
Received January 5, 2020, accepted January 17, 2020, date of publication January 30, 2020, date of current version February 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2970468

A sEMG-Based Shared Control System With
No-Target Obstacle Avoidance for
Omnidirectional Mobile Robots
HAIYI KONG 1, CHENGUANG YANG 2, (Senior Member, IEEE), GUANG LI 3, (Member, IEEE),
AND SHI-LU DAI 1, (Member, IEEE)
1School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
2Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
3School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.

Corresponding author: Chenguang Yang (cyang@ieee.org)

This work was supported in part by the Foshan Science and Technology Innovation Team Special Project under Grant 2018IT100322, and
in part by the National Nature Science Foundation (NSFC) under Grant 61473120.

ABSTRACT We propose a novel shared control strategy for mobile robots in a human-robot interaction
manner based on surface eletromyography (sEMG) signals. For security reasons, an obstacle avoidance
scheme is introduced to the shared control system as collision avoidance guidance. The motion of the mobile
robot is a resultant of compliant motion control and obstacle avoidance. In the mode of compliant motion,
the sEMG signals obtained from the operator’s forearms are transformed into human commands to control
the moving direction and linear velocity of the mobile robot, respectively. When the mobile robot is blocked
by obstacles, themotionmode is converted into obstacle avoidance. Aimed at the obstacle avoidance problem
without a specific target, we develop a no-target Bug (NT-Bug) algorithm to guide the mobile robot to avoid
obstacles and return to the command line. Besides, the command moving direction given by the operator
is taken into consideration in the obstacle avoidance process to plan a smoother and safer path for the
mobile robot. A model predictive controller is exploited to minimize the tracking errors. Experiments have
been implemented to demonstrate the effectiveness of the proposed shared control strategy and the NT-Bug
algorithm.

INDEX TERMS Shared control system, surface electromyography, no-target Bug algorithm, model predic-
tive control.

I. INTRODUCTION
Nowadays, the concept of human-robot shared control has
been involved in many research fields, such as medical reha-
bilitation, autonomous vehicles and swarm intelligence con-
trol. The shared control strategy combines the autonomous
control of robots with the intelligent decision-making of
operators, which greatly improves the operation ability of
the system [1]. In [2], the operator controls the movement
of a walking-assistant robot by exerting force on it. In [3],
real-time activity parameters of the driver were introduced
into the lane keeping assist system to realise the shared lateral
control of the intelligent vehicle. In [4], skilled operators
were integrated into the control loop of unmanned aerial
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vehicles (UAVs) for autonomy sharing between humans
and UAVs.

In human-robot interaction, human biological and psy-
chophysical signals often act as an expression of human
intent. In order to capture these human signals, a great number
of sensors have been developed. In general, they can be
divided into noncontact sensors and contact sensors accord-
ing to the way of signal catching [5]. Noncontact sensors are
nonintrusive and collect psychophysical signals mainly based
on visual or audio manners. Contact sensors are nonintrusive
or intrusive. They capture physiological signals through the
contact with human bodies [6]. Compared with psychophysi-
cal signals, physiological signals have better inference power
to infer an operator’s state [7].

Electromyography (EMG) is one of the most widely-used
physiological signals. Normally, they are collected by surface
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EMG (sEMG) sensors, such as data gloves and armbands,
which are noninvasive and can provide the operator with
a better operating experience than intramuscular EMG
sensors [8]. As the sEMG signals are highly associated with
the activation level of muscles being measured, they can
be used for the estimation of muscle stiffness and gestures
recognition [9], [10]. With the maturity of the gesture recog-
nition technology, gesture control has become a popular way
of enabling the operator to interact naturally with robots.
Moreover, muscle stiffness can act as a human command for
the motion control of robots in a shared control system [11].

