
Received January 6, 2020, accepted January 21, 2020, date of publication January 30, 2020, date of current version February 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2970475

Scheduling Scientific Workflow Using Multi-Objective
Algorithm With Fuzzy Resource Utilization
in Multi-Cloud Environment
MAZEN FARID 1,2, ROHAYA LATIP 1, MASNIDA HUSSIN 1, (Member, IEEE),
AND NOR ASILAH WATI ABDUL HAMID 1
1Department of Communication Technology and Networks, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
2Faculty of Education-Saber, University of Aden, Aden, Yemen

Corresponding author: Mazen Farid (mazenfareed7@yahoo.com)

This work was supported in part by Putra Grant, University Putra Malaysia, under Grant 95960000, and in part by the Ministry of
Education (MOE) Malaysia. Utmost appreciation and thanks to provide sufficient facilities and funding through-out this research.

ABSTRACT The provision of resources and services for scientificworkflow applications using amulti-cloud
architecture and a pay-per-use rule has recently gained popularity within the cloud computing research
domain. This is because workflow applications are computation intensive. Most of the existing studies
on workflow scheduling in the cloud mainly focus on finding an ideal makespan or cost. Nevertheless,
there are other important quality of service metrics that are of critical concern in workflow scheduling
such as reliability and resource utilization. In this respect, this paper proposes a new multi-objective
scheduling algorithmwith Fuzzy resource utilization (FR-MOS) for scheduling scientific workflow based on
particle swarm optimization (PSO) method. The algorithm minimizes cost and makespan while considering
reliability constraint. The coding scheme jointly considers task execution location and data transportation
order. Simulation experiments reveal that FR-MOS outperforms the basic MOS over the PSO algorithm.

INDEX TERMS Multi-objective optimization, multi-cloud environment, reliability, particle swarm
optimization, workflow scheduling.

I. INTRODUCTION
Nowadays, cloud computing technology has become one
of the most prominent technologies that provide comput-
ing resources to end users. An interesting aspect of this
paradigm is that the resources provided can be accessed in
the form of utility where customers can pay for the ser-
vices they use [1]–[5]. To run cloud-based applications in
a cost-effective and scalable manner, deploying large scale
virtual machines (VMs) is a highly auspicious consideration
[6], [7].

In scientific computing applications such as astronomy,
physics and bioinformatics, a workflow is the most widely
used model for representing scheduled tasks [8]–[10]. Such
tasks are usually computation-intensive and thus require
high-performance computing machines provided by Cloud
computing in a distributed manner [11].

An offshoot of the traditional cloud computing model
is a multi-cloud environment where various cloud-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Noor Zaman .

Infrastructure as a Service (IaaS) providers (e.g., Microsoft
Azure, 2018; Amazon EC2, 2018; Google Compute Engine,
2018) with diverse resource options can cater for their com-
puting needs by making their virtual machines available at a
price. This is one of the most promising solutions available
for cloud service providers to share their resources [12], [13].

The question of how to schedule workflow in a multi-cloud
computing environment is a quite complicated problem
[12], [14] which is regarded as NP-complete [15]. This is
because independent cloud IaaS offers this service by putting
their computing resources together. Particularly, meeting
the quality of service requirements is a daunting chal-
lenge since selecting the optimal combination of services
from these independent IaaS platforms is somewhat difficult
[9], [11], [16].

Like other distributed systems, cloud computing is vul-
nerable to software faults, hardware failures and power mal-
function [17]. These unavoidable issues lead to task and
workflow failures during the course of executing sophisti-
cated workflow applications [18], [19]. Hence, it is important
to ensure reliability while scheduling workflow in clouds

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 24309

https://orcid.org/0000-0001-9555-7781
https://orcid.org/0000-0002-6462-1944
https://orcid.org/0000-0003-1063-8502
https://orcid.org/0000-0001-8095-7678
https://orcid.org/0000-0001-8116-4733

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

FIGURE 1. Scheduling model.

[20]. Although cloud providers consider different reliability
parameters, it is important that users pay attention to the
workflow’s reliability constraints.

In this paper, we propose new multi-objective scheduling
(MOS) algorithm with Fuzzy resource utilization (FR-MOS)
to schedule scientific workflow in multi-cloud environments.
The main aim of the proposed algorithm is to minimize cost
and makespan, taking into account reliability constraints.
In this regard, the scientific workflow schedule accounts
for the following issues: (1) the IaaS cloud platform to be
selected; (2) the type of VM to be assigned to the tasks;
and (3) the order of tasks that should be utilized for data
transmission. To address these issues, the FR-MOS algorithm
deploys particle swarm optimization (PSO) and considers
task orders and task execution location in its coding strategy.
The FR-MOS structure is illustrated in Figure 1. Simulation
results show that the FR-MOS algorithm gives better results
than MOS algorithm [21] when deployed for scheduling
different scientific real-world workflow.

A. CONTRIBUTIONS
This paper achieves the following key contributions:

(1) Determination of the reliability constraint coefficient
ρ in the proposed FR-MOS algorithm using fuzzy logic
with resource utilization. This is to minimize cost and
makespan under reliability constraint. This procedure was
carried out considering three commercial clouds (Amazon
EC2, Google Compute Engine and Microsoft Azure) and
their VM instances.

(2) Integration of PSO method with FR-MOS algorithm.
All the VMs provided by different clouds are designed to
constitute the entire search space in which the PSO searches
the execution location and the particles move to selected
VMs by tasks. Moreover, this process depends on the task
execution location and the order of tasks.

(3) Application of the proposed FR-MOS algorithm on
four real-life scientific workflows. The results are compared
with the MOS algorithm using Q-metrics, FS-metrics and
S-metrics to measure the multi-objective performance in
terms of convergence, diversity and uniformity of the Pareto
front.

The rest of this paper is organized thus: Section 2 presents
an overview of the prior art on the performance optimization
of workflow for scheduling applications. Section 3 defines
the scheduling model and describes the problem formulation
and networkmodel. The algorithm implementation is detailed
in Section 4. Section 5 discusses the experimental results and
Section 6 concludes this paper and suggests future work.

II. RELATED WORKS
The main objective of scheduling algorithms is to find the
best resources in the cloud for the applications (tasks) of the
end user. This improves the quality of service (QoS) param-
eters and resource utilization [22]. Its performance can be
measured using many parameters or performance indicators,
e.g., makespan, reliability, execution cost, execution time,
scalability, power consumption, etc. In cloud computing,
we must analyze and optimize these parameters using an
effective resource scheduling algorithm to meet the require-
ments of end users and the service provider without affecting
the SLA violation. Resource scheduling becomes an interest-
ing issue in cloud computing due to heterogeneity, dynamics
and dispersion of resources that are not resolved by exist-
ing scheduling algorithms. Therefore, we need a scheduling
algorithm that distributes the heterogeneous workload among
cloud resources VMs. The algorithm should be based on
resource capacity and overcome the problem of overload and
underload.

In this regard, it is important to optimize the performance
of scheduling applications’ workflow. To achieve this,
the pertinent objectives for satisfying users’ QoS constraints
include reducing execution time and total execution cost.
In line with this, A cost-minimizing heuristic algorithm was
suggested by [9] to schedule scientific workflow under dead-
line constraints in a cloud computing environment. In order
to put idle resources to effective use, [23] introduced a repli-
cation strategy that manages the impact of variable resource
performance to meet a flexible workflow deadline. Similarly,
[24] developed (ADAS) scheduling algorithm for schedul-
ing large scale workflow. The data-aware algorithm com-
prises configuration and runtime phases. It schedules cloud
resources and the workflow setup process while considering
cloud security constraints.

