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ABSTRACT In this article, a new test is proposed for partially linear single-index models (PLSIM) based
on the pairwise distances of the sample points, to test heteroscedasticity. The statistic can be formulated as a
U statistic and does not have to estimate the conditional variance function by using nonparametric methods,
such as kernel, local polynomial, or spline. We derive a computationally feasible approximation to deal
with the complexity of the limit zero distribution under the null hypothesis. We prove that the proposed
bootstrap procedure is valid approximation to the null distribution of the test. It shows that this statistic has
an asymptotically normal distribution. The algorithmic program of this test method is easy to implement
and has faster convergence than some existing methods. In addition, convergence rate of the statistic does
not depend on the dimensions of the covariates, which greatly reduces the impact of the dimensional curse.
Finally, we give the numerical simulations and a real data example.

INDEX TERMS Dimension reduction, heteroscedasticity, partially linear single-index models.

I. INTRODUCTION
Due to the disadvantages of non-parametric models, such as
curse of dimension, difficulty in interpretation and insuffi-
cient extrapolation ability, etc, some semi-parametric regres-
sion models are used to overcome these shortcomings. Based
on this, we study the following partially linear single-index
model (PLSIM), which is a very important semi-parametric
regression model:

Y = g(XT θ )+ ZTβ + ε, (1)

where X = (X1, · · · ,Xp)T ∈ Rp and Z = (Z1, · · · ,Zq)T ∈
Rq are covariates, g(·) is an unknown smooth link func-
tions, ε is an independent random error with mean zero
E(ε|X ,Z ) = 0. The parameter θ = (θ1, · · · , θp)T ∈ Rp

with ‖θ‖ = 1 and θ1 > 0, β = (β1, · · · , βq)T ∈ Rq are all
unknown parameter. At present, there are many literatures to
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study the estimation of the parameters and the link function,
see [1], [6], [9], [12]–[14], [16], [24], [27], [31].

We usually assume that the error terms in the PLSIM have
a common variance. However, actual statistics often have
heteroscedastic phenomena. Therefore, testing the statistical
data for heteroscedasticity is an important issue. Our objec-
tive is to detect variance heterogeneity in aforementioned
model (1) by testing the following hypothesis

H0 : ∃ σ
2 > 0, E(ε2|X ,Z ) = σ 2(X ,Z ) = σ 2,

H1 : ∀ σ
2 > 0, E(ε2|X ,Z ) 6= σ 2. (2)

UnderH0, the constant σ 2 is an unconditional variance E(ε2).
Consequently, the heteroscedasticity test in (2) is equivalent
to determining whether the conditional variance function
E(ε2|X ,Z ) is equal to the unconditional variance E(ε2).

Many authors have studied the heteroscedasticity test of
common regression model, such as the literature [4], [7],
[8], [10], [17], [18], [20], [22], [23], [28], [29]. However,
there is not much literature on the heteroscedasticity test
of PLSIM. Reference [30] studied the heteroscedasticity
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checks for single index models and [26] studied the detection
of marginal heteroscedasticity for PLSIM. A drawback of
some existing methods is the dimensionality problem due
to the estimation inefficiency for the multivariate nonpara-
metric function. Under the respective null hypotheses in
these papers, the test statistics converge to their weak limits.
When the dimension increases, the convergence speed for
most of them is generally slower. Therefore, the significance
level frequently cannot be well maintained when the limiting
null distribution is used in moderate sample size scenarios.
Asymptotically, these test statistics are less powerful for
detecting alternative models.

In this paper, we formulate the proposed test statistic as a
simple U-statistic for PLSIM based on the paired distances of
the sample points, to test heteroscedasticity. This statistic is
based on the weighted integral of the residual marked char-
acteristic function. The weight function plays an important
role in the proposed test statistic. The density function of a
spherical stable law is used as the weight function. Given this
particular choice, the weighted integral is transformed into
an unconditional expectation with a simple form. The pro-
posed statistic is based merely on pairwise distances between
points in a sample. To the best of our knowledge, however,
this study is the first to use characteristic function to detect
heteroscedasticity for PLSIM. For theoretical investigations,
the U-statistic theory can be applied instead of empirical
process theory, and we investigate its asymptotic proper-
ties under the null, fixed alternative, and local alternative
hypotheses. The asymptotic null distribution has a non-trivial
form as the same as most cases for U-statistics.

The rest of this article is organized as follows.
In Section II , the test procedure is presented and its asymp-
totic property is established. In Section III , we proposes a
simple bootstrap algorithm to detect heteroscedasticity for
the PLSIM. In Section IV , numerical studies to evaluate the
performance of the tests are reported. In Section V , we carry
out a real data example for illustrating the proposed method-
ology. Conclusion and discussion are given in Section VI .
Technical assumptions and proofs are provided in Appendix.

II. THE TESTING PROCEDURE AND
ASYMPTOTIC PROPERTIES
A. THE TEST STATISTIC
First, we let r = ε2 − σ 2 with σ 2

= E(ε2), W = (X ,Z ) ∈
Rp+q. So, we can easily get E(r|X ,Z ) = 0, under the hypoth-
esis H0 in (2). According to the uniqueness of the Fourier
transform of a function, we can do the following equivalent
substitution for H0:

H0 : φ(t) = E[reit
TW ] = 0, ∀t ∈ Rp+q. (3)

Because φ(t) is not a a statistic by itself, we can construct
the following quantity:

Dω =
∫
Rp+q
|φ(t)|2ω(t)dt, (4)

where ω(t) ≥ 0 is a suitable weight function. According to
the definition of complex modulus, we have

|φ(t)|2 = E[cos(tT (W −W ′))rr ′], (5)

where (W ′, r ′) is an independent copy of (W , r). By the ref-
erence [15], we can get the following characteristic function
of a spherical stable law in [25]:

φz(t) =
∫
Rp+q

cos(tT z)fa,p+q(z)dz = e−‖t‖
a
, (6)

where ‖·‖ is the Euclidean norm, and fa,p+q(·) denotes the
density of a spherical stable law in Rp+q with characteristic
exponent a ∈ (0, 2]. The spherical stable family includes
the multivariate Gaussian and Cauchy distributions as special
cases, for a = 2 and a = 1, respectively. See reference [15]
for the details.
We can choose the weight function fa,p+q(t), and get

Dω = E[e‖W−W
′
‖
a
rr ′]. (7)

If the dimension p+q ofW is high, we will have some dif-
ficulties in dealing with the integral problem. But we can get
a simple and closed formwithout involving high-dimensional
integral, by the aforementioned weight function. So the
hypothesis (2) is true if and only if Dω = 0, which can be
used as a criterion for this hypothesis testing problem. When
the i − th sample ri of r is available, we can estimate Dω by
its sample analogue.
Assume (Xi,Zi,Yi) = (Wi,Yi) are independently identical

distributed (i.i.d) samples from (X ,Z ,Y ) = (W ,Y ), and εi
are a independent random error with mean zero. We establish
the following test statistic:

Un =
1

n(n− 1)

n∑
i=1

∑
j 6=i

r̂ir̂jdij, (8)

where r̂i = ε̂2i − σ̂
2, ε̂i = Yi − (ĝ(XTi θ̂ ) + ZTi β̂), σ̂

2
=

n−1
n∑
i=1
ε̂2i , and dij = e−‖Wi−Wj‖

a
. ĝ(·), θ̂ and β̂ are the estima-

tors of g(·), θ andβ, respectively, using a two-stage estimation
method with a bandwidth parameter h (More details can be
seen in [13]). With the distance measure Dw and dij, one
advantage of this statistic is that we do not have to estimate the
conditional variance function E(ε2|X ,Z ). Obviously, Un is a
moment-based test statistic and is easy to implement.

