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ABSTRACT Previous real-time lane-level positioning algorithms for in-vehicle navigation systems have
problems of inaccurate positioning and insufficient robustness. Therefore, this paper proposes a new lane-
level positioning algorithm integrating Improved filter method, Curve Circle method and Improved Unet
(ICCIU) method. Specifically, in ICCIU algorithm, we design improved filter method to improve the
accuracy of original position by combining three filters to enhance image features, propose curve circle
method to achieve real-time curve positioning by introducing two movement indicators to get precise curve
position and design a light improved Unet method that integrates residual thought and cascading thought to
detect the lane, and integrates two new parameters to get more accurate position by reducing the horizontal
position errors The experiment results show that evaluation indicators of the improved Unet method are over
20% higher than those of the existing algorithms, the running time of single point positioning is about 28ms
and lane-level accuracy is over 96% used by ICCIU, which demonstrates the pretty performance both in

feasibility and efficiency of the new algorithm.

INDEX TERMS Lane-level positioning, improved filter method, curve circle, improved Unet, ICCIU.

I. INTRODUCTION

With the rapid popularization of 5G communication technol-
ogy and the progress of Intelligent Transportation System
(ITS), Autonomous driving has become a hot topic in cur-
rent research area. The vehicle’s self-positioning algorithm
is directly related to whether automatic driving can provide
accurate real-time response or not. Therefore, how to design
an accurate, real-time and light mobile lane-level positioning
algorithm is still a problem deserving of study.

Many scholars have studied various lane-level position-
ing algorithms, including: (1) Road structure [1]-[4]. These
algorithms obtain lane-level position by using road structure
and monocular camera to increase the accuracy of single
GPS. These algorithms have high efficiency but lack the
curve positioning method, and the accuracy needs to be
improved. (2) Graphics [5], [6]. The algorithms used lane
detection methods (e.g., Hough [7]-[9], RANSAC [7]-[9],
Least Squares [12]-[14]. lane line feature [11], [15]-[17])
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to obtain lane lines, and then applied high GPS to achieve
lane-level positioning. Unfortunately, they rely heavily on the
precision of lane detection and rarely have methods to reduce
the horizontal position errors. (3) Sensor fusion [18]-[21].
These methods used sensor fusion such as infrared, LIDAR
and radar to get lane-level location and employed the dif-
ference between lane line and background to achieve lateral
position correction. Although these methods have high pre-
cision and can complete all-weather and all-day positioning,
the cost and way of these positioning methods restrict existing
vehicles to apply these algorithms. (4)Deep learning [22]—
[27]. These algorithms use deep learning model (e.g., Unet)
and image features to get lane-level position. For example,
Unet has good accuracy in lane detection which can be posi-
tioned without restrictions but doesn’t have good efficiency
because it has too many parameters. These algorithms put
the rightmost lane as the original location which will cause
positioning errors when car navigation system starts at other
lane. Although these algorithms have been used to improve
positioning accuracy, little attention has been paid to reduce
horizontal position errors.
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FIGURE 1. Overall process of ICCIU algorithm.

In this context, we propose a new real-time lane-level
positioning algorithm for vehicle positioning by integrating

Improved filter method, Curve Circle method and
Improved Unet method (referred to as ICCIU). Our main con-
tribution is to improve the lane-level accuracy and efficiency
by solving the problem of corner positioning and reducing
horizontal position errors. Firstly, we design improved filter
method to get initial position and propose Curve Circle (CC)
method to achieve corner positioning. Secondly, we develop
Improved Unet (IU) method to reduce horizontal position
errors by employing new downsampling to enhance the fea-
ture and pruning network to improve efficiency by reducing
redundant parameters. Finally, we conduct some experiments
to verify accuracy and timeliness of the algorithm.

il. METHOD

To respond to the lane-level algorithm’s problems in terms
of lacking curve positioning and low accuracy in real-time
positioning for in-vehicle navigation systems, this paper pro-
poses an ICCIU algorithm which integrates Improved Fil-
ter method, Curve Circle (CC) method and Improved Unet
(IU) method to improve the lane-level positioning precision
and efficiency. Specifically, in this algorithm, improved filter
method integrates three filters (such as Select Saturation
(SelectS), Sobelx, YWmask) to ensure that the initial loca-
tion can be positioned accurately and quickly. CC method is
firstly proposed to achieve corn er positioning by integrating
centripetal acceleration and angular velocity. Light improved
Unet method is designed to improve positioning accuracy by
reducing horizontal position errors.

