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ABSTRACT In order to establish a reliable map of the road environment, this paper aims to classify the
stationary and moving objects unlike the previous researches which generally focus on object recognition.
The characteristics of the radar signals of stationary and moving objects were analyzed and the relation
between the slope of pattern in radar time-frequency spectrum and relative velocity of the object was
described mathematically. To discriminate the stationary and moving objects, the difference between the
measured velocity by the slope and the velocity of the ego-vehicle was proposed as a feature. The statistical
characteristics of stationary and moving objects according to the proposed feature were modeled using
Gaussian model. To investigate the performance of the proposed method, the similarity between modeling
of stationary and moving objects was quantified. Additionally, the receiver operating characteristics (ROC)
curve and the correlation coefficient between the proposed feature and the ground-truth feature map was
applied to verify the performance.

INDEX TERMS Automotive radar, radar signal processing, road environment map, FMCW radar, object
classification.

I. INTRODUCTION
As recent advanced automobile technology develops,
autonomous vehicles are becoming a reality and a hot topic in
the automobile market [1]. In order to achieve more accurate
and perfect autonomous driving, it is essential to establish
a reliable map of the road environment surrounding the
vehicle [2], [3]. As a result, various studies of constructing
a map for autonomous driving have been conducted. In the
case of the research conducted in the 2007 DARPA Urban
Challenge [4] and in the case of the road boundary and object
recognition research [5], the maps were mainly constructed
using the camera and lidar sensors [6]. However, because
the camera and lidar sensors are sensitive to visibility and
weather conditions, the radar sensor that is robust to these
conditions is attracting attention [7], [8]. In addition, Bosch
recently announced at TU-Automotive Detroit 2017 that it
will create a radar road signature that builds a high-resolution

The associate editor coordinating the review of this manuscript and

approving it for publication was Weimin Huang .

map by determining the relative position of all objects such
as guard rails and road signs using radar sensors.

Road map construction should precede the recognition of
various objects in the road environment. So, various stud-
ies have been conducted to recognize objects using radar.
There have been researches on road recognition using track-
ing and probability hypothesis density filter [2], [3], road
structure recognition based on statistical characteristic [9],
road marking analysis for road line recognition [8], forward
bridge identification using frequency analysis of received
radar signals [10], and radar signal analysis for pedestrian
[11] and bicycle user recognition [12]. Most studies use
the frequency modulated continuous wave (FMCW) radar,
which performs object recognition by measuring the beat
frequencies in the frequency domain [13]. Recently, studies
have been conducted in the time-frequency domain, instead
of the frequency domain. There has been research on the
recognition of iron tunnels by measuring the degree of spec-
tral spreading through the analysis of the spectrum charac-
teristics of the received radar signal in iron tunnel [14], and
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FIGURE 1. FMCW radar system structure.

harmonic clutter suppression by measuring the periodicity of
harmonic clutters using spectrum [15], [16]. In this paper,
for supporting the construction of the road map containing
various objects, we focus on stationary and moving object
classification.

This paper analyzes the characteristics of the radar signals
of stationary and moving objects, and maps stationary and
moving objects to the time-frequency spectrum. The beat
frequency, which is the frequency difference between the
transmitted and the received signal, changes according to
the movement and distance of the object. The characteris-
tics of the stationary and moving objects are compared by
analyzing the beat frequency in the time-frequency spectrum.
In the time-frequency spectrum, various patterns are analyzed
according to the movement of the object. This paper con-
firmed that the slope of this pattern is related to the relative
velocity, measured it using the Hough transform [17], and
converted it to a velocity. In addition, the statistical character-
istics defined as the difference between the measured velocity
by the slope and the velocity of the ego-vehicle is modeled.
Hellinger distance [18] and KS-test [19] are used to quantify
the accuracy of statistical modeling. As a result, the station-
ary and moving objects are mapped on the time-frequency
spectrum, and the performance of the proposed method is
verified through the ROC curve [20] and correlation [21] with
the ground-truth feature map.

The rest of this paper is organized as follows. The FMCW
radar system and radar signal model are introduced in
Section II. In Section III, the analysis of the spectral charac-
teristics of the received signal in accordance with stationary
and moving objects is explained. Section IV comprises of the
detailed explanation of the proposed method which detects
the slope in the time-frequency spectrum. Then, the exper-
imental results of classifying the stationary and moving
objects are provided in Section V. Finally, we summarize and
conclude our work in Section VI.