B. ASYMPTOTIC PROPERTIES
In this section, the asymptotic properties of Un will be
presented.

First, under the null hypothesis, we give the following
theorem to state the limit distribution of Un.
Theorem 1: Assume conditions in the Appendix hold and

under the null hypothesis in (2), as n→∞ and h→ 0,
(i) if nh8→ 0, we have

nUn→
∞∑
k=1

λkS2k − E(r
2), (9)
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where Sk ,s are independent standard normal random vari-
ables, and λk ,s are the eigenvalues of the following integral
equation: ∫

r2j d̃ijφk (Aj)dF(Aj) = λkφk (Ai), (10)

where φk (Aj) are the associated orthonormal eigenfunctions;
A ≡ (W , r) ∼ F(A) and Ai ≡ (Wi, ri) are independent copies
of A, d̃ij = dij − E(dil + djl |Wi,Wj)+ E(d12) with l 6= i, j;
(ii) if nh8→∞, we have

√
nh−4(Un − a(n))→ N (0, σ 2

∗ ).

where a(n) = Q10 and σ 2
∗ > 0 are defined in the Appendix.

If nh8 → 0, define h(A1,A2) = r1r2d̃ij, due to
E(r2) < ∞, similar to the U -Statistics in reference [19],

we get E(h2(A1,A2)) < ∞ and
∞∑
k=1

λ2k = E(h2(A1,A2)).

So,
∞∑
k=1

λkSk converges in L2. As most cases for U-Statistics,

the above limit distribution of Un can not be applied directly
for computing critical values because λk ’ s are not easy to
obtain. If nh8 → ∞, the convergence rate is h4/

√
n. Since

it is difficult for us to directly calculate the critical value
of Un, a bootstrap approximation algorithm (in Section III )
is designed to get the critical values.

Next, the sequence local substitution of the sensitivity test
statistic we studied was cn1(W ), which have the following
form:

H1n : E(ε2|W ) = σ 2
+ cn1(W ), (11)

where σ 2
= E(ε2), cn is a sequence of numbers converging

to zero; E(12(W )) < ∞, and 1(W ) is a function about W .
UnderH1n, ri = ε2i −σ

2 can be rewritten as ri = ui+cn1(Wi),
where E(ui|Wi) = 0 and E(1(W )) = 0.
Then, we can get the following theorem based on the above

hypothesis.
Theorem 2: Assume conditions in the Appendix hold and

under the local alternative hypothesis in (11), as n→∞ and
h→ 0,

(i) if cn = n−1/2 and nh8→ 0, we have

nUn→
∞∑
k=1

λk (Sk + ak )2 − E(u2), (12)

where ak = E(1(W )φk (A));
(ii) if cn = n−1/2 and nh8→∞, we have

√
nh−4(Un − b(n))→ N (0, σ̃ 2

∗ ),

where b(n) = Q3n+Q4n+Q7n+Q10n and σ̃ 2
∗ > 0 are defined

in the Appendix;
(iii) if cn = n−b and 0 < b < 1/2, we have nUn→∞.
From this theorem, we can know that the test is still valid if

the local alternative converges to the null hypothesis at a rate
of n−1/2. However, the asymptotic distribution of Un when
nh8 → 0 is different from that when nh8 →∞. If we take a
slower rate of cn = n−b, 0 < b < 1

2 , the asymptotic power
will tend to 1, which shows that the test is consistent.

If we set cn be a fixed value c 6= 0, then H1n turns to be
the following hypothesisH1, that is, from the local alternative
hypothesis to the fixed alternative hypothesis:

H1 : E(ε2|W ) = σ 2
+ c1(W ) 6= σ 2. (13)

Then, we can obtain the following theorem under H1.
Theorem 3: Assume that conditions in the Appendix hold

and under the fixed alternative hypothesis in (13), as n→∞
and h→ 0,

(i) if nh8→ 0, we have
√
n(Un − E(r1r2d12))→ N (0, σ̃ 2), (14)

where σ̃ 2
= var(r1E(r2 d12 |W1 )− 2E(r1 d12)r1).

(ii) if nh8→∞, we have nUn→∞.
From this theorem, we know that, if nh8 → 0, the diver-

gence rate of Un is also n−1/2, which has a non-zero mean
asymptote. Furthermore, we can show that the convergence
rate of the statistic Un is significantly different under hypoth-
esis H0 and hypothesis H1, which does not depend on the
dimension of W under different hypothesis. If nh8 → ∞,
the asymptotic power of Un tends to 1.

III. PRACTICAL IMPLEMENTATION
Because it is difficult for us to get the estimates of λk in (10)
which involves a complex integral, we cannot directly calcu-
late the critical values ofUn. For this, the following bootstrap
approximation algorithm is designed to get the critical values.
The algorithm is divided into five steps, as shown below:

(1) For a given random sample {Xi,Zi,Yi}ni=1, use the two-
stage estimation procedure introduced in [13] to obtain esti-
mators β̂, θ̂ and ĝ(·). Here, the bandwidth h can be selected
by the generalized cross validation (GCV) method proposed
in [3]. More details can be seen in [13].

(2) Obtain the residuals ε̂i = Yi − ĝ(XTi θ̂ ) − ZTi β̂, i =
1, · · · , n, and then calculate the test statistic Un

Un =
1

n(n− 1)

n∑
i=1

∑
j 6=i

r̂ir̂jdij, (15)

where r̂i = {Yi − [ĝ(XTi θ̂ )+ Z
T
i β̂]}

2
− σ̂ 2, σ̂ 2

= n−1
n∑
i=1
ε̂2i ,

and dij = e−‖Wi−Wj‖
a
.