Authors of [8] designed (SCAS) algorithm for scheduling
scientific workflow having cost and security constraints. The
algorithm pertinently considers applications that are data,
memory and computation intensive. A safety plan and budget
programming algorithm (SABA) was proposed by [25] to
improve the makespan while considering security and budget
constraints. Most of the above works focus on only one opti-
mization objective. However, users’ requirements are diverse

24310 VOLUME 8, 2020

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

thus, single objective workflow scheduling algorithms fail to
meet their requirements.

One of the most critical concerns in cloud computing is
the reliability of workflow scheduling. In a distributed cloud
computing environment, [26] outlined some important objec-
tives of the scheduling process for a real-world workflow.
The authors focus on four objectives: cost, makespan, relia-
bility and energy. A heuristic method that reduces makespan
and improves reliability, while considering the probability of
failures that may occur in a multi computing environment,
was invented in [17]. Authors in [19] proposed an adaptive
‘just-in-time’ workflow scheduling algorithm to provide fault
tolerance and improve reliability using the task resemblance
method.

In the workflow scheduling paradigm, the objectives of
minimizing energy and maintaining reliability regularly con-
flict. To reduce energy consumption and increase the reli-
ability of the system, [27] proposed a bi-objective genetic
algorithm (BOGA). Reference [28] used an ant colony-
based scheduling technique by adapting three ants to improve
workflow reliability under deadlines and budget constraints.
In the same line, Kaur and Singh [29] applied the budget
constraint to minimize makespan and maximize reliability
in a cloud computing environment using their workflow
scheduling algorithm.

Garg and Singh developed two improved versions of PSO:
1) The non-dominant PSO [NSPSO] [30] that extends the
basic form of PSO by utilizing the best results of personal
molecules and their offspring to make effective comparisons
of non-dominance. 2) The ε-Fuzzy PSO [31] that basically
deploys PSO to better identify risk solutions.

Most of the aforementioned studies on multi-objective
cloud computing workflow scheduling consider system reli-
ability. We realize it is practical to use these existing methods
in our proposed case study, therefore, we consider multi-
objective scheduling in terms of makespan, cost, reliability
and resource utilization.

III. SCHEDULING MODEL
The proposed FR-MOS algorithm is designed to consider
four QoS requirements, namely makespan, cost, reliability
and resource utilization. Figure 1. shows the scheduling
model. The first step involves creating a workflow applica-
tion by cloud users using any structure. The workflows are
assigned to a suitable cloud platform with the VM types
that fulfil the workflow requirements. Each cloud provider
has a task queue and these tasks are processed based on the
structure of the workflow. Since cloud users can access an
infinite amount of VM resources, concurrent services can be
delivered for tasks in parallel queues while sequencing tasks
must be performed based on dependency relationships. Note
that each cloud service provider in the consideredmulti-cloud
environment has its own performance metrics and pricing
model.

This section discusses the problem of workflow scheduling
in detail. Particular attention is given to the following:

TABLE 1. Notations and their meanings.

workflow model, multi-cloud model, computation of
makespan, cost reliability and resource utilization, and
problem formulation. Table 1 defines the notations used in
this study.

A. WORKFLOW MODEL
To achieve a stated objective in any environment, it is neces-
sary to have a sequence of planned activities. Such activities
are referred to as workflows. Workflows involve collections
of simple processes that are targeted at solving a more com-
plex problem [32]. To ensure efficiency and improve the
execution of desired tasks, these processes must follow a
particular pattern. Hence, the aim of a workflow is to define
how various tasks are configured, performed and tracked.

Workflow can bemodeled as aDirect AcyclicGraph (DAG)
having nodes and edges. It can be represented asW = (T ,E),
where T = {t0, t1, . . . , ti, . . . , tn−1} is the set of tasks. Task
dependencies are represented by a set of arcs, E = {(ti, tj)|ti,
tjεT}. Each workflow has an entry task Tentry and exit task
Texit . Also, each task has predecessor set denoted by pre(ti)
and successor set denoted by succ(ti). The task is executed
after its predecessor’s set execution. Task ti has an assigned
weightW (ti) which denotes its workload and is quantified in
terms of compute unit (CU). The data output size of tasks ti
needed to be transferred to task tj is represented by D(ti,tj).

B. MULTI-CLOUD ARCHITECTURE
The studied multi-cloud environment in this paper allows
users to access VMs of different cloud providers with a

VOLUME 8, 2020 24311

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

TABLE 2. Different types of VMs in Amazon EC2.

TABLE 3. Different types of VMs in google compute engine.

TABLE 4. Different types of VMs in microsoft azure.

variety of price mechanisms. For example, in (Amazon
EC2, 2018), rates are based on working hours. This
implies that each partial hour finally reaches full hours.
Similarly, (Microsoft Azure, 2018) charges customers
per minute. Unlike others, (Google Compute Engine,
2018) charges the first ten minutes then the VM
instances are later loaded in minutes. A multi-cloud
environment can provide different numbers of m IaaS
platforms with each supplying a set of VMs, where
VM (m) = {VM (m, 1), . . . ,VM (m, k), . . . ,VM (m, ks)},
m = 1, 2, . . . ,M .

This paper considers three cloud service providers:
Amazon EC2, Google Compute Engine, Microsoft Azure.
Tables 2-4 show the different types of VMs. Let (m|m =
1, 2, and 3) where m represents the different providers of
IaaS cloud (i.e., Amazon, Microsoft and Google). VM (m, k)
is the instance of the VM specified by the IaaS cloud provider
m with CU processing capacity P(m, k) and cost per hour
C(m, k), where CU represents the CPU computing capaci-
ties of VMs [16], [33]. We assume that the different cloud
providers can provide an infinite number of VMs to the end
users. Bm indicates the bandwidth of m cloud platform and
Bmm′ is the bandwidth between two different cloud platforms
m and m′.

C. MAKESPAN COMPUTATION
Workflow tasks can be assigned and executed on different
IaaS platforms in a multi-cloud environment. Most of the
previous studies compute the start time of the current task as
the latest finish time of the previous task. Therefore, some vir-
tual machines must wait to receive tasks when it is their turn.
This is because VMs send multiple copies of their output to
other VMs. The layout of the recipient output depends on the
order of the task. Given a set A, defined in Eq. (1), the order
of tasks in the workflow is taken into account to sort tasks in
the group.

A =
∑

tj∈pre(ti)

succ
(
tj
)
. (1)

The order of tasks in partial set B follows the same sequence
as the previous tasks ti in set A, if A = {t1, t3, t4, t2}, then
B = {t1, t3} when ti = t4. The start time of the task ti is
represented as Tstart (ti), and the end time is represented as
Tend (ti), Eq. (2) represents the start time of ti.

Tstart (ti) = max tj∈pre(ti)
{
Tend

(
tj
)
+ Twait

(
tj, ti

)}
, (2)

where Twait (tj, ti) is the waiting time of task ti to receive input
data from task tj. It is expressed thus:

Twait
(
tj, ti

)
=

∑
tz∈B

Ttrans
(
tj, tz

)
. (3)

Note that if ti = tentry, then Tstart (ti) = 0.
To compute the finish transmission time, we have

Ttrans (ti) = max tj∈pre(ti)
{
Tend

(
tj
)
+ Twait

(
tj, ti

)}
+Ttrans

(
tj, ti

)
, (4)

where Ttrans(tj, ti) is the transmission time between ti and tj.
Notwithstanding, two cases (i.e., ti and tj) should be
considered. These are Ttrans and Trece.