It is necessary to incorporate the function of autonomous
obstacle avoidance for the safety of both operators and robots
in a robot system [12]–[14]. The robot should be able to move
in compliance with the operator’s command while avoid
colliding with any obstacles. Many path planning methods
have been successfully applied to systems as collision-free
guidance, e.g., A-star [15] and Rapidly-Exploring Random
Tree (RRT) [16]. However, their performance depends on
the environment map. The amount of calculation increases
dramatically as the map expands. Bug is a dynamic path
planning method, which is suitable for obstacle avoidance
with limited information [17]. It guides the robot to walk
along the boundary of obstacles to avoid collisions and takes
the original moving direction as a determinant of leaving
obstacles. Artificial potential field (APF) method has been
extensively utilised for local path planning owing to its
simple principle and low-time consumption [18]. However,
it requires a specific target to calculate the attractive force.
When the human’s commands given to robots are moving
direction and linear velocity rather than an exact coordinate
of the target in the global coordinate system, most existing
path planning methods can not work. Inspired by the Bug
algorithm, we develop a no-target Bug (NT-Bug) algorithm,
which can guide the mobile robot to avoid both static and
dynamic obstacles in the case of no specific target. As the
Bug algorithm does not rely on the prior information of
the environment, in terms of complicated obstacles, the path
generated is inevitably zigzag, which is difficult to track in
practice. Therefore, we introduce the moving direction given
by the operator into the obstacle avoidance process to plan a
smoother and safer path for the mobile robot.

Trajectory tracking is a crucial part of the mobile robot
system. The objective of tracking control is to make the
robot movement consistent with the reference trajectory in
the required posture. In order to optimize the tracking per-
formance, a lot of efforts have been made to improve the
controller. In [19], an integral sliding controller was proposed
to deal with the problem of steady state error. In [20], tar-
geted at the uncertain nonholonomic mobile robot, a sim-
ple adaptive controller incorporating actuator dynamics was
developed. In [21], nonlinear model predictive control (MPC)
was employed for the steering rate control of the omnidirec-
tional robot. MPC, also known as moving horizon optimal
control, is suitable for both linear systems and nonlinear
systems. It uses an explicit model to predict the future plant

FIGURE 1. The shared control system architecture.

behaviors and selects the optimal control sequence based on
an objective function [22]. Because of the outstanding capa-
bility of dealing with control problems with input and state
constraints, MPC has been widely applied to robot systems
for trajectory prediction and tracking control [23].

In this paper, we propose a shared control strategy in which
the operator can control the motion of the mobile robot using
the sEMG signals. For security consideration, the mobile
robot is designed to avoid obstacles autonomously. Therefore,
the motion of the mobile robot is a resultant of compliant
motion control and autonomous obstacle avoidance. Firstly,
the sEMG signals are collected from the operator for ges-
ture recognition and muscle stiffness extraction, respectively.
Then, the gesture recognition result is converted into the
moving direction command for the mobile robot, while the
muscle stiffness is used to control the linear velocity. Aimed
at the real-time obstacle avoidance problemwithout a specific
target, a novel NT-Bug algorithm is proposed, which can
guide the mobile robot to avoid both static and dynamic
obstacles and return to the command line. Command
moving direction given by the operator is introduced to the
obstacle avoidance process to plan a smoother and safer path
for the mobile robot. In order to minimize the tracking errors,
MPC is exploited to the system for tracking control of the
reference trajectory.

II. PRELIMINARIES
A. DESCRIPTION OF THE SHARED CONTROL SYSTEM
The shared control system consists of an operator, two Myo
armbands and an omnidirectional mobile robot. The whole
system architecture is shown in Fig. 1.
There are 8 EMG electrodes embedded in a Myo armband.

We use Myo armbands to capture the sEMG signals from the
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FIGURE 2. Relationship between gestures and command directions.

operator at a sampling frequency of 200 Hz. The captured
sEMG signals are sent to the client via bluetooth.

The omnidirectional mobile robot has four mecanum
wheels which are symmetrically distributed on both sides
of it. The capability of moving in arbitrary direction
with any orientation allows it to move as the operator’s
command [24]- [26]. A laser radar is installed in the front
of the mobile robot platform to detect obstacles in the
environment.