(3) Obtain the bootstrap error ε∗i by randomly resampling
with replacement from the set {ε̂i− ε̂, i = 1, · · · , n}with ε̂ =
n−1

∑n
i=1 ε̂i. Then, Y

∗
i = ĝ(XTi θ̂ )+ Z

T
i β̂ + ε

∗
i , i = 1, · · · , n

(4) Recalculate and obtain the new estimators ĝ∗(·), θ̂∗, β̂∗

using the two-stage estimation procedure. The bootstrap test
statistic U∗n is

U∗n =
1

n(n− 1)

n∑
i=1

∑
j 6=i

r̂∗i r̂
∗
j dij. (16)

where r̂∗i = (Yi − ĝ∗(XTi θ̂
∗) − ZTi β̂

∗)2 − σ̂ ∗2, σ̂ ∗2 =

n−1
n∑
i=1
ε̂∗2i , and dij = e−‖Wi−Wj‖

a
.
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(5) Repeat steps 3-4 N times, get the test statis-
tic U∗n,1, · · · ,U

∗
n,N . For a specified nominal level of

the test, the bootstrap p-value is calculated by p∗ =

N−1
N∑
m=1

I (U∗n,m > Un), where I (·) is an indicator function.

The above algorithm is valid approximation to the null
distribution of the Un test. Specific details are as described
in the following theorem.
Theorem 4: Assume conditions in the Appendix hold,

we have
(1) Under the hypothesis H0 or the hypothesis H1n with

cn → 0, the limiting conditional distribution of nU∗n |Fn is
the same as the limiting null distributions of the test statistic
nUn, where Fn = {Xi,Zi,Yi}ni=1.
(2) Under the assumption of H1, the limiting conditional

distribution of nU∗n |Fn is a finite limit, whichmay be different
from the limiting null distributions of the test statistic nUn.

The above theorem shows that the proposed algorithm can
control the size of the test statistic Un well. Next, we study
the power performance of this test. From Theorem 2.2, under
the hypotheses H1n with cn = n−b, 0 < b < 1/2, we can
get that nUn→∞. It shows that the proposed algorithm can
have asymptotic power 1 in this case. Under the hypotheses
H1n with cn = n−1/2, the proposed algorithm can still detect
the alternative hypotheses. From Theorem 2.3, under the
hypothesis H1, if nh8→∞, we can also get that nUn→∞.
It shows that the proposed algorithm can also have asymptotic
power 1 under the hypothesis H1. In summary, the proposed
algorithm is valid.

IV. NUMERICAL STUDIES
In this section, we investigate the performance of the pro-
posed test statistic with a finite sample size by numerical
studies. To assess the power performance, the following two
examples are designed and 1000 replications of the experi-
ment are taken to calculate empirical significance level and
powers at the significance level α = 0.05. The sample sizes
is n = 300, 800, and the number of bootstrap sample is set
to be B = 500. For comparison, the test statistic in [29], [30]
designed is also used and denoted as Tn, which is of the form

Tn =
1

n(n− 1)

n∑
i=1

∑
j 6=i

r̂ir̂jh
−p
0 K

(
Wi −Wj

h0

)
,

withK (·) being a kernel function and h0 being the bandwidth.
Example 1: We generate the data from the following

model:

Yi=ZTi β+2 exp
{
−3
(
XTi θ

)2}
+

(
δ

∣∣∣ZTi β+XTi θ ∣∣∣+0.5) εi,
(17)

where Xi = (Xi1, · · · ,Xip)T are i.i.d with the common uni-
form distribution on the p-dimensional cube [−1, 1]p; Zi =
(Zi1, · · · ,Ziq)T is set to the standard normal distribution; p+q
is set to be 4 (p = 3, q = 1) and 8 (p = 4, q = 4);
εi ∼ N (0, 1). The true parameters are β = (1, · · · , 1)T

and θ = (2/3, 1/3,−2/3, 0, · · · , 0)T . The null hypothesis
corresponds to δ = 0, whereas the alternative hypothesis
corresponds to δ 6= 0.

For the test statistics Un, Figure 1 shows the empirical
significance level and empirical powers of the proposed test
statistic for n = 300, p + q = 4 when a varies in (0, 2].
It is easy to see that (i) as long as a is not too small, the
proposed test statistics can control empirical sizes well; (ii)
when a is larger than 1.5, empirical significance level are
slightly bigger than 0.05; (iii) the empirical powers becomes
bigger as a increases. Thus, we suggest choosing a = 1.5.

FIGURE 1. Simulation results: (a) empirical significance level,
(b) empirical powers.

The power performance of the test statistics with n = 300,
800, p + q = 4, 8 and δ = 0, 0.5, 1, 1.5, 2 is shown
in Table 1. For the test statistic Tn, we use the Epanechnikov
kernel K (t) = 3/4(1 − t2)+ and use the leave one-out cross
validation to choose the proper bandwidth. From Table 1,
we can find that both Un and Tn can effectively control the
sizes when p + q = 4 or 8. When the sample size increases,
both Un and Tn have higher power and the deviation from the
hypothetical model is larger. Furthermore, the powers of Un
are larger than Tn, which is reasonable since Tn converges
to its weak limit at a very slow rate due to the impact of
bandwidth h0. In addition, when dimension p + q increases
from 4 to 8, the power of Un decreases. This result implies
that although the convergence rate of Un does not depend on
the dimension of covariates and the dimension does affect the
power performances in practice. However, we also notice that
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TABLE 1. Empirical significance level and empirical powers of Un, Tn for
H0 in example 1.

TABLE 2. Empirical significance level and empirical powers of Un, Tn for
H0 in example 2.

even when p + q = 8, the proposed test is still sensitive to
the alternatives hypotheses. Nevertheless when the dimension
p+ q is 8, Tn does not perform well.
Example 2: We generate the data from the following

model:

Yi=sin

{
π ((XTi θ )/

√
3−A)

(B−A)

}
+ZTi β+

(
δ

∣∣∣XTi θ+ZTi β∣∣∣+0.1)εi,
(18)

where θ = (1, · · · , 1)T /
√
p and other settings are the same

as those in Example 1.

FIGURE 2. (a) Scatter plots for Z T
i β̂ and Yi − ĝ(XT

i θ̂), (b) Scatter plots for
XT

i θ̂ and Yi − Z T
i β̂, (c) Y and residuals for the Delft data.

Table 2 lists the power performance ofUn and Tn under the
null hypotheses and alternative hypothesis. The conclusions
are similar to those of the model in Example 2. From the two
examples, we can conclude that a dimensionality effect exists
in the proposed test Un, but the effect is not serious as in
Zheng’s test Tn [29].

In summary, the proposed test is a good alternative for
testing heteroscedasticity.

V. REAL DATA EXAMPLE
In this section, a real data example is analyzed for illustration.
We consider the Delft dataset which comprises 308 full-scale
experiments. This dataset was performed at the Delft Ship
Hydromechanics Laboratory, which can be obtained from
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the website https://archive.ics.uci.edu/ml/machine-learning-
databases/00243/. These experiments derived from a par-
ent form closely related to the ‘Standfast 43’ designed by
Frans Maas. The covariates are Xi1-longitudinal position of
the center of buoyancy, Xi2-prismatic coefficient, Xi3-length-
displacement ratio, Xi4-beam-draught ratio, and Zi1-length-
beam ratio, Zi2-the Froude number ranging from 0.125 to
0.450 and the response variable Yi is the residuary resistance
per unit weight of displacement.

