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ABSTRACT Cancer is one of the most feared and aggressive diseases in the world and is responsible
for more than 9 million deaths universally. Staging cancer early increases the chances of recovery. One
staging technique is RNA sequence analysis. Recent advances in the efficiency and accuracy of artificial
intelligence techniques and optimization algorithms have facilitated the analysis of human genomics. This
paper introduces a novel optimized deep learning approach based on binary particle swarm optimization
with decision tree (BPSO-DT) and convolutional neural network (CNN) to classify different types of cancer
based on tumor RNA sequence (RNA-Seq) gene expression data. The cancer types that will be investigated
in this research are kidney renal clear cell carcinoma (KIRC), breast invasive carcinoma (BRCA), lung
squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD) and uterine corpus endometrial carcinoma
(UCEC). The proposed approach consists of three phases. The first phase is preprocessing, which at first
optimize the high-dimensional RNA-seq to select only optimal features using BPSO-DT and then, converts
the optimized RNA-Seq to 2D images. The second phase is augmentation, which increases the original
dataset of 2086 samples to be 5 times larger. The selection of the augmentations techniques was based
achieving the least impact on manipulating the features of the images. This phase helps to overcome the
overfitting problem and trains themodel to achieve better accuracy. The third phase is deep CNN architecture.
In this phase, an architecture of twomain convolutional layers for featured extraction and two fully connected
layers is introduced to classify the 5 different types of cancer according to the availability of images on the
dataset. The results and the performancemetrics such as recall, precision and F1 score show that the proposed
approach achieved an overall testing accuracy of 96.90%. The comparative results are introduced, and the
proposed method outperforms those in related works in terms of testing accuracy for 5 classes of cancer.
Moreover, the proposed approach is less complex and consume less memory.

INDEX TERMS Cancer, RNA sequence, deep convolutional neural network, gene expression data.

I. INTRODUCTION
Cancer Cancer is a general term that used to describe a
group of diseases associated with abnormal cell growth with
metastatic and invasive characteristics [1]. In 2018, cancer
was responsible for more than 9 million deaths worldwide.
Approximately 17% of females and 20% of males will have
cancer at some point in time, and 10% of females and 13% of
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males will die from it [2]. Based on statistics from the WHO,
every year, more than 8 million people die from cancer,
accounting for approximately 13% of deaths worldwide,
indicating that cancer is one of the most threatening diseases
in the world [1]. In 2018, lung cancer (1.76 million deaths)
and colorectal cancer (860,000) are recorded as the
most common cancers. Stomach cancer (780,000), liver
cancer (780,000), and breast cancer (620,000) ranked
second, third and fourth among the most common
cancers [2].
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A tumor is any irregular cell proliferation that may be
either benign or malignant. A benign tumor remains limited
to its original location, which does not invade normal tis-
sue or spread to distant locations of the body. Nevertheless,
a malignant tumor may invade normal tissue and spread
throughout the body through the circulatory or lymphatic
systems (metastasis). The majority of cancers are classified
into one of three major groups: carcinomas, sarcomas, and
leukemias or lymphomas. Carcinoma is a type of cancer that
develops from epithelial cells, accounting for 90% of cancers
in human. Histological forms of carcinoma include adeno-
carcinoma, squamous cell carcinoma, adenosquamous carci-
noma, anaplastic carcinoma and large cell carcinoma.Grading
of carcinomas refers to the employment of criteria intended
to semi-quantify the degree of cellular and tissue maturity
seen in the transformed cells relative to the appearance of
the normal parent epithelial tissue from which the carcinoma
derives. The grades vary from grade 1 to grade 4 [1].

The Cancer Genome Atlas (TCGA) is a landmark
genomics cancer data set including gene expression, DNA
methylation, somatic mutation, copy number variation,
microRNA expression, and protein expression. These expres-
sions are sequenced and molecularly characterized over
11,000 cases of primary cancer samples. A joint project was
established between the National Cancer Institute (NCI) and
the National Human Genome Research Institute (NHGRI)
under the name of TCGA. In 2006, TCGA was treated as a
pilot project. Its focus was on three cancer types: lung, ovar-
ian, and glioblastoma. In 2009, NHGRI and NCI reauthorized
TCGA for a complete production phase, due to the significant
success of the initial efforts. In the following decade, TCGA
collected more than 11,000 cases across 33 tumor types and
generated a large, comprehensive database describing the
molecular changes that occur in tumours [3], [4]. Those large
datasets provided a great classification opportunity for the
global landscape of aberrations at RNA, DNA and protein
levels [5].