In the control process, the operator is required to wear
a Myo on both forearms. The sEMG signals from the left
forearm are used to extract muscle stiffness, while those
from the right forearm are used for gesture recognition.
Then, the muscle stiffness is converted into a linear velocity
command for the mobile robot, while the result of gesture
recognition is transformed into the moving direction of com-
mand motion. The Myo device initially supports recogni-
tion of five pre-set gestures: Fist, Fingers Spread,
Wave Left, Wave Right, Double Tap, which are
used to command the mobile robot to move forward, back-
ward, left, right and stop, respectively. We use command
direction to represent the angle between the direction
vector of command motion and the X -axis of the global
coordinate system and command line to represent the
straight line along the command direction. The rela-
tionship between gestures and command direction is
shown in Fig. 2.
The system consists of two modes of motion: compli-

ant motion and obstacle avoidance. In the mode of com-
pliant motion, the mobile robot moves in the command
direction given by the operator. Once the distance
between the closest obstacle and the mobile robot is
smaller than the minimum safety distance, the motion mode
would be switched to autonomous obstacle avoidance. Then,
the mobile robot moves along the outline of the obstacle to
avoid collisions under the control of the NT-Bug algorithm.
When the mobile robot safely bypasses the obstacle and

FIGURE 3. Local cost map.

returns to the command line, the motion mode would
be turned to compliant motion and the mobile robot keeps
moving in the command direction. The linear velocity
of the mobile robot is completely controlled by the operator
and varies in accordance with muscle stiffness.

B. OBSTACLE DETECTION
In actual application, we need to be aware of the distance
between the mobile robot and obstacles in real time to take
actions to avoid collisions. Based on the Costmap_2d,
we establish a dynamic local cost map centered on the mobile
robot using the data from the laser radar to obtain the obstacle
information, which is shown in Fig. 3.

Costmap_2d is an open-source algorithm package in
the robot operating system (ROS), which can automatically
produce a 2D cost map based on the data from sensors such
as cameras and radars [27]. In the cost map, the environment
is divided into a series of grid cells and each of them has
a cost value which represents the potential of collisions.
Considering the size of themobile robot, the original costmap
is usually processed by inflation algorithm, which enlarges
the influence area of obstacles.

Since the grid cells of obstacles have the largest cost value,
we can seek out the grid cells that belong to obstacles accord-
ing to the cost value and obtain their coordinates relative to
the mobile robot. Through calculating the Euclidean distance
between the robot center and the grid cells of obstacles,
we can obtain the minimum Euclidean distance as the closest
obstacle distance.

C. MUSCLE STIFFNESS EXTRACTION BASED ON sEMG
SIGNALS
The sEMG signals from the left forearm of the operator are
use to estimate the muscle stiffness. As a Myo has 8 EMG
sensors, it can collect sEMG signals from 8 channels at a time.
Adding the amplitude of the sEMG signals from 8 channels:

Aemg(k) =
N∑
i=1

| Ei(k) |, (1)
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FIGURE 4. The extraction of muscle stiffness (w = 50, α = −0.01).

where N = 8 represents the number of channels, k represents
the current sampling instant, Ei is the sEMG signal from
the ith channel. Then, a moving average filter is applied to
acquire the sEMG envelop at the sampling instant k:

εemg(k) =
1
w

w∑
i=0

Aemg(k − i), (2)

where w is defined as the window size. According to [28],
the muscle stiffness can be extracted by:

ςemg(k) =
eαεemg(k) − 1
eα − 1

, (3)

where ex is the exponential function, α is a nonlinear shape
factor. The extraction of muscle stiffness is shown in Fig. 4.

D. LINEAR VELOCITY
The linear velocity of the mobile robot is controlled by the
operator. In general, we regard the relationship between force
and speed as linear, which is related to our living experience.
For example, the harder you tramp the accelerator of a car,
the faster the car will be. In view of the operation habit of
humans, we define the linear velocity of the mobile robot is
proportional to muscle stiffness, that is, as muscle stiffness
increases, the linear velocity increases accordingly. Firstly,
normalize the muscle stiffness:

%emg(k) =
ςemg(k)− ςmin
ςmax − ςmin

, (4)

where %emg(k) can be seen as a control gain, ςmin and ςmax are
the minimum and maximum magnitude of muscle stiffness,
respectively.