All the variables Xi, Zi and Yi are centered and standard-
ized, corresponding to covariates Xi = (Xi1,Xi2,Xi3,Xi4)T

and Zi = (Zi1,Zi2)T . For this Delft dataset, we consider the
following PLSIM:

Yi = g(XTi θ )+ Z
T
i β + εi, i = 1, · · · , 308. (19)

The scatter plots for ZTi β̂ and Yi−ĝ(XTi θ̂ ),X
T
i θ̂ and Yi−Z

T
i β̂,

as well as residuals and log-scale of Ŷi are given in Figure 2.
These scatter plots exhibit seemingly linear and nonlinear
relationships, respectively. This shows that the PLSIM is
plausible. To formally check goodness of fit, we modify
the test statistic Un. We can derive a test statistic to detect
possible misspecifications in the mean regression function
by replacing r̂i in Un with ε̂i = Yi − ĝ(XTi θ̂ ) − ZTi β̂.
With 500 bootstrap samples, the p-value is 0.216 > 0.05,
and thus, the PLSIM should be adequate for this dataset.
Further, we investigate whether the heteroscedastic structure
is present in the model. The p-value is now 0.001. Thus,
homoscedasticity should be rejected, which is agreement with
the third subplot in Figure 2. In general, we conclude that a
heteroscedastic PLSIM is appropriate to this dataset.

VI. CONCLUSION
In this article, a new test is proposed for the heteroscedasticity
of a PLSIM. The statistic is based on the pairwise distance
between sample points. The results show that the statistic
has asymptotic normal distribution of non-zero mean and the
same asymptotic variance. This test method does not require
assuming a distribution of random errors. The algorithmic
program of this test method is easy to implement and has
faster convergence than some existing methods. In addi-
tion, convergence rate of the statistic does not depend on
the dimensions of the covariates, which greatly reduces the
impact of the dimensional curse. The numerical simulations
and a real data example verified the feasibility of the method.

For the PLSIM

Y = g(XT θ )+ ZTβ + ε, (20)

if X is scalar and θ = 1, the model reduces to the partially
linear model [21], i.e.,

Y = g(X )+ ZTβ + ε, (21)

if β = 0, the model becomes the single-index
model [30], i.e.,

Y = g(XT θ )+ ε. (22)

In the following studies, we study the above two special cases
using the statistics in this paper. It is just to test the variance
structure separately, under the null hypothesis:

H0 : E(ε2|X ,Z ) = E(ε2|X ),

H0 : E(ε2|X ) = E(ε2|XT θ ).
(23)

How to combining these two problems together is our further
work.
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APPENDIX
First, we introduce some regularity conditions for the asymp-
totic results in Section II and Section III .
(1) Suppose that the parameter space of θ, β is respectively

compact subsets of Rp, Rq.
(2) g(XT θ ) = g has bounded, continuous third-order

derivative; the conditional expectations E(Z |X = x),
E(ZZT |X = x), E(Z |XT θ = v) and E(ZZT |XT θ = v) have
bounded derivatives.
(3) With probability 1, X lies in a compact set D; the

marginal density functions of X has bounded derivatives.
(4) E(r4) <∞.
Proof of Theorem 2.1: Let f = f (X ,Z , θ, β) =

f (W , θ, β) = g(XT θ ) + ZTβ, f̂ = f (X ,Z , θ̂ , β̂) =
f (W , θ̂ , β̂) = ĝ(XT θ̂ )+ZT β̂, and ε = Y−f . Then, ε̂ = Y−f̂ ,
r̂ = (Y − f̂ )2 − σ̂ 2. For r̂ , we have

r̂ = (Y − f̂ )2 − σ̂ 2
= [(Y − f )− (f̂ − f )]2 − σ 2

−(σ̂ 2
−σ 2)

= r − 2ε(f̂ − f )+ (f̂ − f )2 − (σ̂ 2
− σ 2).

Under the above representation, we can decomposeUn into
the following 10 parts, which are respectively recorded asQin:

Un =
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijrirj

+4
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijεiεj(f̂i − fi)(f̂j − fj)

+
1

n(n− 1)

n∑
i=1

∑
j 6=i

dij(f̂i − fi)2(f̂j − fj)2

+
1

n(n− 1)

n∑
i=1

∑
j 6=i

dij(σ̂ − σ )2

−4
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijriεj(f̂j − fj)
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+2
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijri(f̂j − fj)2

−2
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijri(σ̂ 2
− σ 2)

−4
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijεi(f̂i − fi)(f̂j − fj)2

+4
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijεi(f̂i − fi)(σ̂ 2
− σ 2)

−2
1

n(n− 1)

n∑
i=1

∑
j 6=i

dij(f̂i − fi)2(σ̂ 2
− σ 2)

=:

10∑
i=1

Qin. (24)

Since ‖θ̂ − θ‖ = Op(n−1/2), ‖β̂ − β‖ = Op(n−1/2)
(see [13]) and E(ε|W ) = 0,E(ε|X ) = 0, E(ε|Z ) = 0, and
E(r|W ) = 0, we can get Q2n = Op(n−2+ n−3/2h2+ n−1h2).
The proof of Q2n is given as follows. Note that

f̂i − fi = ĝ(XTi θ̂ )+ Z
T
i β̂ − g(X

T
i θ )− Z

T
i β

= (ĝ(XTi θ̂ )− g(X
T
i θ̂ ))+ (g(XTi θ̂ )

−g(XTi θ ))+ Z
T
i (β̂ − β)

= (ĝ(XTi θ̂ )− g(X
T
i θ̂ ))+ (θ̂ − θ )T∇g(XTi θ̃ )

+
1
2
(θ̂ − θ )T∇g2(XTi θ̃ )(θ̂ − θ )+ Z

T
i (β̂ − β),

where θ̃ is between θ̂ and θ . Let vi = XTi θ
∗ and ui = XTi θ̃ ,

where θ∗ is in a δ-neighbourhood of θ̂ with δ is a small
positive number, we have

f̂i − fi = (ĝ(vi)− g(vi))+ (θ̂ − θ )T∇g(ui)

+
1
2
(θ̂−θ )T∇g2(ui)(θ̂−θ )+ ZTi (β̂ − β).