Ttrans =

{
D
(
tj, ti

)
/Bm,

D(tj, ti)
/
Bmm′ , m 6= m′

(5)

Hence, task ti has a receiving time given by

Trece (ti) = Ttrans (ti)− Tstart (ti) . (6)

The execution time of each task ti depends on the output
data size of every task [9], [16]. The execution time of dif-
ferent tasks on different VM (m, k) can be calculated by the
following equation.

Texec (ti,VM (m, k)) =
W (ti)
P (m, k)

. (7)

The end time of each task can be calculated using the
processing capacity of VM (m, k) in CU. Thus,

Tend (ti)=Tstart (ti)+ Trece (ti)+ Texec (ti,VM (m, k)) . (8)

Using the analysis above, we can compute the makespan of
the workflow as shown in Eq. (9).

makespan = Tend (texit) . (9)

The makespan equates the end time of the last task (texit).

24312 VOLUME 8, 2020

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

D. COST COMPUTATION
Following the profit-making multi-cloud model, IaaS plat-
forms have unique pricing methods. The existing workflow
algorithms calculate the VM rent time by taking the interval
between the task execution start time and end time [9], [11],
[16]. When is task is completed, the VM shuts down and the
output of that task is transferred to its successors. The priority
of data transfer depends on the tasks’ order. Then the send
time of task ti can be expressed as:

Tsend (ti) =
∑

tj∈succ(ti)

Ttrans(ti, tj). (10)

The rent time of task ti for the VM which is run on VM (m, k)
is given in Eq. (11).

Trent (ti,VM (m, k)) = Trece (ti)+ Texec (ti,VM (m, k))

+Tsend (ti) . (11)

VM rent cost of task ti for each considered IaaS platform is
calculated below.

For Amazon EC2 that charges per hour, the execution cost
of task ti on VM (1, k) is expressed in Eq. (12).

cost (ti,VM (1, k)) = dTrent (ti,VM (1, k))/Tminutee

·C (1, k) , (12)

where Tminute = 60.
Microsoft Azure charges per minute, the execution cost of

task ti on VM (2, k) is expressed in Eq. (13).

cost (ti,VM (2,K))

= Trent (ti,VM (2, k)) .C(2, k)/Tminute. (13)

After the first ten minutes, Google charges the VM instance
per minute, the execution cost of task ti on VM (3, k) is shown
in Eq. (14), where Tten = 10.

cost (ti,VM (3, k))

=

{
Tten.C(3, k)

/
Tminute, if Trent (ti,VM (3,K))≤Tten

Trent (ti,VM (3, k)) .C(3, k)
/
Tminute, otherwise

(14)

The workflow cost can be calculated using Eq. (15).

cost =
∑
ti∈T

cost (ti,VM (m, k)) . (15)

E. RESOURCE UTILIZATION COMPUTATION
In cloud computing, scheduling plays an important role of
efficiently allocating resources to each task. Most scheduling
processes are accomplished by allocating tasks to balance
between improved performance in terms of makespan, cost
and efficient resource utilization [34]. Cheaper resources take
more time than expensive resources. This implies that the
high processing capacities of CPUs in various VMs improves
their performances while delivering better makespan-cost
trade-offs. The total processing capacity of a requested VM is
calculated thus:

VMsrequestedMIPS =
∑

P (m, k) . (16)

And the percentage of workflow resource utilization of each
workflow can be computed using Eq. (17).

utilization =
VMsrequestedMIPS
VMsavailableMIPS

∗ 100. (17)

F. RELIABILITY COMPUTATION
Failures are unavoidable in a cloud computing environment.
Also, faults (such as software faults, hardware failures and
power malfunction) can come from the inside [19], [35] and
outside (e.g., harmful attacks from the internet) [8], [25].
Short term faults happen frequently and cause failure during
the execution of workflow tasks. The occurrence of failure
can be modelled as a Poisson distribution [17], [27], [36].
The probability that the task ti will be performed correctly
in VM (m, k) is calculated using the exponential distribution
as follows:

rel (ti) = exp (−λm.Trent (ti,VM (m, k))) , (18)

where the failure coefficient of cloud service provider
λm > 0 (m = 1, 2, 3).
In addition, each IaaS platform has a unique failure coef-

ficient in the multi-cloud environment. The execution of the
task will fail if any problem occurs during the rental time. The
reliability of workflow is calculated using Eq.(19), assuming
the failures are independent.

reliability =
∏
ti∈T

rel(ti). (19)

Suppose λmax = max{λm|m = 1, 2, 3} indicates the
maximum failure coefficient and λmin = min{λm|m =

1, 2, 3} indicates the minimum failure coefficient, the resul-
tant workflow for scheduling the reliability can be maximum
(relmax) or minimum (relmin). Moreover, different workflow
reliability results are produced according to the scheduling
process of tasks in different clouds. Thus, the cloud users
have to set an appropriate reliability constraint relc for the
scientific workflow application, i.e.,relcε[relmin, relmax].

G. FUZZY LOGIC
In 1965 Lutfy Zadeh presented the concept of fuzzy logic
[37]. The theory involves a new mathematical model used to
formalize and analyze the features of sets. The fuzzy logic is
a natural extension of the agreed common language and the
interpretation of human behaviour [38].
Definition 1: Let X be an associate absolute reference set.

The characteristic performance of every traditional subset of
X and A, µA: X→ {0,1} is defined as follows:

µA(x) =
{
1 : x ∈ A
0 : x /∈ A

Depending on definition 1, each x ∈ X, µA(x) will take only
one value of the set 0 and 1.
Definition 2: If the set µA involves two numbers {0,1},

set to the interval between [1,0], a function is obtained for
each member of X which is assigned to a number between
the range of [0,1]. Therefore, A is a fuzzy set.

VOLUME 8, 2020 24313

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

According to Definition 2, assuming µA(x) ∈ {0, 1}, then
the membership of set A becomes uncertain. Thus, we pro-
pose a multi-objective algorithm for scheduling scientific
workflow using a fuzzy system working with the resource
utilization to determine the reliability constraint coefficient.

H. PROBLEM DESCRIPTION
The description above introduced the relationship among
performance metrics such as cost, makespan, resource uti-
lization and reliability. The focus of the multi-objective
scheduling problem addressed in this paper is on minimiz-
ing makespan and cost, and maximizing resource utilization
with reliability constraint. The workflow is represented as
WF = (T ,E). One or more solutions are generated as the
primary objective of scheduling 0 = (Loc,Ord,R), where
Loc = {loc(t0), loc(t1), . . . , loc(tn−1)} is the location of the
workflow task that would be executed. Ord = {ord(t0),
ord(t1), . . . , ord(tn−1)} is the order of data transfer tasks that
are primarily used to determine the tasks’ wait time for the
tasks. Additionally, the tasks in Ord must also represent the
dependency relationships. R = {R0,R1, . . . ,Ri, . . . ,Rn−1}
is the information set of the resources considered for the
total workflow, where Ri = (ti,VM (m; k),Tstart (ti), Tend (ti)).
We formally define the multi-objective optimization problem
as shown below.

Minimize: F (0) = (makespan, cost) . (20)

Maximize: F ′ (0) = (resource utilization) . (21)

Subject to: reliability ≥ relc. (22)

Some previous studies consider the location of the
executed task when designing scheduling methods [8], [9],
[16]. However, the transmission order of data is disregarded,
i.e., its priority is not considered. This is very crucial in
the course of designing the scheduling strategy. Besides,
when there are different task orders with the same execution
location, the scheduling results would be different. For this
reason, we consider the priority by which data is transmitted.