The overall process of the ICCIU algorithm is shown
in Fig.1. Firstly, ICCIU employs GPS and improved fil-
ter method to get original location. Then, if vehicle is on
the intersection, the CC method is used to achieve curve
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positioning, else if the vehicle drives on the straight road,
IU method is applied to get more accurate position based on
improved filter method results. At last, IMU and accelerom-
eter are used to correct lane-level position.

A. IMPROVED FILTER METHOD

Traditional lane-level algorithms putting the rightmost lane
as the original location, which will cause positioning errors
when car navigation system starts at the other lane. Therefore,
this paper designs an improved filter method to get accurate
original location by integrating Hough Transform [28] and
filter method. Through different filtering experiments, from
the result show in Fig.2, we find that lane lines have obvious
characteristics in the width direction, saturation and yellow-
white color.

Therefore, this paper introduces Sobelx standing for Sobel
filtering on the image width, SelectS standing for filtering
image on saturation and YWmask standing for filter image
on yellow and white color as three parameters, and pro-
poses improved filter method that integrates three parameters
(Sobelx, SelectS and YWmask). In addition, the camera is used
to get initial position at the center of the vehicle behind the
front windshield. The improved filter method is as follows
and also shown in Fig.3.

(1) Selecting Region Of Interesting(ROI). Perform inverse
perspective transformation on image and record the images
as original image. We convert RGB original image to HSL
image and normalize image pixel values to 0~1, then select
saturation in image to get binary the image which is recorded
as SelectS.

(2) Binarizing the selected image. Determined the number
of lane lines as /; (i = 1,2,3,4...) by counting the number of
effective peaks. Then, select yellow and white color to filter
the image, record the result as a combination YWmask.

(3) The binaries image is subjected to Sobel filtering pro-
cessing along the image width direction. The filter is 3*3 and
also show in formula 1. Then, filter the image and record it
as Sobelx.

-1 -2 -1
Filter=| 0 0 0 (1)
1 2 1

To improve detection efficiency, we normalize the three
image (SelectS, YWmask and Sobelx) to 0 and 1. To get the
fused image f, should follow these principles:

Assuming pixell, piexl2, piexI3 and piexlf are the pixel
value of the same position in the images of SelectS,YWmask,
Sobelx and f .

Rule 1: If pixell = pixel2 = pixel3 =S (S = Oor 1), we set
pixelf =s.

Rule 2: If one of them (pixell, piexI2 and piexi3) are 1,
we set pixel3 = 1.

(4) Multi-window is taken on the image f to extract the lane
line. Set the upper left corner of the image as the origin of the
coordinates. And then, we use the least squares method [29]
to fit the pixels(x;, y;) in each search box to get lane line set
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FIGURE 3. Overall process of improved filter method.

l; i = 1,2,3,4...). The lane line on the far left of the image is
marked as /. Assuming that the linear equation of /; is:

y=ax+b 2)
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Least squares method requires that D is the smallest
when a,b is the smallest. D is defined as follow:

D=Y d}=) Gi—a-b) 3)
i=1

i=1
Then, it can get the a,b.

_ XYave — XaveYave

a=—F——"—"—, b=y —ax “4)
(xz)ave - (Xave)2 ae e

where,

n n

1 2 1 2

Xave = o E XiYi>  Xave = E X;
i=1 i=1

1 1

2 2 22

yuvezzg YVis (x)avezzg X .
i=1

i=1

Then, setting the threshold M to remove the noisy line. M
is determined according to the length of lane line, space and
the proportion of the image. Removing the lane line if its line
spacing is less than the threshold M.

(5) Calculating the distance d;j(i = 1,2,3,4...) between
image center coordinate points p. (x,y) and lane line set. If d;
and d;y are the two smallest distance values, the vehicle is
on /;.

Fig.4 is the result of the improved filter method proposed
in this paper. (a) is the original image, (b) is the inverse
perspective image, and (c) is the result of combining three
filter binaries image. From (d) we can see that all lane lines
are correctly detected.