Notice that

(f̂i − fi)(f̂j − fj)

= [(ĝ(vi)− g(vi))+ (θ̂ − θ )T∇g(ui)

+
1
2
(θ̂ − θ )T∇g2(ui)(θ̂ − θ )+ ZTi (β̂ − β)]

×[(ĝ(vj)− g(vj))+ (θ̂ − θ )T∇g(uj)

+
1
2
(θ̂ − θ )T g2(uj)(θ̂ − θ )+ ZTj (β̂ − β)]

=:

10∑
i=1

Mi.

where

M1 = [ĝ(vi)− g(vi)][ĝ(vj)− g(vj],

M2 = (θ̂ − θ )T∇g(ui)∇gT (uj)(θ̂ − θ ),

M3 =
1
4
(θ̂ − θ )T∇g2(ui)(θ̂ − θ )(θ̂ − θ )T∇g2(uj)(θ̂ − θ ),

M4 = (β̂ − β)TZiZTj (β̂ − β),

M5 = (θ̂ − θ )T [(ĝ(vi)− g(vi))∇g(uj)

+ (ĝ(vj)− g(vj))∇g(ui)],

M6 =
1
2
(θ̂ − θ )T [(ĝ(vi)− g(vi))∇g2(uj)

+ (ĝ(vj)− g(vj))∇g2(ui)](θ̂ − θ ),

M7 = [(ĝ(vi)− g(vi))ZTj + (ĝ(vj)− g(vj))ZTi ](β̂ − β),

M8 =
1
2
(θ̂ − θ )T [∇g(ui)(θ̂ − θ )T∇g2(uj)

+∇g2(ui)
T
(θ̂ − θ )∇gT (uj)](θ̂ − θ ),

M9 = (β̂ − β)T [Zi∇gT (uj)+ Zj∇gT (ui)](θ̂ − θ ),

M10 =
1
2
(β̂ − β)T [Zi(θ̂ − θ )T∇g2(uj)

+Zj(θ̂ − θ )T∇g2(ui)](θ̂ − θ ).

We rewrite Q2n as follow

Q2n =
4

n(n− 1)

n∑
i=1

∑
j 6=i

dijεiεj(M1 + · · · +M10)

=

10∑
k=1

Q2n,i.

For the term Q2n,1, we first note that unifoemly

ĝ(vi)− g(vi) =
6l 6=iKil(g(vi)− g(vl))

6l 6=iKil

= h2k2
g(vi)p

(2)
i − (gp)(2)i
2pi

+ o(h2)

=: h2Gi + o(h2),

where k2 =
∫
s2K (s)ds and pi = p(vi), which is the density

function of vi. As a result, we can get

Q2n,1 =
4

n(n− 1)

n∑
i=1

∑
j 6=i

dijεiεj(h2Gi+o(h2))(h2Gj+o(h2))

= 4h4E(d12ε1ε2G1G2)+ o(
h4

n
)

=
4h4

n
E(d12G1G2)+ o(

h4

n
)

= Op(
h4

n
).

For the term Q2n,1, we have

Q2n,2

=
4

n(n−1)

n∑
i=1

∑
j 6=i

dijεiεj(θ̂−θ )T∇g(ui)∇gT (uj)(θ̂−θ )

= 4(θ̂ − θ )T
1

n(n− 1)

n∑
i=1

∑
j6=i

dijεiεj∇g(ui)∇gT (uj)(θ̂ − θ )

=: 4(θ̂−θ )T
1

n(n−1)

n∑
i=1

∑
j 6=i

L(Ri,Rj)(θ̂ − θ ),
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where Ri = (Wi, εi). Since L(Ri,Rj) = L(Rj,Ri),
1

n(n−1)

n∑
i=1

∑
j 6=i
L(Ri,Rj) is a U -statistic. Furthermore, we get

E(L(Ri,Rj) |Ri ) = 0. In term of E(ε|X ) = 0, we have

E(L(Ri,Rj)|Ri) = E(dijεiεj|Xi, εi)

= E[E(dijεiεj|Xi,Xj, εi)|Xi, εi]

= E[dijεiεjE(εj|Xi,Xj, εi)|Xi, εi]

= 0.

It shows that 1
n(n−1)

n∑
i=1

∑
j 6=i
L(Ri,Rj) is a degenerateU -statistic

of order 1. Hence, 1
n(n−1)

n∑
i=1

∑
j 6=i
L(Ri,Rj) = Op(n−1).

According to ‖θ̂ − θ‖ = Op(n−1/2), we have Q2n,2 =

Op(n−2). Similarly, we have Q2n,3 = Op(n−3), Q2n,4 =

Op(n−2),Q2n,5 = Op(n−3/2h4),Q2n,6 = Op(n−2h4),Q2n,7 =

Op(n−3/2h4), Q2n,8 = Op(n−5/2), Q2n,9 = Op(n−2), and
Q2n,10 = Op(n−5/2). Therefore, Q2n = Op(n−2 + n−3/2h2 +
n−1h2).

Similarly, we can easily obtain Q3n = Op(h8 + n−1/2h6 +
n−1h4 + n−3/2h2 + n−2), Q5n = Op(n−1h2 + n−3/2), Q6n =

Op(n−1/2h4+n−1h2+n−3/2),Q8n = Op(n−1/2h6+n−1h4+
n−3/2h2 + n−2), Q9n = Op(n−1/2h6 + n−1h2 + n−3/2), and
Q10n = Op(h8 + n−1/2h4 + n−1h2 + n−3/2).

Consequently, we can get

Q2n + Q3n + Q5n + Q6n + Q8n + Q9n + Q10n

= Op(h8 + n−1/2h4 + n−1h2 + n−3/2).

If nh8 → 0, we have Q2n + Q3n + Q5n + Q6n + Q8n +

Q9n + Q10n = Op(n−1/2h4) = op( 1n ). If nh
8
→∞, we have

Q2n + Q3n + Q5n + Q6n + Q8n + Q9n + Q10n = Op(h8).
Next, we discuss the asymptotic property of Un in the case of
nh8→ 0 and nh8→∞, respectively.

Note that

σ̂ 2
− σ 2

=
1
n

n∑
i=1

[(Yi − f̂i)− σ 2]

=
1
n

n∑
i=1

[ri − 2εi(f̂i − fi)+ (f̂i − fi)2]

=
1
n

n∑
i=1

ri + Op(h4 + n−1/2h2 + n−1). (25)

Then, we have

(σ̂ 2
− σ 2)2 = (

1
n

n∑
i=1

ri)2 + Op(h8 + n−1/2h4 + n−1)

=
n− 1
n

1
n(n− 1)

n∑
i=1

∑
j 6=i

rirj +
1
n2

n∑
i=1

r2i

+Op(h8 + n−1/2h4 + n−1)

(i). When nh8→ 0, we have

Un =
1

n(n− 1)

n∑
i=1

∑
j 6=i

dij
[
rirj+(σ̂ 2

− σ 2)2−2ri(σ̂ 2
− σ 2)

]
+op(

1
n
)

= Q1n + Q4n + Q7n + op(
1
n
).

Thus, we have

Q4n = E(d12)
1

n(n− 1)

n∑
i=1

∑
j6=i

rirj+
1
n
E(d12)E(r2)+op(

1
n
).

(26)

Next, we calculate the term Q7n. Similarly, we have

Q7n =
1

n2(n− 1)

n∑
i=1

∑
j 6=i

n∑
l=1

dij(ri + rj)rl + op(
1
n
)

=
1

n2(n− 1)

n∑
i 6=j 6=l

dij(ri + rj)rl

+
1

n2(n− 1)

n∑
i=1

∑
j 6=i

dij(ri + rj)2 + op(
1
n
)

=: Q7n,1 + Q7n,2 + op(
1
n
).