Then, according to the mapping relationship between mus-
cle stiffness and the linear velocity of the mobile robot,
we have:

νlinear (k) = (νmax − νmin)%emg(k)+ νmin, (5)

where νmin and νmax are the minimum and maximum linear
velocity of the mobile robot, respectively.

III. NO TARGET BUG ALGORITHM
For a mobile robot system, it is necessary to realise
autonomous obstacle avoidance to guarantee the safety of
the mobile robot and the operator. Ordinarily, the obstacle

avoidance path is generated by a path planner based on
obstacle information and a global or local target which is
given directly by the operator or chosen from the static path
generated in advance. However, in our shared control system,
this specific target does not exist. The motion control of the
mobile robot is realized by controlling its moving direction
and linear velocity in real time. In other words, the operator
will tell the mobile robot "where to go" and "how fast to run",
but will not tell it "where to stop". The mobile robot will keep
moving in the same direction until it receives a new direction
command or is blocked by obstacles. Due to the particularity
of the condition, most existing path planning methods can not
work. Aimed at the problem of real-time obstacle avoidance
without a target, we propose a novel NT-Bug path planning
method based on the traditional Bug algorithm to guide the
mobile robot to avoid obstacles. As the NT-Bug algorithm
only relies on the obstacle information obtained by the sensor
rather than the prior information of the environment, it is
suitable for static or dynamic obstacle avoidance.

When the mobile robot receives a new moving direc-
tion command from the operator, the command line is
updated according to the position of the mobile robot and the
command direction at the current sampling instant. The
command vx and vy velocities are the velocity component
of linear velocity along the X -axis and Y -axis of the global
coordinate system. The function of the NT-Bug algorithm
is to guide the mobile robot to avoid obstacles and return
to the command line. At every sampling time, the NT-
Bug algorithm calculates the moving direction for the mobile
robot.

To be clear, the following notions are introduced: The
center of the mobile robot is denoted as Om; the closest
obstacle cell is denoted as B; `(Om,B) represents the closest
obstacle distance; `safe is the minimum safety distance related
to the size of the mobile robot; referring to the traditional
potential field method, we consider the obstacle as the virtual
repulsive potential field and define θobs as the direction of
the force exerted by B on the mobile robot; θ represents the
moving direction of the mobile robot; θmode represents the
command direction; θesc is a once-and-for-all decided
upon direction of passing around an obstacle, which is either
π/2 or −π/2; d represents the distance from Om to the
command line; dσ is a distance threshold; pattern is used
to represent the different stage of the NT-Bug algorithm. Spe-
cially, patter = 0 represents the motion mode of compliant
control.

A. NO-TARGET BUG1
The pseudo-code of the NT-Bug1 algorithm is presented in
Algorithm 1. Once the closest obstacle distance `(Om,B) is
smaller than the minimum safe distance `safe, the motion
mode would be converted to obstacle avoidance. Inspired by
the Bug algorithm, we choose the way of moving around the
outline of the obstacles to prevent collisions in the NT-Bug1.
Therefore, the moving direction of the mobile robot can be
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Algorithm 1 No-Target Bug1
Input: θesc, θobs, `obs, d
Output: θ

if `obs < `safe and pattern = 0 then
pattern← 1;
θ ← θobs + θesc;

else if pattern = 1 then
if d < dσ then

pattern← 0;
break;

else
θ ← θobs + θesc;

end if
end if

FIGURE 5. The procedure of passing a concave obstacle in
NT-Bug1 algorithm (θesc = π/2).

obtained by:

θ = θobs + θesc. (6)