IV. THE PROPOSED ALGORITHM
Multi-objective optimization involves optimizing multi
conflicting objectives simultaneously. It is expressed
mathematically in Eq. (23).

Minimize :F
(
⇀x
)
=

(
f1
(
⇀x
)
, f2
(
⇀x
)
, . . . , fk

(
⇀x
))
, (23)

where k represents the number of objectives, ⇀x ∈ X
is the decision variables’ vector and X is the decision
space. Usually, several solutions can be derived using
Multi-Objective-Optimization but researchers consider
Pareto dominance to compare obtained solutions.
For ⇀x 1,

⇀x 2 ∈ X ,
⇀x 1 is said to dominate ⇀x 2 if and only if

∀i : fi
(
⇀x 1
)
≤ fi

(
⇀x 2
)
∧ ∃j : fj

(
⇀x 1
)
< fj

(
⇀x 2
)
. (24)

In this paper, a solution ⇀x
∗
is Pareto optimal if no other

solution dominates it. The Pareto front is the set of optimal

solutions within the objective space. For the multi-cloud
workflow scheduling problem considered in this paper,
the 0∗ schedule dominates 0 if both cost and makespan
are less than that in 0 or at least, one of them is less. The
workflow scheduling problem is an NP-complete problem,
therefore, it is recommended to use a convergent approach for
suboptimal solutions. Nevertheless, an approach that has been
proven successful for solving such problems is Evolutionary
Algorithms (EA) [16], [39]–[45].

The FR-MOS algorithm proposed in this paper can yield
solutions that show different cost-makespan trade-offs of
which cloud users can select from. FR-MOS algorithm uses
PSO (which is also from the class of EAs) to solve the prob-
lem of multi-objective and multi-cloud workflow scheduling.
Considering the unique properties of multi-cloud scheduling,
current coding strategies cannot be applied directly in our
case. Therefore, we compare our proposed algorithm that
is based on PSO with the method developed by [21] in
a multi-cloud environment. Moreover, the authors in [21]
compared the MOS algorithm with two other algorithms
CMOHEFT and RANDOM. They showed that MOS algo-
rithm outperformed CMOHEFT and RANDOM algorithms.
Based on this premise, we re-implemented only MOS algo-
rithm for comparison since it is the best of the studied
algorithms in [21], the benchmark.

A. PARTICLE SWARM OPTIMIZATION (PSO)
PSO was developed by Kennedy and Eberhart in the year
1995. It was developed as a swarm intelligence algorithm
classed as an evolutionary computational method [46]. PSO
is quite simple and efficient. Moreover, it simulates the
hunting behavior of birds which makes it attract a lot of
attention. Initially, the PSO algorithm was used to find the
solution for single-objective optimization problems. Its great
search potential and capacity led to its expansion for solving
multi-objective problems [39], [43], [47]. The basic compo-
nent of PSO is the particle that moves through the search
space. The direction and velocity are used to determine the
motion of the particle. The velocity is derived by considering
a combination of the best historical positions with random
disturbances. Its velocity and position update functions are
provided in Equations (25) and (26), respectively.

⇀v i ← w.⇀v i + ϕ1.rd1.
(
⇀pi −

⇀x i
)
+ ϕ2.rd2.

(
⇀gi −

⇀x i
)
, (25)

⇀x i ←
⇀x i +

⇀v i, (26)

where w is the weight of inertia, ϕ1 and ϕ2 are positive
integers and rd1, rd2 ∈ [0, 1] are random numbers gen-
erated by uniform distribution [48]. Each particle can be
represented by a three-dimensional vector: the best local
position⇀pi, the current position

⇀x i and its velocity
⇀v i. Position

⇀x i indicates a filter solution which is determined by the PSO
algorithm.Whenever the fitness value for the current position
⇀x i is better than the fitness value of the previous position, the
current position is stored in the vector ⇀pi. Finally, the best

24314 VOLUME 8, 2020

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

global position ⇀gi for all particles is determined through the
particles’ communication [49].

The proposed FR-MOS algorithm for the multi-cloud
environment (described in Algorithm 1) is based on PSO.
The parameters (for scheduling and PSO) are first initialized
(lines 1-6). Thereafter, the performance parameters are eval-
uated during the workflow scheduling process (lines 17-26).
Then, the method to select the feasible solution under two
reliability constraints is applied [41] as follows: 1) For pos-
sible solutions, the fittest solution is the best (lines 28-31).
2) If all solutions are not feasible, the solution with the
least violation of the constraint will be chosen as the best
solution [39]. Therefore, only feasible solutions will be stored
(lines 35-40). For more than one optimal solution resulting
from a multi-objective problem, the selection method is used
to determine the optimal position (line 43). The algorithm
continues until it meets the end condition (line 7).

B. CODING STRATEGY
In this study, tasks assigned to optimal locations to execute
data transmissions are arranged based on the order of each
task. As earlier mentioned, this is to address MOS prob-
lems. The coding strategy deployed in this paper is given in
Eq. (27).

0c = (loc (t0) , loc (t1) , . . . , loc (tn−1) ,

ord (t0) , ord (t1) , . . . , ord (tn−1)). (27)

The number of parameters in 0c denotes the dimension of
a particle, i.e., � = 2·n (see Eq. (27)). The positions from 0
to n − 1 determine the types of VMs allocated for the tasks.
Table 5 shows the search space provided by the three IaaS
platforms considered in this study using different types of
VMs for all tasks. The parameter loc(ti) of each task ti consid-
ers two types of information: the specific type of VM and the
execution location. The ord(ti) is the task order coordinate
which affects the task’s waiting time. Figure 2 shows the
encoding plan of the workflow.

In Algorithm 2, the dependencies between tasks must be
followed by the order of tasks, i.e., task t1 is executed before
task t2 if t1 is the predecessor of task t2 and t2 follows t1 in
string Ord. The set of schedulable tasks is first initialized,
i.e., α = {t0} (line 2). In (line 3) the two sets of scheduled
tasks γ and waiting tasks β are set to empty. We can see
here that the location in search space is recorded by the
flag (line 4). Then set space = [0, 0] to indicate the entry
task position that cannot be changed (line 5). The proper
solution is selected by using the Euclidean distance (lines
11-15) to remove the selected position from the search space
(line 16). In the end, all tasks will be tested and attached to
a schedulable set α(lines 20− 24). Sequentially, the search
space is updated (line 26) to ensure a unique search space
for each task in the existing schedulable task set α. Our
proposed algorithm yields a better trade-off compared to
MOS, which is considered as a novel method that deploys the
PSO coding plan to manage workflow. Algorithms 1 and 2

Algorithm 1 FR-MOS
BEGIN
1. Set the number of particles Np
2. Set A = ∅; //

initially empty archive, record non dominated solution
3. initialize {⇀v i, Exi, Epi, Egi}Ni=1;

// random location and velocity
4. initialize {reliability= makespan =cost= utilization =

0};
5. Set {Epi = Exi, Egi =, Exi}

N
i=1;

6. calculate {pi, gi}Ni=1;
7. While idx < NIT //NIT is the number of iteration time
8. for each particle i to NP
9. Evi← w.Evi + ϕ1.rd1. (Epi − Exi)+ ϕ2.rd2.(Egi−