Note that E(d12r1r2) = 0, and we have

Q7n,2 =
E[d12(r1 + r2)2]

n
+ op(

1
n
) =

2E[d12r21 ]

n
+ op(

1
n
).

We rewrite Q7n,1 =
n−2
2 Jn, where

Jn =
(
n
3

)−1∑∑∑
1≤i<j<l≤n

H s(Ai,Aj,Al),

with Ai = (Wi, ri),H s(Ai,Aj,Al) = (Hijl,Hilj,Hjli)/3 is the
kernel, and Hijl = dij(ri + rj)rl . Thus, Jn is a U -statistic of
order 3.

Notice that H s(Ai,Aj,Al) is symmetric,

E[H s(Ai,Aj,Al)|Ai] = 0.

Because

E(Hijl |Ai) = E(dij(ri + rj)rl |Ai)

= E[E(dij(ri + rj)rl |Ai,Aj)|Ai]

= E[dij(ri + rj)E(rl |Ai,Aj)|Ai] = 0.

Similarly, E(Hilj|Ai) = 0 and E(Hjli|Ai) = 0. Therefore,
we have E[H s(Ai,Aj,Al)|Ai] = 0.
However, E[H s(Ai,Aj,Al)|Ai,Aj] 6= 0. Specifically,

E(Hilj|Ai,Aj) = E(dil(ri + rl)rj|Ai,Aj)

= E[E(dil(ri + rl)rj|Ai,Aj,Al)|Ai,Aj]

= E[dilrirj|Ai,Aj] = rirjE[dil |Wi,Wj].
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Similarly, E(Hjli|Ai,Aj) = rirjE[djl |Wi,Wj]. Thus, we have

E[H s(Ai,Aj,Al)|Ai,Aj] =
1
3
rirjE[dil + djl |Wi,Wj].

In term of Serfling (1980), we can get

Jn =
3 · 2

n(n− 1)

∑∑
1≤i<j≤n

1
3
rirjE(dil + djl |Wi,Wj)+ op(

1
n
)

=
1

n(n− 1)

∑
i=1

∑
j 6=i

rirjE(dil + djl |Wi,Wj)+ op(
1
n
),

which shows that

Q7n =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

rirjE(dil + djl |Wi,Wj)

+
2E(d12r21 )

n
+ op(

1
n
). (27)

According to (24), (26) and (27), we have

Un =
1

n(n− 1)

n∑
i=1

n∑
j6=i

rirj[dij − E(dil+djl |Xi,Xj)+E(d12)]

+
E(d12)E(r2)− 2E(d12r21 )

n
+ op(

1
n
)

=:
1

n(n− 1)

n∑
i=1

n∑
j 6=i

h(Ai,Aj)+
µ

n
+ op(

1
n
), (28)

where h(Ai, Aj) = rirjd̃ij, d̃ij = dij − E(dil + djl |Wi,Wj) +
E(d12), and µ = E(d12)E(r2) − 2E(d12r21 ). Due to
E(r|W ) = 0, we have

E(h(Ai,Aj)|Ai) = E[E(rirjd̃ij|Ai,Aj)|Ai]

= E[rid̃ijE(rj|Ai,Aj)|Ai] = 0.

Because of dij = e−‖Xi−Xj‖
a
≤ 1, we have |d̃ij| ≤ 4.

According to condition (4), we can get

E(h2(A1,A2)) = E(r21 r
2
2 d̃

2
ij) ≤ 16E(r21 r

2
2 ) = 16E2(r2) <∞.

Thus, via the theory of U -statistic, we have

n
1

n(n− 1)

n∑
i=1

n∑
j 6=i

h(Ai,Aj)→
∞∑
k=1

λk (S2k − 1),

where λk ’s are the eigenvalue of the following integral
equation ∫

h(Ai,Aj)φ̃k (Aj)dF(Aj) = λk φ̃k (Ai).

withF denoting the probability distribution function ofA, and
Zk ’s are the independent standard normal random variables.
Since

λk φ̃k (Ai) =
∫
h(Ai,Aj)φ̃k (Aj)dF(Aj)

=

∫
rirjd̃ijφ̃k (Aj)dF(Aj)

= ri

∫
rjd̃ijφ̃k (Aj)dF(Aj).

We rewrite φ̃k (Ai) = riφk (Ai) and φ̃k (Aj) = rjφk (Aj) by
choosing proper φk (Ai) and φk (Aj), respectively. The integra-
tion equation can be rewritten as∫

r2j d̃ijφ̃k (Aj)dF(Aj) = λkφk (Ai).

Therefore, after some simple calculation, we have

nUn→
∞∑
k=1

λk (S2k − 1)+ µ =
∞∑
k=1

λk (S2k )− E(r
2).

(ii). When nh8 → ∞, we first compute the term Q6n.
From (25), we have

Q6n = 2
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijri(f̂j − fj)2

= 2
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijri[(ĝ(vj)− g(vj))2 + op(h4)]

= 2
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijri(ĝ(vj)− g(vj))2

+op(h4n−1/2)

= 2h4
1

n(n− 1)

n∑
i=1

∑
j 6=i

dijriG2
j + op(n

−1/2h4)

= 2h4
1

n(n− 1)

∑∑
1≤i<j≤n

dij(riG2
j + rjG

2
i )

+op(n−1/2h4).

It can be shown that E[(riG2
j + rjG

2
i )dij] = 0 and

E[(riG2
j + rjG

2
i )dij|Wi, ri]

= E[E{(riG2
j + rjG

2
i )dij|Wi, ri,Wj}|Wi, ri]

= E[riG2
j dij + dijG

2
i E(rj|Wi, ri,Wj)|Wi, ri]

= riE(G2
j dij|Wi)

=: ϕ∗i .

By the theory of U -statistic, we can then easily derive that
√
nh−4Q6n =

√
n( 2

n(n−1)

∑∑
1≤i<j≤n

dij(riG2
j + rjG2

i)

+op(h4n−1/2))→ N (0, σ 2
∗ ),

where σ 2
∗ = var(ϕ∗1 ).

Next, we can easily get Q1n = Op(n−1), Q4n = Op(n−1 +
n−1/2h4 + h8), and Q7n = Op(n−1 + n−1/2h4). Then, Q1n +

Q2n + Q5n + Q8n + Q9n = Op(n−1).
Thus, we have
√
nh−4(Un − a(n)) =

√
nh−4Q6n + op(1)→ N (0, σ 2

∗ ).

where a(n) = Q3n + Q4n + Q7n + Q10n.
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Proof of Theorem 2.2: Under the hypothesis H1n, we still
divide Un into 10 parts, similar to the proof of Theorem 2.1.
As follows

Un =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

dij[rirj

+4εiεj(f̂i − fi)(f̂j − fj)+ (f̂i − fi)2(f̂j − fj)2

+(σ̂ 2
− σ 2)2 − 4riεj(f̂j − fj)

+2ri(f̂j − fj)2 − 2ri(σ̂ 2
− σ 2)

−4εi(f̂i − fi)(f̂j − fj)2 + 4εi(f̂i − fi)(σ̂ 2
− σ 2)

−2(f̂i − fi)2(σ̂ 2
− σ 2)]

=:

10∑
i=1

Qin.