II. RADAR MODEL
In this paper, we have used a 77 GHz FMCW radar.
Fig. 1 shows the structure of the FMCW radar that consists
of an antenna module, transceiver unit, and signal control
and processing unit. The antenna module converts electrical
radio-frequency (RF) signal into electromagnetic wave, while
the transceiver unit generates the RF signal and processes

the received RF signal. The signal control and processing
unit handles the schedule of FMCW modulation and radar
scanning. The transmission channel is a single channel, and
the receiving channel consists of K uniform linear arrays.
A scan is the time that includes transmission, reception, and
signal processing, and the duration period of a single scan is
50 ms. In each scan, identical signals are transmitted. If the
signal transmitted from the FMCW radar is reflected by L
objects, the received signal in the kth array is expressed as
follows [22], [23]:

rk (t) =
L−1∑
i=0

Ak (i) cos (2π f (i)t + φk (i)) (1)

where Ak (i) is the amplitude of the signal reflected from
each object at the kth array antenna; φk (i) is the phase of the
each received signal; and f (i) is the beat frequency, which is
the frequency difference between the transmitted signal and
the received signal, and is composed of fr (i) (which is the
frequency difference according to the distance of an object)
and fd (i) (which is the frequency difference due to the relative
velocity between the radar and each object). f (i), fr (i), and
fd (i) are as follows:

Rclf (i) = fr (i)− fd (i) in up-chirp duration

= fr (i)+ fd (i) in down-chirp duration (2)

fr (i) =
2B
cT

R(i) (3)

fd (i) =
2fc
c
Vr (i) (4)

where, B is the bandwidth; T is the chirp duration; c is the
speed of light; fc refers to the center frequency; R(i) and Vr (i)
are the distance and relative velocity between the radar and
each object, respectively; and rk (n) is the discrete-time signal
of rk (t), which is as follows:

rk (n) =
L−1∑
i=0

Ak (i) cos (2π f (i)nTs + φk (i)) (5)

where, n(0≤ n<N ) is the discrete-time index of the received
signal during a single scan; N is the total number of samples
in a single scan; and Ts represents the sampling time.
If these received signals are transformed using the short-

time Fourier transform (STFT), they are as follows:

Rk (f ,m) =
N−1∑
n=0

rk (n+ (m− 1)N )e−j
2π f
N n (6)

where, f is the frequency index; and m is the scan index. The
window length is 2048 and block window is used. Using (6),
themagnitude response in the frequency domain is as follows:

P(f ,m) =

∣∣∣∣∣
K−1∑
k=0

Rk (f ,m)

∣∣∣∣∣ (7)
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FIGURE 2. Time-frequency representation of the received radar signal in dB scale under normal road condition. (a) road sign, (b) guardrail, (c) far
streetlight, and (d) near streetlight.

III. SPECTRAL CHARACTERISTICS OF OBJECTS
In order to understand the radar signal characteristics of
stationary and moving objects, the time-frequency spectrum
was analyzed using the signal acquired at a normal road.
Fig. 2 shows the magnitude response using the STFT of the
received signal under normal road, and represents the change
of the beat frequency over time of each object. As the beat
frequency changes according to the velocity and distance
of the object, various slopes appear on the time-frequency
spectrum in Fig. 2. Fig. 2(a) shows that the stationary object
that is a road sign reveals a decreasing frequency over time
in the high-frequency band. Although the frequency of the
forwardmoving object is also decreased, the frequency reduc-
tion of the moving object is smaller than that of the station-
ary object. Fig. 2(b) shows the stationary object that is a
guardrail reveals a constantly decreasing frequency, while the
moving object shows a zero slope with no frequency change
over time. Fig. 2(c) and (d) show the stationary object that
is a streetlight shows a decreasing frequency in the time-
frequency spectrum, and the frequency of the moving object
is slightly increasing. Fig. 2 shows that the stationary objects
have a decreasing frequency over time, while the forward
moving object shows a relatively small decreasing slope or
an increasing slope, according to the velocity of the object.