Exi); //update velocity
10. Exi← Exi + Evi; // update position
11. for task ti in Ord//traverse tasks in order
12. if ti = t0//entry task
13. Set Tstart (ti) = 0; //

this is also the start time of workflow
14. else
15. Set Tstart (ti) according to Eq. (2) ;
16. end if
17. Compute Trece (ti) based on Eq. (6) ;
18. Compute Texec (ti) based on Eq. (7) ;
19. Compute Tend (ti) based on Eq. (8) ;
20. Compute the rel (ti) based on Eq. (18) ;
21. end for
22. Calculate makespan according to Eq. (9) ;
23. Calculate cost according to Eq. (15) ;
24. Calculate resource utilization according

to Eq. (17) ;
25. Set reliability coefficient ρ according

to Eq.(34);
26. Calculate reliability according to Eq. (19) ;
27. Define θ (Exi) = max(0, relc − reliability)
28. If θ (Exi) == 0 ∧ θ (Epi) == 0//

Exi and Epi are all feasible solutions
29. If Exi 4 Epi ∨ (Exi 6≺ Epi ∧ Epi 6≺ Exi)//

update personal Epi
30. Set Epi = Exi;
31. end if
32. else
33. Set Epi = Ex ′ = argmin {θ (Exi) , θ (Epi)} ;
34. end if
35. If θ (Exi) == 0//

only the feasible solution will be added to A
36. for ∀Ex ∈ A ∧ Exi 6≺ Ex// update A
37. A = {Ex ∈ A|Ex 6≺ Exi}; //

remove points dominated by Exi
38. A = A ∪ Exi; //add Exi to A
39. end for
40. end if
41. idx ++
42. end for
43. Randomly select global optimal psition Egi;
44. end while
END

VOLUME 8, 2020 24315

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

TABLE 5. Different VM types of search space.

FIGURE 2. Encoding approach of workflow.

FIGURE 3. Structure of scientific workflows [21].

must be integrated to obtain near-optimal multi-objective
solutions.

C. SCHEDULING GENERATION
In the FR-MOS algorithm, the scheduling strategy involves
computing the fitness value for each particle, which is used
to convert the position of particle 0c into a workflow 0.
The start time must be calculated to find the makespan for
each task (lines 12-16). Next, receiving data time Trece(ti),
task execution time Texec(ti) and end time Tend (ti) are calcu-
lated (lines 17-19). Then, the reliability of the task is found
(line 20). Lastly, the cost, makespan, resource utiliza-
tion and reliability of workflow scheduling are calculated
(lines 22-26).

D. PERFORMANCE MEASUREMENT
Multipurpose solutions are unlikely to be evaluated on only
one of the performance aspects. Here, we use three metrics:
Q-metric, S-metric and FS-metric. The essence of using these

Algorithm 2 Order tasks
BEGIN
1. Initialize
2. α = {ti} ; //schedulable entry task t0
3. γ = β = ∅; //

the set of scheduled tasks and temporary tasks
4. flag = 0; //record location in search space
5. space = [0, 0] //search space
6. end Initialize
7. while α 6= ∅
8. flag = flag+ |α| ;
9. for ti in α
10. Put all succers of task ti into β;
11. Evi←w.Evi+ϕ1.rd1. (Epi−Exi)+ϕ2.rd2. (Egi−Exi) ;
12. Exi← Exi + Evi;
13. ifxi /∈ space
14. xi = (x ′i : min(

∣∣x ′i − xi∣∣ , xi ∈ space)
15. end if
16. space = space−{xi} ;
17. γ = γ + {ti} ; //

add task to the set of scheduled tasks
18. α = α − {ti} ; //remove task from α
19. end for
20. for ti in β
21. if pre (ti) ∈ γ

22. α = α + {ti} ; //add new task to α
23. end if
24. end for
25. Clearβ;
26. space = [flag,flag+ |α| − 1] ; //

update the search space
27. end while
END

metrics is to measure the quality of the Pareto fronts found by
different algorithms [43]. In particular, to assess the level of
convergence of multi-objective algorithms A and B, Q-metric
can be deployed [50] [51] as shown in Eq. (28).

Q (A,B) = |9| / |Y | . (28)

9 = ϒ∩ SA and Y is the set of SA ∪ SB. SA and SB denote
two sets of Pareto optimal results for two multi-objective
algorithms A and B. Algorithm A has a better performance
compared to Algorithm B if and only if Q(A,B) > Q(B, A)
or Q(A,B) > 0.5. FS metric is used to determine the Pareto
front space size. This is done by using an algorithm in [48].
It is computed in Eq. (29) [31].

FS =

√√√√ m∑
i=1

min
(x0,x1)εSA×AS

(fi (x0)− fi (x1))2, (29)

where fi(x0) and fi(x1) are two values of one objective
function. A larger value of FS means that the Pareto front has

24316 VOLUME 8, 2020

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

better diversity. To determine the level of uniformity of the
solutions, we adopt the S-metric as computed in Eq. (28).

s =

√√√√ NP∑
i=1

(d ′i − d̄
′)
2
/

NP, (30)

where the number of Pareto solutions is NP and d ′i calculates
the distance between the members of Pareto front set.

d̄ ′ = (
NP∑
i=1

d ′i)

/
NP. (31)

As opposed to FS-metric and Q-metric where a larger value
is preferred, a smaller S-metric implies the algorithm has
discovered a more uniform solution.

V. PERFORMANCE EVALUATION
In this section, we perform several experiments to evaluate
the time complexity of the proposed FR-MOS algorithm. The
simulation results are discussed using a real-world workflow
and constraints.

A. EXPERIMENTAL SETUP
The FR-MOS algorithm was implemented on Workflowsim
1.0 using i7 6 cores and 16 GB RAMmachine. The four real-
life scientific workflows considered in this experiment are
Montage, LIGO, SIPHT and CyberShake. According to the
uniform distribution, the sizes of input/output are in the range
[10,100] and their compute units are [1,32], respectively. The
random values rd1 and rd2 are generated by uniform distri-
bution in the range of [0, 1]. The structure of the scientific
workflow is shown in Figure 4. We set the bandwidth to
0.1 G/s if the VMs are located within the same cloud and
the bandwidth is 0.05 G/s if the VMs are located within dif-
ferent clouds. Moreover, the failure coefficients of different
clouds (Amazon EC2, Microsoft Azure and Google Compute
Engine) are λ1 = 0.001, λ2 = 0.003 and λ3 = 0.002, respec-
tively. In themulti-objective problem considered in this paper,
the reliability of the workflow should be greater or equal to
the reliability constraint in Eq. (22). The maximum reliability
is calculated by using Eq. (19).

n∏
i=1

relmax (ti) = relmax . (32)

FR-MOS algorithm is based on PSO, where
ϕ1 = ϕ2 = 2.05,w = 0.5 and the number of particles
NP = 50. For the MOS algorithm, the number of compen-
sation solutions NS = 25, the repeat time NIT = 1000
and repeat programming is 10 times. To provide sufficient
reliability for each workflow, in addition to the maximum
workflow reliability, we also calculate the minimum reliabil-
ity (relmin) of workflow. Then, users set workflow reliability
constraints as follows:

relc = relmin + ρ.
(
relmax − relmin

)
, (33)

where ρε [0,1]. According to our proposed algorithm,
the value of reliability constraints coefficient ρ can be set FIGURE 4. Flowchart of FR-MOS algorithm.

VOLUME 8, 2020 24317

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

FIGURE 5. The relation between resource utilization and reliability
constraint coefficient (ρ).

based on the result of the fuzzy logic resource utilization [37]
by using the following equation.