B. CURVED CIRCLE METHOD

Considering that the vehicle is perpendicular to the stop line
when turning, the center of the arc of the vehicle turning is
on the extension of stop line. And the radius of the vehicle
(R) turning is not only related to the angular velocity (a) but
also the driving speed (v), the Curve Circle (CC) method
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FIGURE 5. Vehicle coordinate system.

integrates velocity (a) and the driving speed (v) velocity
to construct a circle that can map matching while vehicle
turning. The Curve Circle method is as follows.

The reading of the three-axis acceleration sensor in the
stereo coordinate system is X,ee = {Xaces Yace» Zace } » angular
velocity reading is wang = {wx, wy, w; } , and gyroscope
reading is {X,g, Ypg, Zpg } - As shown in Fig.5, taking left-
turning of the two-way and six-lane vehicle p as an example,
the coordinate system is established with the road intersection
Lo (x0, yo) where the vehicle p is located. According to
vehicular dynamics, the radius of the curve circle (R) is met:

V2
ma — mF, (5)
a
R= . ©)

where, a is centripetal acceleration, w is turning angular
velocity.

The turning radius (R;) of the vehicle at 7 time can be
obtained according to the formula 6, and the curve circle is
established with as the center and R; as the radius get location.
The real vehicle position L; (x; y,) at t time in the geographic
coordinate system is:

x; = Rysin(0) + xg, @)

y: = Ri(1 —+/1 — sin%6 + yy, 8

i=t
where, 0 = > |wjl.
i=0
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Similarly, the coordinates of the position of the right turn
of the vehicle are:

x; = Rysin(0) + xg, ©)]
i=t

Yo =yio1 — Ri(1+ cosY_ wil), (10)
i=0

C. IMPROVED UNET METHOD

We design [Unet to detect the accurate lane lines and integrate
height and width to obtain horizontal position. The overall
process of improved Unet method is shown in Fig.6.

1) IMPROVED UNET STRUCTURE

Traditional Unet network has a good effect on static medical
image segmentation, but it does not have good efficiency,
especially in real-time image segmentation. Under this back-
groud, this paper designs an improved Unet(IUnet) which
applies residual block to replace traditional plain network
to enhance downsampling features, and combines shallow
features with deep rough features to improve the accuracy
of image segmentation. Besides, in order to improve model
efficiency, we design experiments to reduce the network
parameters. After a large number of experiments, our IUnet
including a total of 585,665 parameters, 7 million fewer than
the traditional Unet network. The IUnet is defined as follows
and shown in Fig.7.

The IUnet consists of 16 layers of convolution, includ-
ing four downsamplings and four upsamplings processes.
To improve real-time performance of the model, we set the
input size to 80*160*3. The [Unet is as follows:

(1) Convolution function. The network has 16 convo-
lution layers that 1~8 layers are for downsampling con-
volutions and 9~16 upsampling convolutions (the first,
fourth, fifth, and eighth layers are convolution layers, and
the second, third, sixth, and seventh layers are residuals).
In differential convolution, 9~16 layers are transpose con-
volutions layers, which kernel_size = (3,3), strides = (1,1),
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activation = ’leakey_relu’, and padding=’same’. Each con-
volution layer is followed by a Batch Normalization layer.

(2) Activation function. Activation function. Common acti-
vation functions are sigmoid, tanH, and relu activation func-
tions and shown in Fig.8.

Sigmoid activation function can make a big difference in
output because of the slight change of weight. Therefore,
it is easy to judge whether the network converges through
output. But the activation function is easy to saturate. While
retaining the advantages of sigmoid activation function, tanH
activation function has a faster convergence rate than sig-
moid. It is easier to make the network converge because its
mean value is 0. However, the problem of this function is
that when input value is large, the directional propagation
gradient is close to 0, which makes it difficult for the network
to converge, and the amount of calculation is also large.
Therefore, it is not conducive to improve the efficiency of the
algorithm. Compared with sigmoid and tanH functions, relu
function has small calculation and can better deal with the
problem of over-fitting. However, the large sparsity will make
neurons of the model not work, resulting in a decrease of the
effective capacity of the model. Therefore, this article selects
the leakey_relu activation as activation function. leakey_relu
activation function is as follows:

f(x) = max(ax, x)

(11)

(3) Optimization function. This paper selects adap-
tive moment estimation (Adam) as optimization function.
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Compared with the SGD optimization method with fixed
learning rate, Adam can adaptively adjust the learning rate
of each parameter through the first-order and second-order
matrix estimation of the gradient. Adam takes up less memory
than SGD and is more advantageous for sparsely stable tar-
gets. Therefore, Adam is more suitable for real time extract-
ing lane lines than SGD.