In order to understand the meaning of the slope in the time-
frequency spectrum, the slope of the ith object is defined as:

s(i) =
1f (i)
1t
=
1fr (i)±1fd (i)

1t
(8)

The slope s(i) is the frequency variation over time, and is
represented as an equation that is composed of fr (i) and fd (i)
according to (2). Using (3) and (4), the slope s(i) can be
expressed as follows:

s(i) =
2B
cT
1R(i)
1t
±

2fc
c
1Vr (i)
1t

(9)

The first term in (9) is the variation in distance over time,
which is related to the relative velocity of the object. The sec-
ond term is the variation in relative velocity over time, which

refers to the curvature of the slope in the time-frequency
spectrum. Assuming that the variation of the velocity 1Vr
during1t is small (1Vr

1t
∼= 0), the curvature characteristics of

the slope can be ignored. So the slope s(i) is approximated as
follows:

s(i) ≈
2B
cT
1R(i)
1t
=

2B
cT

Vr (i) (10)

Since B, T and c are constants in (10), the slope in the time-
frequency spectrum is proportional to the relative velocity
(Vr (i)) of the object.When the ith object is a stationary object,
the relative velocity Vr (i) has the following relationship with
the velocity of the ego-vehicle:

Vr (i) = −Vego (11)

Then, the slope s(i) of the stationary object in the time-
frequency spectrum has the following relationship:

s(i) ∝ −Vego (12)

Thus, if wemeasure the slope in the time-frequency spectrum,
we can discriminate stationary and moving objects.

IV. SLOPE DETECTION IN THE TIME-FREQUENCY
SPECTRUM
The Hough transform is the most commonly used method for
detecting the slope. This technique changes the coordinates
in space (x, y) to coordinates in the Hough space (θ, ρ). The
relation between x, y, θ , and ρ is expressed by the following
(13):

ρ = x cos θ + y sin θ (13)

where ρ is the vertical distance from the origin to the straight
line, and θ is the angle between the x axis and the vertical line
connecting the origin with the straight line. Fig. 3 shows the
time-frequency spectrums and the road images under normal
road condition. Fig. 3(a) and (b) show that there is a stationary
vehicle to the front right, and a moving vehicle to the far front
left.
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FIGURE 3. Time-frequency representation in dB scale under normal road condition for slope detection. (a) case 1 and
(b) case 2.

FIGURE 4. Slope map of time-frequency spectrum (slopes are expressed using short tangent segments) using the Hough
transform. (a) case 1 and (b) case 2.

To use the Hough transform, the binary spectrum is
obtained from the time-frequency spectrum. The time-
frequency spectrum is divided into small blocks PB(f ,m)
which size is 50 × 10 corresponding to 9.75 kHz × 500 ms,
and then it is compared with the threshold ThBS to obtain the
binary spectrum of each block BS(f ,m):

BS(f ,m) =

{
1, PB(f ,m) ≥ ThBS
0, PB(f ,m) < ThBS

(14)

ThBS = 0.9×max(PB(f ,m)) (15)

The max(·) represents the maximum value.

The Hough transform is applied to each block of the binary
spectrum. The slope is extracted by comparing the Hough
transform result of each block H (θ, ρ) with the threshold
Thslope, which is calculated as follows:

Thslope = 0.9×max(H (θ, ρ)) (16)

Since H (θ, ρ) greater than Thslope is extracted, various slope
values can be extracted. As most slope values that are
extracted are similar to each other, the representative slope
of each block is calculated by taking the average. However,
when there are slopes of different objects in a block, a few
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slopes corresponding to each object are obtained. Therefore,
the following process is performed. When a stationary object
and a moving object exist at the same time, the representative
slope of the corresponding block is obtained by preferential
selection of the slope of the stationary object. When there are
many moving objects, a moving object having a large number
of extracted slopes is selected.

Fig. 4 shows the slope of each block. Comparing Fig. 4(a)
with the time-frequency spectrum in Fig. 3(a), it can be seen
that the patterns of the stationary and moving objects with
large magnitude values in Fig. 3(a) are matched with the
slope of each block in Fig. 4(a). The decreasing pattern of
the stationary object in Fig. 3(a) has a slope that matches the
corresponding block of Fig. 4(a). The moving object also has
a similar slope in the block. Fig. 4(b) shows that the slope and
frequency band of the block matchs well with the patterns in
the time-frequency spectrum of Fig. 3(b).