This paper proposes an optimized deep learning approach
based on BPSO-DT and CNN to classify normal and tumor
conditions depending on a high-dimensional RNA-Seq gene
expression data. For a high level of accuracy in classifi-
cation, the high-dimensional RNA-seq data has been opti-
mized with BPSO-DT to reduce its dimensions by selecting
only the best features and removing the irrelevant features.
Then to input the optimized RNA-seq results into the CNN
architecture, the results were embedded into 2-D images.
To avoid overfitting, different data augmentation techniques
have been applied to the 2D images. The proposed approach
was trained and evaluated on a public RNA-seq dataset
consists of five separate cancer types, namely kidney renal
clear cell carcinoma (KIRC), uterine corpus endometrial car-
cinoma (UCEC), breast invasive carcinoma (BRCA), lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC).

The remainder of this paper is organized as follows.
Section II presents the methods and materials that discuss the

background of this work, while Section III explores related
work. Section IV discusses the dataset. Section V illustrates
the proposed approach, while Section VI discusses our out-
comes and issues in the paper. Finally, Section VII provides
conclusions and directions for further research.

II. METHODS AND MATERIALS
A. BINARY PARTICLE SWARM OPTIMIZATION
Particle swarm optimization (PSO) is a stochastic optimiza-
tion technique developed by Kennedy and Eberhart [6]. PSO
is a population-based search algorithm based on the organ-
ism’s behavior on a social milieu, of which a bird flock or
a fish school are representative examples [7]. PSO involves
simple mathematics and does not require high computational
speeds. Moreover, it uses a small number of parameters to
adjust and similar parameters can be used for various continu-
ous optimization problems and also the discrete optimization
problems such as the feature selection problem [7]. In PSO,
every single solution of the target problem is represented
by a particle. A group of particles is called a swarm. The
whole swarm flies in the D-dimensional search space to
find the optimal solutions by updating the position of each
particle based on the experience of its own and its neighboring
particles. All particles have fitness values, which evaluated
using the fitness function, and have velocities that guide the
movement of the particles. During movement, the current
position of particle i at k iteration is denoted by a vector
X ki = (xi1, xi2, . . . , xiD) and the velocity of particle i at k
iteration is denoted as V k

i = (vi1, vi2, . . . , viD). Each particle
updates its velocity and position depending on two fitness
value are the local fitness value (Pbest) and the global fitness
value (Gbest) according to equations (1), (2).

V k
i = wV k−1

i +c1r1
(
Pbesti−X

k−1
i

)
+c2r2

(
Gbest − X k−1i

)
(1)

X ki = X k−1i + V k
i (2)

wherew is inertia weight, c1 and c2 are acceleration constants,
r1 and r2 are random numbers uniformly distributed between
0 and 1.

PSO was originally introduced to solve continues prob-
lems. However, there are very discrete problems such as the
feature selection problem. Therefore, Kennedy and Eberhart
extended PSO to binary PSO (BPSO) [8] to solve discrete
problems. In BPSO, equation (1) is still used to update the
velocity, where Xi, Pbest i and Gbest are limited to take the
values 1 or 0, for this reason, the position update equation
becomes a probabilistic equation. A sigmoid function sig(V k

i )
is used to transform the V k

i to the range of (0,1) as shown in
equation (3). According to the update mechanism in BPSO,
each particle updates each position based on the particle’s
velocity, which acts as probability threshold as shown in the
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probabilistic equation (4).

sig
(
V k
i

)
=

1

1+ e−
k
i

(3)

X ki =

{
1, if rand < sig(V k

i )
0, if otherwise

(4)

where 1 means this feature is chosen as an important feature
for the next regeneration and 0 means this feature is not
chosen as an important feature to the next regeneration, and
rand is a random number ∈ [0, 1].

B. DEEP LEARNING
Traditional image processing techniques provided reasonable
results and performance in medical disease detection using
infected and uninfected images, but it was limited to small
data sets and theoretical results. As deep learning has revo-
lutionized the area of computer vision [9]–[11], specifically
image detection and object classification and recognition,
it is now considered as a promising tool to improve such
automated diagnosis systems to achieve higher outcomes,
widen disease scope, and perform applicable real-time medi-
cal imaging [12]–[17] for disease classification systems.