(4) Loss function. The network output image size is
80*160*1. The network uses a loss function to evaluate the
difference between the network output value and the true
value. The experimental results show that compared with
other loss functions, MSE has better image extraction effect.
Therefore, this paper selects MSE as the loss function. The
MSE is defined as follow:

M
1 )
MSE = Mﬂ;@m—ymﬂ (12)

where, y,, is output value and y,, true value.

2) IMPROVED UNET METHOD
In order to get horizontal distance(d) ), IU method installs
cameras under the rearview mirror and transmits the image to
IUnet extraction lane lines. Fig.12 is an example of obtaining
horizontal distance of the right side (dj,) of vehicle.
Assuming that the height of feature point a is 4 and lane
line(/) is detected by IUnet on the right line of vehicle,
we select the feature point a(x, y) on the vehicle of the image.
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FIGURE 9. Leakey_relu activation function.
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FIGURE 12. Tusimple database and self-annotated database.

dp; 1s defined as follow:

dnr = (k% d)? + 12, (13)

where, k is ratio of the distance on the graph to the actual

distance, d is the shortest distance from lane line to point a.
If no lane lines are detected by IUnet, we calculate the

distance of current frame by using the distance of previous
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TABLE 1. Confusion matrix.

Positive Negative
True True Positive(TP) True Negative(TN)
False False Positive(FP) False Negative(FN)

frame and IMU. The distance is calculated as follows:
dpy = dpr—1 + v x At % 5inA9, (14)

where, v is current vehicle speed, At is time between two
consecutive frames images, A6 is the change of vehicle’s
driving angle, dp,—_1 is the last frame distance between lane
line and vehicle.

Ill. EXPERIMENT & RESULTS

The ICCIU positioning algorithm proposed in this paper
has been experimental in real experiments. The experimental
designs and results are as follows.

A. EXPERIMENT ENVIRONMENT

To verify the timeliness and accuracy of algorithm in this
paper, we combine C# programming, python, keras 2.2.4 and
ArcGIS Engine 10.2 to design some experiments under Win-
dows 10 operating system. All tests were run on a computer
with CPU: intel(R)Core (TM)i9-9900K @3.6 GHzx 8 mul-
tithreaded processors, GPU: GEFORCE RTX 2080Ti 11G
and 32G RAM. Meanwhile, we choose road of Rizhao as
experimental area to complete the matching experiment. The
experimental area is two-way four-lane. We use android
mobile device to derive positioning data, and road data is
downloaded from OpenStreetMap (OSM). Figure.11 shows
that our experimental car which equipped with 3 cameras and
an automotive grade IMU 3D space sensor. The camera’s field
of view that used to get initial position is 117° and resolution
is 1280*720 pixels. The IMU static measurement accuracy
is 0.05°, the heading dynamic measurement accuracy is 1°,
and the roll and pitch measurement accuracy is 0.1°. The
resolution of camera that used to reduce the horizontal posi-
tion errors is 866486 pixels. In addition, GPS positioning
interval is 2S and cars collects data at the average speed
of 35 Km/h. Furthermore, according to the experimental area
road condition, we set M at 50 pixels.

B. ALGORITHM EVALUATION INDEXES

To evaluate the performance of algorithm, the following
indexes are designed to evaluate the accuracy and efficiency
of algorithm in various aspects, according to the binary con-
fusion matrix shown in table 1.

(1) Accuracy: This index is the degree of approximation
between predicted result and real value. The larger this index
is, the higher the accuracy of the model will be. Accuracy is
defined as follows:

TP + TN
TP+ TN + FP+FN’

Accuracy = (15)

VOLUME 8, 2020



W. Teng et al.: ICCIU: New Real-Time Lane-Level Positioning Algorithm

IEEE Access

Loss on Training and Validation Data  Accuracy on Training and Validation Data )
012 ] Loss on Training and Validation Data
o rain_less a1

val_loss 0se

—— train_loss
val_loss.

wl_acc —

Loss on Training and validation Data Accuracy on Training and validation Data

Accuracy_on Training and Validation Data
a7 | I— — train loss 097  ——
— . -
| loss
~ s | al los: 0ss] (

\
vsz wain e N 2e0 reypen

val_acc —— — val acc

0 W0 W0 0 40 0 60
Epachs

0 W0 0 N0 40 00 60
Epachs

(a) IUnet

0 1 M0 M0 400 500 600

FIGURE 13. Network training Tusimple data sets.