The slope obtained in Fig. 4 is expressed at a relative
velocity Vr (θ ) through (17), which is modified from (10):

Vr (θ ) =
slopeθ × c× T

2B
(17)

where, c is the speed of light (3 × 108 m/s); T is the chirp
duration; and B is the bandwidth. Using the characteristics of
(11), the obtained Vr (θ ) is used as a feature for the classifica-
tion of the stationary and moving objects through comparison
with the velocity of the ego-vehicle. When the feature of the
current block is b(t), it is expressed as follows:

b(t) =

∣∣∣∣Vr (θ )+ VegoVego

∣∣∣∣ (18)

The feature b(t) is weighted as follows to relate to the previ-
ous block:

b(t) = αb(t)+ (1− α)b(t − 1) (19)

where, b(t) is calculated by applying a weight to the values
of the current block and the previous block; and α is a weight
value that is between 0 and 1.

Fig. 5 and 6 are the slope detection results for case
1 and 2, respectively. Fig. 5(a) and 6(a) show the time-
frequency representation in dB scale and the ground-truth of
stationary objects are expressed in black dots. To obtain the
ground truth, the tagging process was manually carried out
by experts. The points in the time-frequency spectrum were
tagged with the stationary objects in simultaneously recorded
images. Fig. 5(b) and 6(b) show a ground-truth feature map
where the black blocks indicate ones where stationary objects
exist. Fig. 5(c) and 6(c) is the feature b(t) of each block
obtained through (19), and the gray scale is a representation
of the possibility whether objects are stationary or moving.
Fig. 5(d) and 6(d) is a histogram that shows the distribution
of the feature of the stationary and moving objects, and
the distribution of the histogram is modeled using Gaus-
sian modeling. Fig. 5(d) and 6(d) shows that the stationary
object is distributed mainly before 0.4, and the moving object
is widely distributed according to the movement. Hence,

FIGURE 5. Slope detection results of case 1. (a) time-frequency
representation of the radar signal in dB scale and ground-truth of
stationary objects (black dots), (b) ground-truth feature map,
(c) proposed feature(b(t)) map, and (d) histogram that show the
distribution of the feature of each object.

FIGURE 6. Slope detection results of case 2. (a) time-frequency
representation of the radar signal in dB scale and ground-truth of
stationary objects (black dots), (b) ground-truth feature map,
(c) proposed feature(b(t)) map, and (d) histogram that show the
distribution of the feature of each object.

the proposed feature b(t) can discriminate the stationary and
moving objects.

V. EXPERIMENTAL RESULTS
In order to verify the validity of the proposedmethod, we have
used a 77 GHz FMCW radar signal measured in the real road
environment. The experiments in the real road environment
were performed by Mando Corporation (Republic of Korea).
The bandwidth (B) of the transmitted signal is 500 MHz, and
the chirp duration (T ) is 5 ms with the center frequency (fc)
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FIGURE 7. Time-frequency representation in dB scale and slope detection results under expressway and normal road conditions. (a) expressway
condition (cases 3-6), and (b) normal road condition (cases 7-10).
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TABLE 1. Gaussian modeling for each object and similarity between
modeling.

at 76.5 GHz. The block size of the experimental environment
is (50 × 10), and the whole frequency band is divided into
14 sections. A moving window that slides ahead 5 scans at
a time is applied, in order to reflect the similarity to the
previous block, and α in (19) is 0.9. Fig. 7(a) and (b) show
the data under the expressway and normal road condition,
respectively. Using the data in Fig. 7, experimental results are
presented. In Fig. 7, the first row is the image of the actual
driving environment, the second row is the time-frequency
spectrum, the third row is the ground-truth feature map, and
the last row is the figure that shows the feature b(t) of each
block. The ground-truth feature map is the result of visually
checking whether there is a pattern of a stationary object in
each block. It is used for comparison with the feature b(t)
of each block. As a result, stationary and moving objects are
modeled using the statistical properties of the feature b(t), and
the similarity between modeling is quantified.

Table 1 summarizes the experimental results for each data.
The distribution of b(t) for stationary and moving objects
was represented using Gaussian model. Hellinger distance
and KS test were used to quantify the similarity of Gaussian
distribution of stationary and moving objects. The Hellinger
distance is a type of f -divergence that measures the differ-
ence between two probability distributions. f -divergence is an
average, weighted by the function f , of the odds ratio given
by P and Q. The function f (t) of the Hellinger distnace is
(
√
t−1)2, and the Hellinger distance is expressed as follows:

DH (P,Q) =
1
√
2

√∑
i

(
√
P(i)−

√
Q(i))2 (20)

where, P(i) and Q(i) are the probability distribution of each
sample. The Hellinger distance has a value between 0 and 1,
and the farther the distance between the two distributions is,
the greater its value becomes.