ρ=


0 if (utilization≤50)
utilization−50

10
if (utilization>50&& utilization<60)

1 otherwise
(34)

From Eq. (33), the reliability constraint must be in the
proper range [relmin, relmax]. By observing the behaviour of
FR-MOS algorithm while scheduling workflow, we observe
that the non-constancy between 50 and 60 produce bet-
ter makespan-cost trade-offs than MOS. Figure 5 shows
the relationship between resource utilization and reliability
constraint coefficient (ρ).

B. TIME COMPLEXITY ANALYSIS
The WHILE loop in FR-MOS algorithm (lines 7-44)
impacts greatly on the time complexity of the algorithm.
Each iteration determines the number of positions

and velocities, as updated by the dimension of the coding
method (lines 9-10). The makespan time complexity and
cost depend on the number of tasks, therefore, one particle
has O(n) time complexity (lines 11-21). Besides, updating
set A with the possible solutions required the worst time
O(Ns) (lines 36-39). Task ordering strategy is executed only
once for each workflow (see Algorithm 2) and its time
complexity could be ignored. Normally, O(NIT .NP.n) is the
time complexity of the FR-MOS algorithm.

C. SIMULATION RESULTS
Figure 6 shows the makespan-cost trade-offs for MOS and
FR-MOS on different workflows.

Generally, FR-MOS algorithm provides the optimal
makespan-cost trade-offs compared to the MOS algorithm,
in the scientific workflows considered. Table 6 highlights the
multi-objective performance metrics in Figure 6. If Q-metric
set True, that means the FR-MOS algorithm is better than the
MOS algorithm.

Table 6 shows that the value of Q-metrics Q(FR-MOS,
MOS) is True for all workflows. This indicates that the
Pareto solutions of the FR-MOS are always superior to MOS,
which implies the FR-MOS algorithm has the best result
in terms of the convergence of multi-objectives. The values
of the FS-metric of the FR-MOS algorithm are higher than
those of the MOS algorithm for all workflows. For example,
the FS-metric value for Montage workflow of FR-MOS is
1.9 (Table 6) in contrast to 1.7 for MOS. This means that
FR-MOS produces better diversity than MOS. As regards
S-metric, the FR-MOS algorithm has a lower value. For
instance, the value of S-metric for SIPHT workflow of the
FR-MOS is 0.40 (Table 6), which is smaller than MOS’. This
means that FR-MOS algorithm produces better uniformity in
the Pareto front than the MOS algorithm.

FIGURE 6. The trade-offs of makespan-cost on scientific workflow.

24318 VOLUME 8, 2020

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

FIGURE 7. Effect of increasing output data size.

FIGURE 8. Trade-offs of makespan-cost for different reliability constraints.

TABLE 6. Multi-objective performance metrics.

In order to sequentially compare the trade-offs inmakespan
and cost using different output data size and a mon-
tage workflow structure-based simulation, the experiment

considers the compute unit [1, 32] and output data size
[10, 100] as a baseline. On the other hand, the output data
size increased to [50, 100]. Figure 7 shows that the simulation
results in Figure 7(b) is higher than the results in Figure 7(a).
This is because the increasing output data size needs more
time to process. Notice that the results of FR-MOS are better
than MOS in all cases in Figure 7.

Figure 8 shows the comparison between the FR-MOS
algorithm and MOS with different reliability constraints.
In the FR-MOS algorithm, we make reliability constraints
depend on the fuzzy logic. This is applied to the result of
resource utilization so that each workflow has a different
reliability constraint associated with its resource utilization
according to Equations (16), (17) and (34). From Equa-
tions (18) and (19), high workflow reliability was obtained
when the rent time of VM is low. However, increasing the
reliability constraint makes the workflow’s makespan low
and increases the cost. Thus, a low VM rent time can be

VOLUME 8, 2020 24319

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

FIGURE 9. The trade-offs of makespan-cost on different failure coefficient.

obtained when the VM executes tasks with high performance.
FR-MOS algorithm can always yield sufficient Pareto solu-
tions and perform better than the MOS algorithm, regardless
of its reliability constraints.

We can see in Section 3.F that the workflow reliabil-
ity depends on the failure coefficient, such as λm = 0
{m|m = 1, 2, 3}. The reliability of the task will be 1 and it is
independent of the rent time of VM. The task ti chooses the
VM with low cost and low performance. The results of two
different groups of failure coefficient shown in Figure 9 are
[λ1, λ2, λ3] = [0.001, 0.003, 0.002] and [λ1, λ2, λ3] =
[0, 0, 0]. In the second case, we can see that all the clouds in
IaaS platforms are failure-free and the result of its makespan-
cost trade-off is better than the first case.

In summary, this study creates three groups of reliability
constraints (i.e., high-reliability constraint, low-reliability
constraint and non-consistency between them) depending
on the resource utilization. With high-reliability constraints,
the makespan is always low and the cost is high due to
high utilization. For low-reliability constraints, the makespan
becomes high and the cost is low. Also, the non-constancy
constraint is used to adjust the constraint function when the
resource utilization cannot be classified as high or low.

Thus, the disparity between low and high-reliability con-
straints produced better makespan-cost trade-offs than MOS
whose reliability constraint coefficient is defined by users.

VI. CONCLUSION
In this paper, we proposed a multi-objective scheduling
algorithm with fuzzy resource utilization (FR-MOS). The
algorithm deploys the particle swarm optimization (PSO)
strategy for scheduling real-life scientific workflows in a
multi-cloud environment. The main goal of this algorithm
is to minimize cost and makespan considering the relia-
bility constraints, where the constraint coefficient is deter-
mined by the utilization of cloud resources. This study
focused on virtual machines (VMs) of three commercial
cloud providers (Amazon EC2, Microsoft Azure and Google
compute engine). We noticed that it is essential that users pay
more attention to the entire workflow reliability considering
the failure coefficient of different cloud platforms while
scheduling tasks to VMs. Also, reliability is one of the

most significant qualities of service requirements that must
be considered by the users when mapping tasks to VMs
in different platforms. To solve this problem, our proposed
algorithm (FR-MOS) considers the location of executed tasks
and their order of data transmission concurrently. Simula-
tion results show that FR-MOS algorithm outperforms the
basic MOS algorithm in relation to the multi-objective per-
formance metrics studied. As future work, we will extend
our workflow scheduling strategy for achieving fault toler-
ance in multi-cloud environment. Also we would consider
the prospects of scheduling workflows to reduce energy
consumption in a hybrid cloud environment.

REFERENCES
[1] S. Aslam, S. U. Islam, A. Khan, M. Ahmed, A. Akhundzada, and

M. K. Khan, ‘‘Information collection centric techniques for cloud resource
management: Taxonomy, analysis and challenges,’’ J. Netw. Comput.
Appl., vol. 100, pp. 80–94, Dec. 2017.

[2] V. Chang and G. Wills, ‘‘A model to compare cloud and non-cloud storage
of big data,’’ Future Gener. Comput. Syst., vol. 57, pp. 56–76, Apr. 2016.

[3] M. H. Ferdaus,M.Murshed, R. N. Calheiros, and R. Buyya, ‘‘An algorithm
for network and data-aware placement of multi-tier applications in cloud
data centers,’’ J. Netw. Comput. Appl., vol. 98, pp. 65–83, Nov. 2017.

[4] P.Mell and T. Grance, ‘‘Effectively and securely using the cloud computing
paradigm,’’ NIST, Inf. Technol. Lab., vol. 2, no. 8, pp. 304–311, Oct. 2009.