(b) Unet

0 100 20 30 400 500 60 [
Epochs

WO M0 30 40 SO 6D
Epochs

(c) ResNet-34-Unet

0 W0 00 W0 0 I 600
Epochs

Loss on Training and Validation Data Accuracy on Training and Validation Data Loss on Training and Validation Data Accuracy on Training and Validation Data Less on Training and Validation Data Accuracy on Training and Validation Data
30 o035 § " 086
| — train_loss [ tain_loss o { —M 20 ram s
a0% wal_loss - m
oz | | wal_loss 08 ‘ 0030 - 003
[ ac .
020 ‘ paas ]
o7y | ooz
z e oz0
gois] | g ] £ oo ass
| g - oos ¥ oz 8 d
ool | 2081 * oot
{ ‘ 0010 wEzo = ias
005 \ 0s noos | oEls | am |
\ } — \ mos | oms! o
000 —_— val_acc poog { et L LBt al_ace coos | i S——— N ) val_e
04 - . - -~ - - - - - 080+
) 50 100 150 200 [ 50 100 150 200 o = aon G o = oo 1se 200 o 50 m  1sa 00 0 50 Mo 150 00
Epochs Epochs Epochs Epochs Fnchs Epoc

FIGURE 14. Network training Tusimple data sets.

(2) Recall: This index is the proportion of all correct samples
that are correctly identified, which can reflect the model’s
ability to classify positive samples. The higher this index is,
the stronger the classification ability is. Recall is defined as
follows:

TP
TP+ TN’
(3) F1_score: This index can reflect the classification ability
of the model comprehensively. The higher the F1_score is,

the better the classification effect of the modified model will
be. F1_score is defined as follows:

Recall = (16)

2 % Precision * Recall
F1 _core = — )
Precision + Recall

‘e TP
where, Precision = 75 7p.

(4) Average time: The index reflects the average time
used to complete the positioning of single frame image in
the matching process. It can reflect the timeliness of the
algorithm in practical applications. The smaller the index is,
the higher efficiency of the network.

(5) Lane-level accuracy: This index is the ratio of the length
of correct lane-level position to the total matching length. The
higher the index is, the higher accuracy of the algorithm.

)

C. EXPERIMENTAL RESULTS

1) IUNET METHOD PERFORMANCE

To verify the accuracy and efficiency of the IU method in this
paper, we combine python 3.6.5 programming and keras 2.2.4
to design some experiments under windows 10 operating
system. To compare the performance with Unet and ResNet-
34-Unet, Tusimple database and self-annotated database were
selected to divide training sets and verification sets according

VOLUME 8, 2020

TABLE 2. Training paramenters.

Tusimple self-annotated
database database
bach_size 16 16
epoch 600 200
Verification 572 92

set's count

to 8/2 as shown in fig.12. The training parameters are shown
in table 2.

(1) Experiment in Tusimple data

Fig.13 shows the performance of different network models
on the Tusimple dataset. From the figure we can see that
IUnet training accuracy and verification accuracy are both
over 97% and the accuracy is higher than the accuracy of the
other two networks. Unet and Resnet-34-Unet are overtrained
after 30 epochs, but IUnet still has a good performance that
demonstrates IUnet has a better learning ability.

(2) Experiment in self-annotated data

Fig. 14 is the performance of different network models on
self-annotated data sets. As can be seen from the figure, [Unet
has better stability and higher accuracy compared with Unet
and ResNet-34-Unet, indicating that [Unet more accurate in
lane-line extraction.

(3) Experiment in self-annotated verification data

Fig. 15 is the results of recall and F1_score of each network
model on the self-annotated verification set. According to
the figure, the average recall and F1_score of IUnet are
about 93.90% and 96.64%. Compared with 69% and 62.41%,
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TABLE 3. Results of each network model.

