement learning method that
learns from both human rewards and environmental rewards
at the same time. We test our methods in two tasks—straight
line and sinusoids curve following of AUV by simulating
in the Gazebo platform. Our experimental results show that
with our propose deep interactive RL method AUV can learn
much faster than that a DQN learner from only environmental
reward. Moreover, our deep RL learning from both human
and environmental rewards can also achieve a similar or even
better performance than the deep interactive RL method and
adapt to the actual environment by learning from environmen-
tal rewards.

In the future, we would like to extend and test our methods
with actual AUV system in ocean observation task.
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