Deep learning (DL), as a branch of Artificial Intelligence,
depends on algorithms for data processing and thinking pro-
cess simulation or for developing abstractions [18]–[20].
DL use layers of algorithms to process, analyse and discover
hidden patterns in data and human speech understanding, and
visually objects recognition [21]–[23]. Information passed
through each layer of a deep network, with the output of the
previous layer providing input for the next layer. The input
layer is the first layer in the network, while output layer is the
last layer in the network. All the layers located between the
input and output layers are referred to as hidden layers of the
network. Each layer is typically a simple, uniform algorithm
containing one kind of activation function [18], [24].

C. CONVOLUTION NEURAL NETWORKS
Until 2011, CNN analysis was not prominent at computer
vision conferences and journals, but in June 2012, a paper by
Ciregan et al. [25] at the leading conference CVPR showed
how max-pooling CNNs on GPU can dramatically improve
many vision benchmark records. In October 2012, a sim-
ilar system introduced by Krizhevsky et al. [26] won the
large-scale ImageNet [27] competition by achieving a signif-
icant classification accuracy margin over classical ma-chine
learning methods. In November 2012, Ciresan et al.’s [28]
system also won the ICPR contest on the analysis of large
medical images for cancer detection and in the following year,
it won the MICCAI Grand Challenge on the same topic.

In the following years, various advances in deep CNNs fur-
ther reduced the error rate on the ImageNet task. Several rep-
resentative CNNs like VGGNet [29], GoogLeNet [30], and
Residual Neural Network (ResNet) [31] demonstrated sig-
nificant improvements in successive ImageNet Large-Scale

Visual Recognition Competition (ILSVRC) annual chal-
lenges. A model called Xception [32] was introduced that
uses depth-wise separable convolutions to outperform the
Inception-V3 model [33] on the ImageNet [27] dataset clas-
sification task. A new CNN variant called densely con-
nected convolutional networks (DenseNet), introduced by
Huang et al. [34], utilizes a network architecture in which
each layer is directly connected to every later layer. DenseNet
has achieved noticeable improvements over the state-of-the-
art while using significantly fewer parameters and computa-
tions.

III. RELATED WORK
This section conducts a survey on the latest studies for
applying deep learning and machine learning in the field
of tumor gene expression data. Researchers worldwide have
begun to apply machine and deep learning tools to obtain
significant results in a wide variety of medical image anal-
yses/understanding tasks. In [35], Hsu et al. uses RNA
sequencing data from The Cancer Genome Atlas (TCGA),
and they focus on classifying 33 types of cancer patients.
The authors introduced five machine learning algorithms,
namely, DT, KNN, linear support vector machine (linear
SVM), polynomial support vector machine (poly SVM), and
an artificial neural network (ANN). The best result shows that
linear SVM is the best classifier in this study, with a 95.8 Lyu
and Haque [36] designed a new method to discover potential
biomarkers for each tumor type. Based on the pan-cancer
atlas, the method was provided with abundant information on
33 prevalent cancer tumor types. They used a convolutional
neural network to classify tumor types and used a visual-
ization neural network method to discover top tumor genes
from the input. The high-dimensional RNA-Seq data was
embedded into 2-D images and was used as a convolutional
neural network to make classification of the 33 cancer tumor
types. Based on the idea of Guided Grad Cam, as to each
class, they generated a significance heat-map for all the genes.
The proposed system achieved 95.59% using a train/test split.

The authors [5] undertook the development of a pan-cancer
atlas to recognize 9,096 TCGA tumor samples represent-
ing 31 tumor types. They randomly assigned 75% (approx-
imately 6800 samples) of samples into the training set and
25% (approximately 2300 samples) into the testing set, pro-
portionally allocating samples from each tumor type. For
the non-sex-specific tumor classification, they eliminated all
tumor types that are sex-specific, namely, BRCA, CESC,
OV, PRAD, TGCT, UCEC, and UCS. For the remaining
tumor types, the samples were separated into two groups
based on the patient gender. Three additional tumor types
(CHOL, DLBC, and KICH) were eliminated due to small
gender-specific sample sizes. The authors applied the genetic
algorithm and k-nearest neighbours (KNN) methods to itera-
tively generate the subset of the genes (features) and then use
the KNN method to test the accuracy. This method achieved
an accuracy of 90% across 31 tumor types and generated a set
of top genes for all the tumor types.