The KS test is one of the most useful and general non-
parametric method for quantifying the distance between two
distributions, and is sensitive to differences in both location

FIGURE 8. ROC curve results. (a) ROC curve for each data, and (b) ROC
curve for all data.

and shape of the cumulative distribution function. The KS
test is calculated as follows using the cumulative distributions
F1(x) and F2(x). The range of values is between 0 and 1:

DKS = max |F1(x)− F2(x)| (21)

The results of Gaussian modeling in Table 1 show that
the average of stationary objects is (0.1 to 0.2), and the
average of moving objects is (0.8 to 1.1). The Hellinger
distance and KS test that quantify the similarity between the
two distributions are mainly larger that 0.8. We can observe
that the distance between the distribution of stationary and
moving objects is far away. Several thresholds were applied
to look at the classification performance, and the receiver
operating characteristics (ROC) curve was applied to verify
the performance. The ROC curve is created by plotting the
true positive rate (TPR) against the false positive rate (FPR).
TPR, which is also known as sensitivity, is a rate classifying
as positive in the actual positive data. FPR is a rate that
is erroneously classified as positive in the actual negative
data. TPR and FPR are calculated as follows using the true
positive (TP), false negative (FN), false positive (FP), and true
negative (TN) of the confusion matrix:

TPR =
TP

TP+ FN
(22)

FPR =
FP

FP+ TN
(23)
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TABLE 2. Correlation coefficients for each datum.

FPR is the rate of classifying stationary objects among
moving objects, and TPR is the rate of classifying station-
ary objects among stationary objects. The area under the
curve (AUC) that represents the area of the ROC graph is an
indicator of the performance of the ROC curve. The max-
imum value of AUC is 1, which means that TPR is high,
regardless of FPR. This means that the performance of the
classification model is good. Fig. 8(a) shows the ROC curve
using the confusion matrix for each of the data in Cases 1–10,
while Fig. 8(b) shows the result by combining the confusion
matrix of all data.

In Fig. 8, the AUC of each ROC curve is 0.94 or higher, and
the AUC of the all data is 0.9691. Therefore, we have verified
that the performance of the classification model based on the
proposed feature is good.

In addition, the correlation coefficient was calculated to
compare the b(t) of each block and the ground-truth feature
map. When the number of samples is N , the correlation
coefficient can be calculated as follows:

ρ(A,B) =
1

N − 1

N∑
i=1

(
Ai − µA
σA

)(
Bi − µB
σB

)
(24)

where, A and B represent the ground-truth feature and b(t)
values in the block, respectively. In the case of the ground-
truth feature map, the values is 0 for a stationary object,
and 1 for a moving object. µA and σA are the mean and
standard deviation of A, respectively. Table 2 summarizes the
correlation coefficient results of each datum. The correlation
coefficient between the ground-truth feature and the b(t)
values of each block mostly shows a value of 0.8 or higher,
which shows a strong linear relationship. That is, we can
confirm the high similarity between the ground-truth feature
map and the proposed feature.

VI. CONCLUSION
In this paper, we have analyzed the time-frequency char-
acteristics of stationary and moving objects, and proposed
a method of the discrimination and spectral mapping of
stationary and moving objects. A stationary object on the
time-frequency spectrum shows a pattern in which the fre-
quency decreases according to the velocity of the ego-
vehicle. The slope of the pattern in the time-frequency
spectrum was measured using the Hough transform, and
the difference between the measured velocity by the slope
and the velocity of the ego-vehicle was defined as a fea-
ture. The stationary and moving objects were mapped
on the time-frequency spectrum using the proposed fea-
ture, and the experimental results were verified through

the 77 GHz FMCW radar signal measured in real road
environment.

In order to verify the performance of the proposed feature,
the statistical characteristics of stationary and moving objects
were modeled, and the similarity between modeling was
quantified. In addition, the classification result according to
the threshold was analyzed through the ROC curve. Although
the shape or type of stationary objects such as upper structure,
guardrail, and road sign is not distinguished, we have classi-
fied the stationary and moving objects on the time-frequency
spectrum.
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