Since εi, f̂i and fi are defined previously underH1n, we have
Q2n = Op(n−2 + n−3/2h2 + n−1h2), Q3n = Op(h8 +
n−1/2h6 + n−1h4 + n−3/2h2 + n−2), Q8n = Op(n−1/2h6 +
n−1h4 + n−3/2h2 + n−2). Recalling that ri = ui + cn1(Wi),

E(ui|Wi) = 0, E(1(W )) = 0, and σ̂ 2
− σ 2

=
1
n

n∑
i=1

ri +

Op(n−1 + n−1/2h2 + h4) = Op(n−1/2 + h4 + cn), we have
Q5n = Op(n−1h2 + n−3/2 + cn(n−1/2h2 + n−1)), Q6n =

Op(n−1/2h4 + n−1h2 + n−3/2 + cn(h4 + n−1/2h2 + n−1)),
Q9n = Op(n−3/2 + n−1h2 + n−1/2h6 + cn(n−1h2 + n−1)),
Q10n = Op(h8+n−1/2h4+n−1h2+n−3/2+cn(h4+n−1/2h2+
n−1)). Therefore, we can easily get Q2n+Q3n+Q5n+Q6n+

Q8n + Q9n + Q10n = Op(h8 + n−1/2h4 + n−1h2 + n−3/2 +
cn(h4 + n−1/2h2 + n−1)).

(i) If cn = n−1/2 and nh8→ 0, we haveQ2n+Q3n+Q5n+

Q6n + Q8n + Q9n + Q10n = Op(n−1/2h4) = op(n−1).
Similar to the proof of Theorem 2.1, it shows that

Un =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

rirjd̃ij

+
E(d12)E(r2)− 2E(d12r21 )

n
+ op(

1
n
), (29)

where d̃ij = dij−E(dil + djl |Wi,Wj)+E(d12). Then, in term
of E(r|X ,Z ) = cn1(W ) and the Theorem 2.1 in [5], we have

n× 1
n(n−1)

n∑
i=1

n∑
j 6=i
rirjd̃ij→

∞∑
i=1
λi[(Si + ai)2 − 1],

where ai = E(1(W )φi(A)). Similar to the proof of
Theorem 2.1, we have

E(d12)E(r2)− 2E(d12r21 )−
∞∑
i=1
λi = E(r2) = E(u2)+ op(1),

where u = r − cn1(W ). Thence, if cn = n−1/2, we can get:

nUn→
∞∑
i=1
λi[(Si + ai)2 − E(u2)].

(ii) If cn = n−1/2 and nh8→∞, we haveQ1 n = Op(n−1),
Q2 n = Op(n−1h4), Q3 n = Q4 n = Q10n = Op(h8),

Q5n = Op(n−1h2), Q7 n = Op(n−1/2h4), Q8n = Q9n =

Op(n−1/2h6).
Next, we compute the termQ6n. Since ri = ui+cn1(Wi) =

ui + n−1/21(Wi), E(ui|Wi) = 0 and E(1(W )) = 0. Similar
to the proof of Theorem 2.1, in terms of (25), we have

Q6n =
2

n(n− 1)

n∑
i=1

∑
j 6=i

dij(ui + n−1/21(Wi))(f̂j − fj)2

=
2

n(n− 1)

n∑
i=1

∑
j 6=i

dijui(ĝ(vj)− g(vj))2 + op(h4)

=
2h4

n(n− 1)

n∑
i=1

∑
j 6=i

dijuiG2
j + op(h

4)

=
h4

n(n− 1)

∑∑
1≤i<j≤n

dij(uiG2
j + ujG

2
i )+ op(h

4).

It follows that E[(uiG2
j + ujG

2
i )dij] = 0 and

E[(uiG2
j + ujG

2
i )dij|Wi, ui]

= E[E{(uiG2
j + ujG

2
i )dij|Wi, ui,Wj}|Wi, ui]

= E[uiG2
j dij + dijG

2
i E(uj|Wi, ui,Wj)|Wi, ui]

= uiE(G2
j dij|Wi) =: ϕ̃∗i .

By the theory of U -statistic, we have

√
nh−4Q6n =

√
n

1
n(n− 1)

∑∑
1≤i<j≤n

dij(uiG2
j + ujG

2
i )

+ op(h4)→ N (0, σ̃ 2
∗ ),

where σ̃ 2
∗ = var(ϕ̃∗1 ).

Thus, we can get
√
nh−4(Un − b(n)) =

√
nh−4Q6 n + op(1)→ N (0, σ̃ 2

∗ ),

where b(n) = Q3n + Q4n + Q7n + Q10n.
(iii) If cn = n−b and 0 < b < 1

2 , we haveQ1 n = Op(n−2b),
Q2 n = Op(n−2+n−3/2h2+n−1h4),Q3 n = Op(h8+n−1/2+
n−1h4+n−1/2h6+n−3/2h2),Q4 n = Op(h8+n−1+n−1/2h4+
n−2 b + n−bh4 + n−b−1/2), Q5 n = Op(n−1h2 + n−3/2 +
n−1/2−bh2+n−1−b), Q6 n = OP(n−1/2h4+n−3/2+n−1h2+
n−bh4 + n−1−b + n−b−1/2h2), Q7 n = OP(n−1/2h4 + n−1 +
n−1/2−b + n−bh4 + n−2 b), Q8 n = Op(n−3/2 + n−1h2 +
n−1/2h6 + n−1/2−bh2 + n−1−b), Q10 n = Op(h8 + n−3/2 +
n−1h2+n−1/2h4+n−bh4+n−1−b+n−1/2−bh2). Then, we can
easily get Un = Op(h8 + n−2 b + n−bh4).
Therefore, we have

nUn = Op(nh8 + n1−2 b + n1−bh4)→∞.

Proof of Theorem 2.3:
(i) When nh8 → 0, note that σ̂ 2

− σ 2
= Op(n−1/2),

similar to the above proof of Theorem 2.2, underH1 and ri =
ui+c

a
(W ), we can get Q2 n = Op(n−1h4), Q3 n = Op(h8),

Q5 n = Op(n−1/2h2), Q6 n = Op(h4), Q8 n = Op(n−1/2h6),
Q9 n = Op(h2n−1), and Q10 n = Op(h4n−1/2)). Then, we can
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get Q2n + Q3n + Q4n + Q5n + Q6n + Q8n + Q9n + Q10n =

Op(h4) = op(n−1/2). Therefore, we have

Un = Q1n + Q7n + op(n−1/2)

=
1

n(n− 1)

n∑
i=1

n∑
j 6=i

dij[rirj − 2ri(σ̂ 2
− σ 2)]

+op(
1
√
n
).