[5] G. Sun, D. Liao, D. Zhao, Z. Xu, and H. Yu, ‘‘Live migration for multiple
correlated virtual machines in cloud-based data centers,’’ IEEE Trans. Serv.
Comput., vol. 11, no. 2, pp. 279–291, Mar. 2018.

[6] S. Ghazouani and Y. Slimani, ‘‘A survey on cloud service description,’’
J. Netw. Comput. Appl., vol. 91, pp. 61–74, Aug. 2017.

[7] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, ‘‘QoS guarantees and service
differentiation for dynamic cloud applications,’’ IEEE Trans. Netw. Serv.
Manage., vol. 10, no. 1, pp. 43–55, Mar. 2013.

[8] Z. Li, J. Ge, H. Yang, L. Huang, H. Hu, H. Hu, and B. Luo, ‘‘A security
and cost aware scheduling algorithm for heterogeneous tasks of scientific
workflow in clouds,’’ Future Gener. Comput. Syst., vol. 65, pp. 140–152,
Dec. 2016.

[9] M. A. Rodriguez and R. Buyya, ‘‘Deadline based resource provisioningand
scheduling algorithm for scientific workflows on clouds,’’ IEEE Trans.
Cloud Comput., vol. 2, no. 2, pp. 222–235, Apr. 2014.

[10] W. Song, F. Chen, H.-A. Jacobsen, X. Xia, C. Ye, and X. Ma, ‘‘Scientific
workflow mining in clouds,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 10, pp. 2979–2992, Oct. 2017.

[11] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, and B. Luo, ‘‘Cost and energy aware
scheduling algorithm for scientific workflows with deadline constraint in
clouds,’’ IEEE Trans. Serv. Comput., vol. 11, no. 4, pp. 713–726, Jul. 2018.

[12] B. Lin, W. Guo, G. Chen, N. Xiong, and R. Li, ‘‘Cost-driven scheduling
for deadline-constrained workflow on multi-clouds,’’ in Proc. IEEE Int.
Parallel Distrib. Process. Symp. Workshop, May 2015, pp. 1191–1198.

24320 VOLUME 8, 2020

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

[13] N. Sooezi, S. Abrishami, and M. Lotfian, ‘‘Scheduling data-driven work-
flows in multi-cloud environment,’’ in Proc. IEEE 7th Int. Conf. Cloud
Comput. Technol. Sci. (CloudCom), Nov. 2015, pp. 163–167.

[14] I. Gupta, M. S. Kumar, and P. K. Jana, ‘‘Compute-intensive workflow
scheduling in multi-cloud environment,’’ in Proc. Int. Conf. Adv. Comput.,
Commun. Inform. (ICACCI), Sep. 2016, pp. 315–321.

[15] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid,
‘‘Resource scheduling for infrastructure as a service (IaaS) in cloud com-
puting: Challenges and opportunities,’’ J. Netw. Comput. Appl., vol. 68,
pp. 173–200, Jun. 2016.

[16] Z. Zhu, G. Zhang, M. Li, and X. Liu, ‘‘Evolutionary multi-objective
workflow scheduling in cloud,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27,
no. 5, pp. 1344–1357, May 2016.

[17] E. Jeannot, E. Saule, and D. Trystram, ‘‘Optimizing performance and
reliability on heterogeneous parallel systems: Approximation algorithms
and heuristics,’’ J. Parallel Distrib. Comput., vol. 72, no. 2, pp. 268–280,
Feb. 2012.

[18] S. Hwang and C. Kesselman, ‘‘Grid workflow: A flexible failure handling
framework for the grid,’’ in Proc. 12th IEEE Int. Symp. High Perform.
Distrib. Comput., Jan. 2004, pp. 126–137.

[19] D. Poola, K. Ramamohanarao, and R. Buyya, ‘‘Enhancing reliability of
workflow execution using task replication and spot instances,’’ACMTrans.
Auton. Adapt. Syst., vol. 10, no. 4, pp. 1–21, Feb. 2016.

[20] A. Singh and K. Chatterjee, ‘‘Cloud security issues and challenges: A sur-
vey,’’ J. Netw. Comput. Appl., vol. 79, pp. 88–115, Aug. 2017.

[21] H. Hu, Z. Li, H. Hu, J. Chen, J. Ge, C. Li, and V. Chang, ‘‘Multi-objective
scheduling for scientific workflow in multicloud environment,’’ J. Netw.
Comput. Appl., vol. 114, pp. 108–122, Jul. 2018.

[22] S. Singh and I. Chana, ‘‘QoS-aware autonomic resource management in
cloud computing: A systematic review SUKHPAL,’’ ACM Comput. Surv.,
vol. 48, no. 3, pp. 1–46, 2016.

[23] R. N. Calheiros and R. Buyya, ‘‘Meeting deadlines of scientific workflows
in public clouds with tasks replication,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 7, pp. 1787–1796, Jul. 2014.

[24] L. Zeng, B. Veeravalli, and A. Y. Zomaya, ‘‘An integrated task computa-
tion and data management scheduling strategy for workflow applications
in cloud environments,’’ J. Netw. Comput. Appl., vol. 50, pp. 39–48,
Apr. 2015.

[25] L. Zeng, B. Veeravalli, and X. Li, ‘‘SABA: A security-aware and budget-
aware workflow scheduling strategy in clouds,’’ J. Parallel Distrib. Com-
put., vol. 75, pp. 141–151, Jan. 2015.

[26] J. J. Durillo, H. M. Fard, and R. Prodan, ‘‘MOHEFT: A multi-objective
list-based method for workflow scheduling,’’ in Proc. 4th IEEE Int. Conf.
Cloud Comput. Technol. Sci., Dec. 2012, pp. 185–192.

[27] L. Zhang, K. Li, C. Li, and K. Li, ‘‘Bi-objective workflow scheduling of the
energy consumption and reliability in heterogeneous computing systems,’’
Inf. Sci., vol. 379, pp. 241–256, Feb. 2017.

[28] S. Kianpisheh, N. M. Charkari, and M. Kargahi, ‘‘Ant colony based
constrained workflow scheduling for heterogeneous computing systems,’’
Cluster Comput., vol. 19, no. 3, pp. 1053–1070, Sep. 2016.

[29] N. Kaur and S. Singh, ‘‘A budget-constrained time and reliability opti-
mization bat algorithm for scheduling workflow applications in clouds,’’
Procedia Comput. Sci., vol. 98, pp. 199–204, 2016.

[30] D. Hutchison and J. C. Mitchell, ‘‘Swarm, evolutionary, and memetic
computing,’’ in Proc. 2nd Int. Conf. SEMCCO, Visakhapatnam, India,
Dec. 2011, pp. 16–18.

[31] R. Garg and A. K. Singh, ‘‘Multi-objective workflow grid scheduling
using ε-fuzzy dominance sort based discrete particle swarm optimization,’’
J. Supercomput., vol. 68, no. 2, pp. 709–732, May 2014.

[32] I. Casas, J. Taheri, R. Ranjan, and A. Y. Zomaya, ‘‘PSO-DS: A scheduling
engine for scientific workflow managers,’’ J. Supercomput., vol. 73, no. 9,
pp. 3924–3947, Sep. 2017.

[33] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, ‘‘Minimizing cost
and makespan for workflow scheduling in cloud using fuzzy dominance
sort based HEFT,’’ Future Gener. Comput. Syst., vol. 93, pp. 278–289,
Apr. 2019.

[34] C. Zhang, R. Green, and M. Alam, ‘‘Reliability and utilization evaluation
of a cloud computing system allowing partial failures,’’ in Proc. IEEE 7th
Int. Conf. Cloud Comput., Jun. 2014, pp. 936–937.