[Unet Unet ResNet-34-Unet
Total parameters 585,665 7,765,857 9,186,417
Accuracy 85.03% 84.2% 84.03%
Recall 93.90% 69% 72.8%
F1_score 96.64% 62.41% 75.91%
Average time 28ms 34ms 45ms

Model F1_score

~ Vs \/-\rr’- Y ama --u-—-m\/———f\,_r;\df\/\

r’\/\/l\/

100.00%

90,00%

B0.00%:

70.00%

60.00%
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o 5 10 15 20 530 35 4 4 S0 55 60 65 T 5 80 8

image count

—IUnet —Unet

—ResNet-34-Unet
Model Recall

Image count

~—ResNet-34-Unet —Unet —IUnet

FIGURE 15. Recall and F1_score of each network model.

72.8% and 75.91% of the two other network models, our
method is more precise and robust.

Table 3 is the results of different network models. It can be
seen from the table that the total number of training parame-
ters in IUnet model is far less than the number of parameters
in Unet and ResNet-34-Unet. In terms of Accuracy, [Unet has
higher accuracy than the other two networks. As for Recall
and F1_score, IUnet is 30% higher than Unet and 20% higher
than resnet-34-unet, indicating that IUnet has higher accurate
and robust than the other two networks. The average time
of IUnet single frame image positioning is 28ms, which is
much faster than other two network models. Both the better
performance of IUnet in precision and efficiency is verified
in the experiments.

2) ICCIU ALGORITHM PERFORMANCE
As shown in Fig.16, we select Yingbin road, Donggang Dis-
trict and Rizhao City in China as the experiment area to

44964

TABLE 4. Positioning results multipleareas.

Approximat  Average Lane-level
NO. etraveled time(ms)  accuracy(%)
distance(m)
1 5580 28 98.21%
2 1952 24.8 97.10%
3 6469.9 26.4 97.81%
4 3359 25.9 96.12%
i
=
s
] — | 2=l

FIGURE 16. Overview of study area.

|n_:|.l|.|
* S ety
Eoad lines
Vehicle
Boad mid lines

lare b

FIGURE 17. Lane-level positioning result using ICCIU algorithm.

examine ICCIU algorithm. Yingbin Road is a two-way four-
lane road.

Fig.17 is the experimental result of ICCIU algorithm for
intercepting an approximately 380-meter-long road. There is
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a total of 330 frames in this area. The following figure dis-
plays the lane-level positioning results in part of areas.

To verify the reliability of the algorithm, Shangdong Mid-
dle road, Yanhai highway and No. 204 National high way
in Rizhao city (No.2, 3 and 4, as shown in figure 18) were
selected for testing to compare with above-mentioned exper-
iment (No.1). The results are shown in table 4. As the table
shows, limited by the blurring of lane markings, the accuracy
of NO.3 area decreases but is still higher than 96%, which
indicates that ICCIU is very robust.

IV. CONCLUSION & DISCUSSION

Aiming at the lane-level algorithm’s problems in terms of
lacking curve positioning and inaccuracy in real-time posi-
tioning for in-vehicle navigation systems, this paper proposes
an ICCIU algorithm which integrates improved filter method
to improve original location accuracy, proposes curve circle
method to overcome the deficiency of the previous algorithms
of positioning corner and designs IU method to improve lane-
level precision by reducing horizontal position errors. The
experiments show that IUnet has higher accuracy than the
two other networks. In terms of Recall and F1_score, IUnet
exceeds 93%, which is 30% higher than the score of Unet,
20% higher than the score of ResNet-34-Unet.The running
time of singe frame image positioning is about 28ms and
the lane-level accuracy is over 96% used by ICCIU algo-
rithm, which demonstrates the higher performance of our
algorithm both in feasibility and efficiency, and responds to
the requirements of lane-level real-time positioning for in-
vehicle navigation system. However, the accuracy of the algo-
rithm depends on the clarity of the lane line marker, we will
discuss the high-precision algorithm of lane extraction in
next paper and use more data to evaluate the performance of
ICCIU algorithm. Furthermore, this study mainly focused on
2-D road network and gave little attention to the positioning
of 3-D road network such as overpasses, which will be our
next study interest.