We set pattern = 1 to represent the stage ofmoving parallel to
the outline of the obstacle. Themobile robot would keepmov-
ing in this way until the condition d < dσ is satisfied, which
means the mobile robot has already bypassed the obstacle and
reached the command line. dσ is small enough to meet
the accuracy requirement of the system. Then, the motion
mode is turned to compliant control, and the mobile robot
keeps moving along the command line. The procedure
of passing a concave obstacle in NT-Bug1 algorithm is illus-
trated in Fig. 5

B. NO-TARGET BUG2
The NT-Bug1 algorithm can successfully guide the mobile
robot to avoid obstacles and return to the command line.
However, as it is not sensitive to the shape of obstacles,
the produced path could become tortuous referring to compli-
cated obstacles, which is difficult to track in practice. In view
of the application scenarios are often indoor workplaces
where the obstacles are mostly irregularly convex or concave,
we introduce the command direction into the obstacle
avoidance process to plan a smoother and safer path.

FIGURE 6. The procedure of passing a concave obstacle in
NT-Bug2 algorithm (θesc = π/2).

Algorithm 2 No-Target Bug2
Input: θmode, θesc, θobs, `obs, d
Output: θ

if `obs < `safe and pattern = 0 then
pattern← 1;

else if pattern = 1 then
if θobs = θmode then

pattern← 2;
else if d < dσ then

pattern← 3;
end if

else if pattern = 2 then
if |θobs − (θmode + θesc)| > π

2 then
pattern← 1;

else if d < dσ then
pattern← 3;

end if
else if pattern = 3 then

if `obs > `safe then
pattern← 0;
break;

else if |θobs − θmode| > π
2 then

pattern← 1;
end if

end if
if pattern = 1 then

θ ← θobs + θesc;
else if pattern = 2 then

θ ← θmode + θesc;
else if pattern = 3 then

θ ← θmode;
end if

The pseudo-code of the NT-Bug2 algorithm is presented in
Algorithm 2 and the procedure of passing a concave obstacle
in NT-Bug2 algorithm is illustrated in Fig. 6. As what men-
tioned before, in the stage of pattern = 1, the mobile robot
moves parallel to the outline of obstacles to prevent collisions.
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FIGURE 7. Coordinate systems.

pattern 1 → 2: The condition θobs = θmode is satisfied,
which means the obstacles could not affect the movement
of the mobile robot along the command direction. The
mobile robot would keep moving in the current direction to
approach the command line.
pattern 1 → 3/2 → 3: The mobile robot reaches the

command line and the closest obstacle will not impede its
movement, whereas it is still within the distance `safe. It will
move in the command direction to be away from the
obstacle.
pattern 2 → 1/3 → 1: The mobile robot is blocked by

another obstacle, it would move around the outline of the
obstacle to avoid it.
pattern 3 → 0: The mobile robot has successfully

bypassed the obstacle and moves along the command
line. The control mode is converted to compliant control.

In the NT-Bug2, the command direction is
regarded as a judgment to estimate the threat level of obsta-
cles to the robot movement. As the condition θobs = θmode is
satisfied, the repulsion force of the obstacle is consistent with
the command direction, which means the obstacle
would not block the robot movement along the command
line. Therefore, the mobile robot can stop walking around
obstacles andmove towards the command line directly. In this
way, the length of useless path can be effectively shorten, and
the path is smoother and easier to track for the mobile robot.

IV. MOTION CONTROL OF THE MOBILE ROBOT
A. DYNAMIC ERROR MODEL
For the sake of simplify, regarding the mobile robot as a mass
point. Define the global coordinate system as XWOWYW and
the robot coordinate system as XmOmYm (Fig. 7). Introduce
the transformation matrix between the global coordinate sys-
tem and the robot coordinate system:

R(ϑ) =

 cosϑ sinϑ 0
− sinϑ cosϑ 0

0 0 1

 , (7)

where ϑ is a rotation angle.