For the term Q1n, it shows that
√
n(Q1n − E(r1r2d12))

=
1
√
n

n∑
i=1

[riE(rjdij |Wi )− E(r1r2d12)]

+op(
1
√
n
).

For the term Q7n, it follows that
√
nQ7n =

1
n(n− 1)

n∑
i=1

n∑
j 6=i

[(ri + rj)dij]×
1
√
n

n∑
i=1

ri

+op(1)

= E[(ri + rj)d12]×
1
√
n

n∑
i=1

ri + op(1).

Define c1 = E(r1r2d12)) and c2 = E[(ri + rj)d12], then we
have
√
n(Un − c1) =

1
√
n

n∑
i=1

[riE(rjdij |Xi )− c1 − c2ri]

+op(
1
√
n
)→ N (0, σ̃ 2),

where σ̃ 2
= var(riE(rjdij|Wi)− c2ri).

(ii) When nh8 → ∞, it follows that Q1n = Op(1),
Q2n = Op(n−1h4), Q3n = Q4n = Q10n = Op(h8), Q5n =

Op(n−1/2h2), Q6n = Q7n = Op(h4), and Q8n = Q9n =

Op(n−1/2h6). Then, we haveUn = Op(1). Thus, we can easily
get nUn→∞.
Proof of Theorem 3.1: The proof of the theorem is sim-

ilar to the proof of Theorem 2.1. Recalling that Fn =

{Xi,Zi,Yi}ni=1 = {Wi,Yi}ni=1, ε̂
∗
i = ε∗i − (f̂ ∗i − f̂i) with

f̂ ∗i = ĝ(XTi θ̂
∗) + ZTi β̂

∗ and f̂i = ĝ(XTi θ̂ ) + ZTi β̂. Define
σ ∗2 = E(ε∗2|Fn) = n−1

∑n
i=1 (ε̂i−ε̄)

2, r∗i = ε∗2i − σ
∗2.

Then, we have

r̂∗i = ε̂
∗2
i − σ̂

∗2
= [ε∗i − (f̂ ∗i − f̂i)]

2
− σ̂ ∗2

= r∗i − 2ε∗i (f̂
∗
i − f̂i)+ (f̂ ∗i − f̂i)

2
− (σ̂ ∗2 − σ ∗2).

Because ε∗i and ε∗j with i 6= j are i.i.d., we can get
E(r∗i |r

∗
j ,Fn) = 0 for i 6= j. Moreover, it shows

σ̂ ∗2 − σ ∗2 =
1
n

n∑
i=1

(ε̂∗2i − σ
∗2)

=
1
n

n∑
i=1

[r∗i − 2ε∗i (f̂
∗
i − f̂i)+ (f̂ ∗i − f̂i)

2]

=
1
n

n∑
i=1

r∗i + Op(h
4
+ n−1/2h2 + n−1).

Therefore, if nh8→ 0, we have

U∗n |Fn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

r∗i r
∗
j d̃ij

+
E(d12)E(r∗2|Fn)− 2E(d12r∗21 |Fn)

n
+ op(

1
n
),

Denote ri = ε2i − E(ε2i |Wi). Under the assumption (A4),
we can get E(r2i r

2
j d̃

2
ij) < 16E2(r2) < ∞ and E(|r2i d̃ii|) ≤

4E(r2) < ∞, which indicates that conditions A1 and
A3 in [11] are satisfied. Thus, to prove the conditional asymp-
totic distribution ofU∗n |Fn is the same as that ofUn, in term of
Lemma 2.1 and Lemma 2.2 in [11], there are three issues need
to be proven: (1) the distribution F∗r of r∗ would converge to
the distribution Fr of r , (2) E(r∗2i r∗2j d̃2ij |Fn) → E(r2i r

2
j d̃

2
ij),

and (3)E(r∗2i d̃ii|Fn)→ E(r2i d̃ii).
Since

F∗r (b) =
1
n

n∑
i=1

I ((ε̂i − ε̄)− σ ∗2 ≤ b).

Define 1fi = f̂i − fi and recall that ε̂i = εi − 1fi, then we
have

F∗r (b) =
1
n

n∑
i=1

I (ε2i − 21fiεi +1f 2i − 2ε̂iε̄+ε̄2−g∗2 ≤ b)

=
1
n

n∑
i=1

I (ri < b+ 21fiεi −1f 2i + 2ε̂iε̄ − ε̄2

+g∗2 − E(ε2 |Xi )).

Let1ri = 21fiεi−1f 2i +2ε̂iε̄− ε̄
2
+σ ∗2−E(ε2 |Wi ). Under

H0,H1n with cn → 0, we can get either E(ε2|Xi) = E(ε2) =
σ 2 or E(ε2|Wi) − E(ε2) = Op(cn). Thus, under H0 and H1n,
we have σ ∗2 − E(ε2|Wi) = σ ∗2 − σ 2

+ σ 2
− E(ε2|Wi) =

Op(n−1/2) or Op(cn). Due to β̂ − β = Op(n−1/2), θ̂ − θ =
Op(n−1/2), ε̄ = Op(n−1/2), g∗2 − E(ε2|Xi) = Op(n−1/2) or
Op(cn), we can obtain that1ri = Op(n−1/2) orOp(cn). So we
can get

F∗r (b)−
1
n

n∑
i=1

I (r ≤ b) =
1
n

n∑
i=1

I (ri ≤ b+1ri)

−
1
n

n∑
i=1

I (ri ≤ b)

≤
1
n

n∑
i=1

I (|ri − b| ≤ |1ri|)

= op(1).

Because n−1
∑n

i=1 I ((r ≤ b) → Fr (b), we have F∗r (b) →
Fr (b).
Notice that

E(r∗2i r∗2j d̃2ij |Fn) =
1
n

n∑
i=1

[(ε̂i − ε̄)
2
− σ ∗2]

2

×[(ε̂j − ε̄)
2
− σ ∗2]

2
d̃2ij
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=
1
n

n∑
i=1

(ε2i − σ
2)

2
(ε2j − σ

2)
2
d̃2ij + op(1)

= E(r2i r
2
j d̃

2
ij)+ op(1).

Similarly, we can also get the proof of E(r∗2i d̃ii|Fn) →
E(r2i d̃ii). Therefore, when nh

8
→ 0, we get the conclusion

that the asymptotic distribution of U∗n |Fn is the same as that
of Un under H0 and H1n.

If nh8→∞, we have

U∗n − a
∗(n) |Fn = 2h4

1
n(n− 1)

∑∑
1≤i<j≤n

dij(r∗i G
2
j + r

∗
j G

2
i )

+op(n−1/2h4).

By the similar line, we can obtain that the asymptotic distri-
bution of U∗n |Fn is the same as that of Un under H0 and H1n.
While under H1, we still can get E∗(r∗|Wi) = 0. Conse-

quently, nU∗n |Fn still converges to a finite limit, which may
be different from the limiting distribution of Un under H0.
However, under H1, as shown in Theorem 2.3, nUn → ∞.
In other words, the bootstrap algorithm is valid.
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