REFERENCES

[1]1 Y. E Yu, H. J. Zhao, J. S. Cui, and H. B. Zha, “Road structural feature
based monocular visual localization for intelligent vehicle,” Acta Autom.
Sinica, vol. 43, no. 5, pp. 725-734, 2017.

[2] D. P. Ding, “Visual positioning technology to be based on pavement
structure,” Construct. Machinery Technol. Manage., vol. 5, pp. 69-72,
2017.

[3] M. Wu, J. M. Hao. H. Fu, Y. Gao, and H. Zhang, ““A stereo visual odom-
etry poseoptimization method via flow-decoupled motion field model,”
Acta Geodaetica et Cartograph. Sinica, vol. 48, no. 4, pp.460-472,
2019.

[4] Y.R.Zheng,J. Z. Yuan, and H. Z. Liu, “Method of Real Time Intersection
Location Based on Monocular Vision for Intelligent Vehicle,” Comput.
Eng., vol. 43, no. 9, pp. 288-299, 2017.

[5] M.M. Atia, A.R. Hilal, C. Stellings, E. Hartwell, J. Toonstra, W. B. Miners,
and O. A. Basir, “A low-cost lane-determination system using GNSS/IMU
fusion and HMM-based multistage map matching,” IEEE Trans. Intell.
Transp. Syst., vol. 18, no. 11, pp. 3027-3037, Nov. 2017.

[6] R.Raymond, T. Morimura, T. Osogami, and N. Hirosue, “Map matching
with hidden Markov model on sampled road network,” in Proc. 21st Int.
Conf. Pattern Recognit., Nov. 2012, pp. 2242-2245.

VOLUME 8, 2020

[71

[8]

[9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

U. Ozgunalp and S. Kaymak, “Lane detection by estimating and using
restricted search space in Hough domain,” Procedia Comput. Sci., vol. 120,
pp. 148-155, Jan. 2017.

A. Elsawy, M. Abdel-Mottaleb, and M. Abou Shousha, ““Segmentation of
corneal optical coherence tomography images using randomized Hough
transform,” Proc. SPIE, vol. 10949, Mar. 2019, Art. no. 109490U.

M. C. L. Yuan, Y. C. Xu, and Y. L. Li, “Lane line extraction-based lateral
positioning method for intelligent vehicle,” J. Mil. Transp. Univ., vol. 20,
no. 10,pp. 3843, 2018.

Z. Zhu, Q. Xiong, J. Chen, F. Zhang, X. Liu, and G. Yao, “Intrinsic
parameter calibration of line-scan cameras using RANSAC algorithm,”
in Proc. Int. Conf. Inf. Syst. Comput. Aided Educ. (ICISCAE), Jul. 2018,
pp. 416-425.

M. Lehtomiki, A. Kukko, L. Matikainen, J. Hyyppd, H. Kaartinen, and
A. Jaakkola, ‘“‘Power line mapping technique using all-terrain mobile laser
scanning,” Autom. Construct., vol. 105, Sep. 2019, Art. no. 102802.

G. Shapira and T. Hassner, “Fast and accurate line detection with GPU-
based least median of squares,” J. Real-Time Image Process., vol. 5,
pp. 1-13, Oct. 2018.

R. Fan and N. Dahnoun, “Real-time stereo vision-based lane detection
system,” Meas. Sci. Technol., vol. 29, no. 7, May 2018, Art. no. 074005.
J Rabe, M. Meinke, M. Necker, and C. Stiller, “‘Lane-level map-matching
based on optimization,” in Proc. IEEE 19th Int. Conf. Intell. Transp. Syst.
(ITSC), Nov. 2016, pp. 1155-1160.

Y. Xing, C. Lv, L. Chen, H. Wang, H. Wang, D. Cao, E. Velenis, and
F-Y. Wang, “Advances in vision-based lane detection: Algorithms,
integration, assessment, and perspectives on ACP-based parallel
vision,” IEEE/CAA J. Automatica Sinica, vol. 5, no. 3, pp. 645-661,
May 2018.

G. Liu, S. Li, and W. Liu, “Lane detection algorithm based on local feature
extraction,” in Proc. Chin. Autom. Congr., Nov. 2013, pp. 59-64.