The kinematic model of the mobile robot can be expressed
as

Ẋ =

 ẋ
ẏ
ϑ̇

 = R−1(ϑ)

vxvy
w

 , (8)

where X = [x, y, ϑ]T represents the current posture of the
mobile robot in XWOWYW , w is the angular velocity, and vx
and vy are the velocity components along the Xm-axis and
Ym-axis, respectively. In the same way, we can obtain the
kinematic model of the reference postureXr = [xr , yr , ϑr ]T .
Then, the state error between the current posture and the
reference posture of the mobile robot can be defined as

Xe =

xeye
ϑe

 = R(ϑ)

xr − x
yr − y
ϑr − ϑ

 . (9)

By taking the derivative of (9), we can obtain the dynamic
error model:

Ẋe =

ẋeẏe
ϑ̇e

 =
−vx + wye + vxr cosϑe − vyr sinϑe
−vy − wxe + vxr sinϑe + vyr cosϑe

wr − w

 ,
(10)

where [vxr , vyr ,wr ]T is the reference velocity. Define u = vxr cosϑe − vx
vyr cosϑe − vy

wr − w

 and linearize (11) at the equilibrium

point (Xe = 0,u = 0). Then, we can acquire the linearized
dynamic error model:

Ẋe =

ẋeẏe
ϑ̇e

 = u+

 0 wr −vyr
−wr 0 vxr
0 0 0

xeye
ϑe

 . (11)

B. MODEL PREDICTIVE CONTROLLER
The task of trajectory tracking is to steer the mobile robot
to track the reference trajectory, that is, to find an optimal
control input u, so that:

lim
t→∞
|Xr − X| < ψ, (12)

where ψ is a small neighborhood containing the origin.
In this system, the reference trajectory consists of two

parts: command trajectory and obstacle avoidance trajectory.
With regard to the former, the moving direction of the mobile
robot is given by the operator, while it is calculated by the
NT-Bug algorithm in the latter. According to the dead reck-
oning algorithm,we can deduce the reference trajectory based
on the moving direction and the linear velocity. At every
sample time, the reference posture can be obtained by:

xr (k + 1) = xr (k)+1x = xr (k)+ T vxr
= xr (k)+ T νlinear cos θ, (13)

yr (k + 1) = yr (k)+1y = yr (k)+ T vyr
= yr (k)+ T νlinear sin θ, (14)

ϑr (k + 1) = ϑr (k)+1ϑ = ϑr (k)+ T w, (15)
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where Xr (0) = [xr (0), yr (0), ϑr (0)]T = X(0), 1x and
1y represent the displacement increment along XW - and
YW -axis, 1ϑ represents the angle increment, and T is the
sampling period.
Remark 1: In our design, the operator can use gestures to

control the mobile robot to move forward, backward, left and
right. Due to the limited number of recognizable gestures,
the rotary movement of the mobile robot is not involved.
Therefore, the angle increment in (15) is zero.

MPC is used for tracking control in the system. By transfer-
ring the control problem into a minimization problem of the
cost function and calculating it online, a control sequence can
be acquired. The first control action of the control sequence
is the optimal control input applied to the system.

Rewrite the dynamic error model (11) in a discrete time
form:

Xe(k + 1) = A(k)Xe(k)+ B(k)u(k), (16)

where

A =

 1 T wr −T vyr
−T wr 1 T vxr

0 0 1

 ,
B =

T 0 0
0 T 0
0 0 T

 .
According to (16), we can define the cost function as

F(Xe,u) =
8∑
i=1

XT
e (k + i|k)3QXe(k + i|k)

+

9−1∑
i=0

1uT (k + i|k)3R1u(k + i|k), (17)

where 8 and 9 represent the prediction horizon and control
horizon, respectively, and they satisfy 0 ≤ 9 ≤ 8 and
1 ≤ 8.3Q and3R are weightingmatrices, which are positive
and symmetric. Xe(k + i|k) is the prediction state predicted
at the sample time k . u(k + i − 1|k) + 1u(k + i|k) =
u(k + i|k). The optimal control input is obtained by solving
the minimization of the cost function with constrains:

h̄ = min
u

F(Xe,u), (18)

s.t. Xe(k) ∈ [Xmin,Xmax]

u ∈ [umin,umax]

1u ∈ [1umin,1umax] (19)

where Xmin and Xmax are the state constrains, umin and umax

are the input control constrains, 1umin and 1umax are the
input increment constrains.
Define the vectors:

Xk = [Xe(k + 1|k),Xe(k + 2|k) . . . ,Xe(k +8|k)]T ,

(20)

Uk = [u(k|k),u(k + 1|k) . . . ,u(k +9 − 1|k)]T , (21)

1Uk = [1u(k|k),1u(k + 1|k) . . . , 1u(k +9 − 1|k)]T .