[35] S. Kianpisheh, N. M. Charkari, and M. Kargahi, ‘‘Reliability-driven
scheduling of time/cost-constrained grid workflows,’’ Future Gener. Com-
put. Syst., vol. 55, pp. 1–16, Feb. 2016.

[36] H. M. Fard, R. Prodan, and T. Fahringer, ‘‘Multi-objective list scheduling
of workflow applications in distributed computing infrastructures,’’ J. Par-
allel Distrib. Comput., vol. 74, no. 3, pp. 2152–2165, Mar. 2014.

[37] C. V. Negoita, ‘‘Fuzzy sets,’’ Fuzzy Sets Syst., vol. 133, no. 2, p. 275,
Jan. 2003.

[38] J. Mendel, ‘‘Fuzzy logic systems for engineering: A tutorial,’’ Proc. IEEE,
vol. 83, no. 3, pp. 345–377, Mar. 1995.

[39] J. E. Alvarez-Benitez, R. M. Everson, and J. E. Fieldsend, ‘‘A MOPSO
algorithm based exclusively on Pareto dominance concepts,’’ in Proc. Int.
Conf. Evol. Multi-Criterion Optim., 2005, pp. 459–473.

[40] M. Cafaro, G. Aloisio, G. Juve, and E. Deelman, Grids, Clouds and
Virtualization. London, U.K.: Springer, 2011, pp. 71–91.

[41] K. Deb, ‘‘An efficient constraint handling method for genetic algorithms,’’
Comput. Methods Appl. Mech. Eng., vol. 186, nos. 2–4, pp. 311–338,
Jun. 2000.

[42] H. Li and Q. Zhang, ‘‘Multiobjective optimization problems with compli-
cated Pareto sets, MOEA/D and NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 13, no. 2, pp. 284–302, Apr. 2009.

[43] J. Wei and M. Zhang, ‘‘A memetic particle swarm optimization for con-
strained multi-objective optimization problems,’’ in Proc. IEEE Congr.
Evol. Comput. (CEC), Jun. 2011, pp. 1636–1643.

[44] M. Li, S. Yang, and X. Liu, ‘‘Shift-based density estimation for Pareto-
based algorithms in many-objective optimization,’’ IEEE Trans. Evol.
Comput., vol. 18, no. 3, pp. 348–365, Jun. 2014.

[45] Z. Zhang, L. Cherkasova, and B. T. Loo, ‘‘Optimizing cost and perfor-
mance trade-offs for MapReduce job processing in the cloud,’’ in Proc.
IEEE Netw. Oper. Manage. Symp. (NOMS), May 2014, pp. 1–8.

[46] R. Eberhart and J. Kennedy, ‘‘A new optimizer using particle swarm
theory,’’ in Proc. 6th Int. Symp. Micro Mach. Hum. Sci., vol. 7803, 1995,
pp. 39–43.

[47] W.-F. Leong and G. Yen, ‘‘PSO-based multiobjective optimization with
dynamic population size and adaptive local archives,’’ IEEE Trans. Syst.
Man, Cybern. B, Cybern., vol. 38, no. 5, pp. 1270–1293, Oct. 2008.

[48] H.-P. Dai, D.-D. Chen, and Z.-S. Zheng, ‘‘Effects of random values for
particle swarm optimization algorithm,’’ Algorithms, vol. 11, no. 2, p. 23,
Feb. 2018.

[49] Y. D. Valle, G. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez, and
R. Harley, ‘‘Particle swarm optimization: Basic concepts, variants and
applications in power systems,’’ IEEE Trans. Evol. Comput., vol. 12, no. 2,
pp. 171–195, Apr. 2008.

[50] W. Jing, Z. Yongsheng, Y. Haoxiong, and Z. Hao, ‘‘A trade-off Pareto
solution algorithm for multi-objective optimization,’’ in Proc. 5th Int. Joint
Conf. Comput. Sci. Optim., Jun. 2012, pp. 123–126.

[51] L. Wang and K. Chen, ‘‘Advances in natural computation,’’ in First Inter-
national Conference, ICNC 2005, Changsha, China, August 27-29, 2005,
Proceedings. Springer, 2005.

MAZEN FARID EBRAHIM received the
bachelor’s degree in computer science and engi-
neering from the University of Aden, and the mas-
ter’s degree in computer science from Universiti
Putra Malaysia, where he is currently pursuing
the Ph.D. degree with the Faculty of Computer
Science and Information Technology. His research
interests fall under computer networks, workflow
scheduling, and cloud computing.

ROHAYA LATIP received the bachelor’s degree in
computer science from the University Technology
Malaysia, Malaysia, in 1999, and the M.Sc. degree
in distributed systems and Ph.D. degree in dis-
tributed database from University Putra Malaysia.
She is currently the Head of the Department of
Communication Technology and Network, where
she is also an Associate Professor with the Faculty
of Computer Science and Information Technology.
She is also the Head of the HPC Section, Univer-

sity Putra Malaysia, from 2011 to 2012, and consulted the Campus Grid
project and also the Wireless for hostel in Campus UPM project. She is
also a Co-Researcher at the Institute for Mathematic Research (INSPEM).
Her research interests include big data, cloud and grid computing, network
management, and distributed database.

VOLUME 8, 2020 24321

M. Farid et al.: Scheduling Scientific Workflow Using Multi-Objective Algorithm

MASNIDA HUSSIN (Member, IEEE) received
the Ph.D. degree from The University of Sydney,
Australia, in 2012. She is currently an Associate
Professor with the Department of Communication
Technology and Network, Faculty of Computer
science and Information Technology, Universiti
PutraMalaysia,Malaysia. Hermain research inter-
ests are in QoS and resource management for
distributed systems such as grid and cloud. She
was also involved in green computing project. She

received Huawei Technology Certification, in 2012, as a System Instruc-
tor, that makes her specialized in configuring Huawei network computer
components. She has also published several papers that are related to parallel
and distributed computing.

NOR ASILAH WATI ABDUL HAMID received
the Ph.D. degree from the University of Ade-
laide, in 2008. In 2011, she did her postdoctoral
research at the High Performance Computing Lab,
The George Washington University, Washington,
D.C., USA. She is currently anAssociate Professor
with the Faculty of Computer Science and Infor-
mation Technology, University Putra Malaysia,
where she is also an Associate Researcher of high
speed machine with the Institute for Mathematical

Research (INSPEM). Her research interests are in parallel and distributed
high performance computing, cluster computing, computational science, and
other applications of high-performance computing.

24322 VOLUME 8, 2020

	INTRODUCTION
	CONTRIBUTIONS

	RELATED WORKS
	SCHEDULING MODEL
	WORKFLOW MODEL
	MULTI-CLOUD ARCHITECTURE
	MAKESPAN COMPUTATION
	COST COMPUTATION
	RESOURCE UTILIZATION COMPUTATION
	RELIABILITY COMPUTATION
	FUZZY LOGIC
	PROBLEM DESCRIPTION

	THE PROPOSED ALGORITHM
	PARTICLE SWARM OPTIMIZATION (PSO)
	CODING STRATEGY
	SCHEDULING GENERATION
	PERFORMANCE MEASUREMENT

	PERFORMANCE EVALUATION
	EXPERIMENTAL SETUP
	TIME COMPLEXITY ANALYSIS
	SIMULATION RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	MAZEN FARID EBRAHIM
	ROHAYA LATIP
	MASNIDA HUSSIN
	NOR ASILAH WATI ABDUL HAMID