H. Xuan, H. Liu, J. Yuan, and Q. Li, “Robust lane-mark extraction for
autonomous driving under complex real conditions,” IEEE Access, vol. 6,
pp. 5749-5765, 2018.

W. Li, Y. Guan, L. Chen, and L. Sun, “Millimeter-wave radar and machine
vision-based lane recognition,” Int. J. Pattern Recognit. Artif. Intell.,
vol. 32, no. 05, Jan. 2018, Art. no. 1850015.

L. Li, W. Luo, and K. C. P. Wang, “Lane marking detection and recon-
struction with line-scan imaging data,” Sensors, vol. 18, no. 5, p. 1635,
May 2018.

R. Toledo-Moreo, D. Betaille, and F. Peyret, “Lane-level integrity pro-
vision for navigation and map matching with GNSS, dead reckoning,
and enhanced maps,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 1,
pp. 100-112, Mar. 2010.

W. Yanwen, Z. Nan, Z. Tao, and Y. Wei, “Research of lane detection
and tracking methods based on multi-sensor fusion,” Appl. Res. Comput.,
vol. 35, no. 2, p. 60, 2018.

Y. Zihao and S. Rui, “Lane recognition method based on fully convolu-
tion neural network and conditional random fields,” Opto-Electron. Eng.,
vol. 46, no. 2, pp. 37-48, 2019.

D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and
L. Van Gool, “Towards end-to-end lane detection: An instance segmen-
tation approach,” in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018,
pp. 286-291.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolu-
tional encoder-decoder architecture for image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481-2495, Dec. 2015.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431-3440.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234-241.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

D. H. Ballard, “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern Recognit., vol. 13, no. 2, pp. 111-122, Jan. 1981.

Y. Li, C. Lin, and W. Zhang, “Improved sparse least-squares sup-
port vector machine classifiers,” Neurocomputing, vol. 69, nos. 13-15,
pp. 1655-1658, Aug. 2006.

44965



IEEE Access

W. Teng et al.: ICCIU: New Real-Time Lane-Level Positioning Algorithm

b

WENXIN TENG received the bachelor’s degree in
GIS from the University of Jinan, Jinan, China,
in 2013, and the master’s degree from the 3D
Information Collection and Application Key Lab
of Education Ministry, Capital Normal University,
Beijing, China.

His major field was GIS, ITS, and vehicle nav-
igation and image. He is interested in solving the
map matching problems through deep learning.

YANHUI WANG was born in Henan, China. She
received the bachelor’s and master’s degrees in
aerospace engineering from Central South Uni-
versity, in 1998 and 2001, respectively, and the
Ph.D. degree in LBS from the China University of
Mining and Technology, Beijing, in 2005.

From July 2005 to December 2006, she worked
as a Lecturer at the College of Resources Envi-
ronment and Tourism, Capital Normal University,
where she has been an Associate Professor, since

January 2007. Her research fields are GIS application and LBS. She is
interested in solving complex real-world positioning problems.

44966

BIBO YU is currently pursuing the degree in geo-
graphic information science. His research has been
concerned with the method and application of GIS
in traffic scenes, traffic big data, and deep learning.
He is interested in solving problems in lane-level
positioning and high-precision map in automatic
drive.

JIAHAO LIU received the B.E. degree in geo-
graphic information system from Hebei Agricul-
tural University, Baoding, China, in 2018. He is
currently pursuing the M.E. degree in geographic
information system with the Beijing State Key
Laboratory Incubation Base of Urban Environ-
mental Processes and Digital Simulation, Capital
Normal University, Beijing. His research inter-
ests include LBS, ITS, and deep learning and its
application.

VOLUME 8, 2020



	INTRODUCTION
	METHOD
	IMPROVED FILTER METHOD
	CURVED CIRCLE METHOD
	IMPROVED UNET METHOD
	IMPROVED UNET STRUCTURE
	IMPROVED UNET METHOD


	EXPERIMENT & RESULTS
	EXPERIMENT ENVIRONMENT
	ALGORITHM EVALUATION INDEXES
	EXPERIMENTAL RESULTS
	IUNET METHOD PERFORMANCE
	ICCIU ALGORITHM PERFORMANCE


	CONCLUSION & DISCUSSION
	REFERENCES
	Biographies
	WENXIN TENG
	YANHUI WANG
	BIBO YU
	JIAHAO LIU