(22)

Then, the predicted output of (16) can be denoted as

Xk = 21Uk +$ + ξ, (23)

where

2 =


B(k|k − 1) . . . 0

...
. . .

...
...

. . .
...

B(k +8− 1|k − 1) . . . B(k +8− 1|k − 1)

 ,

$ =

 A(k|k − 1)Xe(k|k − 1)
...

A(k +8− 1|k − 1)Xe(k +8− 1|k − 1)

 ,

ξ =

 B(k|k − 1)u(k − 1)
...

B(k +8− 1|k − 1)u(k − 1)

 .
Based on (23), the optimized objective function (18) can

be converted as

h̄ = min (21Uk +$ + ξ )T 3̃Q(21Uk +$ + ξ )

+1UTk 3̃R1Uk , (24)

s.t. 21Uk +$ + ξ ∈ [Xmin,Xmax],

1Uk ∈ [1Umin,1Umax],

Uk−1 ∈ [Umin,Umax],

Uk−1 + Ĩ1Uk ∈ [Umin,Umax], (25)

where 3̃Q ∈ R38×38 and 3̃R ∈ R39×39 are appropriate
dimensional matrices,Xmin andXmax are the state constrains,
Umin and Umax are the input control constrains, 1Umin and
1Umax are the input increment constrains, and

Ĩ =


I 0 · · · 0
I I · · · 0
...
...
. . .

...

I I · · · I

 ∈ R39×39 .

To solve the optimization function (24), we transform it
into a quadratic programming (QP) problem:

min
1
2
1UTk ϕ1Uk + ρ

T1Uk , (26)

s.t. 1Umin 6 1Uk 6 1Umax,

[
−Ĩ Ĩ −2 2

]
1Uk 6


−Umin

+ Uk−1
Umax

− Uk−1
−Xmin

+$ + ξ

Xmax
−$ − ξ

 , (27)

where

ϕ =

[
(2T 3̃Q2+ 3̃R) 2T 3̃Q

3̃Q2 3̃Q

]
,

ρ =

[
22T 3̃Q($ + ξ )
23̃Q($ + ξ )

]
.
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FIGURE 8. Experiment environment.

FIGURE 9. The four-wheel omnidirectional mobile robot.

V. EXPERIMENTS
In this section, we apply the proposed NT-Bug algorithm
to the shared control system to assist the operator in con-
trolling the motion of the mobile robot. Three experiments
are carried out to validate the effectiveness of the pro-
posed shared control strategy and the novel NT-Bug algo-
rithm. The experimental site is about 3m × 5m, as shown
in Fig. 8. The four-wheel omnidirectional mobile robot is
driven by four motors of 90 power and is controlled by
a computer with a CPU of core i7-5500U. A laser radar
with 8-meter scanning distance and 0.18 degrees angle accu-
racy is mounted at the front of the mobile robot platform
(Fig. 9). The global coordinate system XWOWYW is set up
at the starting position of the mobile robot, while its origin
OW is at the center of the mobile robot and XW -axis is
consistent with the forward direction of the mobile robot.
Additionally, in order to show the experimental results more
intuitively, we built a two-dimensional grid map for each
experiment in advance. The actual position of the mobile
robot would be recorded directly on the map in real time.
The MPC parameters in the experiments are set as 8 = 3,
9 = 2, Umax

= −Umin
= [1.5, 1.5, 1.5, 1.5, 1.5, 1.5]T ,

Umax
= −Umin

= 1Umax
= −1Umin

=

[10, 10, 10, 10, 10, 10]T , Xmax
= −Xmin

= [10, 10, 10,
10, 10, 10, 10, 10, 10]T , 3̃Q = 2000I , and 3̃R = 40I ,
where I ∈ R38×38 is an identity matrix. The minimum

FIGURE 10. L-shaped obstacle avoidance in NT-Bug1 algorithm.

and maximum magnitude of the muscle stiffness are set as
ςmin = 8 and ςmax = 80. The minimum and maximum
linear velocity of the mobile robot are νmin = 0.05m/s and
νmax = 0.15m/s, respectively.
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FIGURE 11. L-shaped obstacle avoidance in NT-Bug2 algorithm. FIGURE 12. Static and dynamic obstacle avoidance in NT-Bug2 algorithm.
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In the first experiment, there is a L-shaped obstacle in the
workspace. The operator controls the mobile robot to move
forward. The NT-Bug1 algorithm is applied to the shared
control system for collision prevention. Its parameters are
set as `safe = 0.55, θesc = π/2 and dσ = 0.002. The
NT-Bug2 algorithm is introduced in the second experiment to
demonstrate its advantage referring to the concave obstacle.
For comparison, its experimental settings are the same as that
of the first experiment. The last experiment is to validate
the effectiveness of the NT-Bug2 algorithm for static and
dynamic avoidance. One obstacle is put in the workspace
in advance, the other is placed during the process of the
experiment. Under the control of the operator, the mobile
robot moves left at the first stage and moves forward at
the second stage. The parameters of the NT-Bug2 are set as
`safe = 0.5, θesc = π/2 and dσ = 0.002.
The results of the first and second experiments are shown

in Figs. 10 and 11, respectively. In both experiments,
the actual trajectories almost coincide with the reference
trajectories, and the tracking errors are small (within 0.01m),
which suggests the trajectory tracking controller works effec-
tively. Since themobile robot is commanded tomove forward,
the command vx is determined by the linear velocity while the
command vy retains zero. That is why the curves of command
vx are consistent with the curves of muscle stiffness, while
the curves of command vy remain zero. However, in the
first experiment, the path around the contour of the obsta-
cle is longer, and there are more corners on the trajectory,
increasing the risk of collision. In contrast, the trajectory
in the second experiment is smoother, and the switching
frequency between vx and vy is lower than that in the first
experiment. The comparison of the experiment results shows
that the NT-Bug2 algorithm is more efficient for the shared
control system. It also can plan a smoother and safer path for
the mobile robot.

The last experiment results are shown in Fig. 12. The
blue block on the grid map represents a dynamic obstacle,
while the black block represents a static obstacle. The mobile
robot is commanded to move left in the first stage, where
the command vx remains zero while the command vy is
in accordance with the muscle stiffness. At about sampling
time 700, the mobile robot receives a new motion command
of moving forward, that is why the curve of command vx
starts to vary according to the muscle stiffness while the
curve of command vy remains zero. The actual trajectory
overlaps with the reference trajectory and the trajectory error
maintains small when the system reaches the stable state. As
Fig. 12(a) shown, the mobile robot can successfully bypass
both static and dynamic obstacle in the NT-Bug2 algorithm.
Therefore, the proposed NT-Bug2 algorithm is suitable for
both dynamic and static avoidance.

VI. CONCLUSION
In this paper, we propose a novel shared control strategy
for the mobile robot in a human-robot interaction manner
based on the sEMG signals. To prevent the mobile robot from

colliding with any obstacles, a collision avoidance scheme is
introduced into the system. Aimed at the obstacle avoidance
problemwithout a specific target, we develop a novel NT-Bug
algorithm to guide the mobile robot to avoid obstacles and
return to the command line. By adding the command
direction into the obstacle avoidance process as a con-
dition for the stage switching of the algorithm, the NT-Bug
algorithm can plan a smoother and safer path for the mobile
robot. MPC is introduced to control the mobile robot to
track the reference trajectory. The experiment results have
validated the effectiveness of the proposed shared control
strategy and the NT-Bug algorithm.
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