22876 VOLUME 8, 2020



N. E. M. Khalifa et al.: Artificial Intelligence Technique for Gene Expression by Tumor RNA-Seq Data: A Novel Optimized DL Approach

TABLE 1. Units for Magnetic Properties.

The deep learning method was also used to classify
top tumor genes and identify individual cancer types.
In paper [37], the authors first used a stacked denoising
autoencoder (SDAE) to extract high-level features from
high-dimensional gene expression profiles. The authors then
input these features into a single-layer ANN network to
decide whether the sample is a cancerous tumor or not. The
accuracy using this method reached 94%. The results and
analysis illustrate that these highly interactive cancer genes
could be useful for the detection of breast cancer.

Xiao et al. [38] presented a semi-supervised deep learn-
ing strategy called the stacked sparse auto-encoder (SSAE)
to classify and predict cancer tumor using RNA-seq data.
The proposed SSAE-based method employs the pre-training
gredey layer approach and a sparsity penalty term to capture
and extract important information from the high-dimensional
data and then classify the samples. The proposed SSAE
model was tested on three public RNA-seq data sets of
three types of cancers, lung adenocarcinoma (LUAD), stom-
ach adenocarcinoma (STAD) and breast invasive carcinoma
(BRCA). They compared the prediction performance with
several commonly used classification methods. The pro-
posed SSAE-based semi-supervised learning model achieves
the best classifications of 98.15%, 96.23%, and 99.89%
for the STAD, BRCA and LUAD datasets, respectively.
Xiao et al. [39] also demonstrated a new strategy, which
used deep learning for an ensemble approach that incorpo-
rates multiple different machine learning models. The pro-
posed deep learning-based multi-model ensemble method
was applied to three public RNA-seq datasets representing
three kinds of cancers, lung adenocarcinoma (LUAD), stom-
ach adenocarcinoma (STAD) and breast invasive carcinoma
(BRCA). It obtains improved predictions of 99.20%, 98.41%,
and 98.78% for the LUAD, BRCA, and STAD datasets,
respectively.

IV. TUMOR GENE EXPRESSION DATASET
The tumor gene expression dataset used in this research
was published in [40]. It consisted of the RNA sequenc-
ing values from tumor samples belonging to five separate
cancer types: lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), breast invasive carcinoma (BRCA),
kidney renal clear cell carcinoma (KIRC) and uterine cor-
pus endometrial carcinoma (UCEC). This dataset contains
2,086 rows and 972 columns, each row contains a specific
sample, and each column contains the RPKM RNA-Seq val-
ues of a specific gene. The last column contains the cancer
categories encoded numerically: 1 = BRCA, 2 = KIRC,
3 = LUAD, 4 = LUSC, 5 = UCEC. The number of samples
for each tumor category is illustrated in Table 1.

V. PROPOSED ARCHITECTURE
The proposed architecture consists of three phases. The first
phase is the pre-processing, while the second phase is the
data augmentation. Deep learning training is the third phase,
which relies on the deep N.

Algorithm 1 Extraction the Important Features of RNA-
Seq
Input : Tumor gene expression dataset
Output: Gbest position

1 Initialize the position and velocity of each particle
randomly

2 while iteration condition is not satisfied do
3 Evaluate the fitness of the particle swarm by DT

according to equation 5
4 for each particle i do
5 if the fitness of xi is greater than the fitness of

the Pbest i then
6 Pbest i = x i
7 end
8 if the fitness of any particle of the swarm is

greater than Gbest then
9 Gbest = particle’s position
10 end
11 for each dimension D = 1, . . . ,N do
12 Update particles velocity and particles

position according to equation 1,3, and
4 respectively

13 end
14 end
15 go to next generation until termination criterion is

met
16 end
17 Output Gbest

A. PRE-PROCESSING PHASE (BPSO-DT AND 2D IMAGE
CREATION)
In this phase, BPSO is applied to implement the feature
selection, and the decision tree (DT) [8] is used as BPSO’s
fitness function for a classification problem. In the context of
this work, BPSO is used to reduce the number of RNA-seq
features to a minimum and select only important features,
and increase the accuracy of the classification. Therefore,
the fitness function is calculated as equation (5) [41].

Fitness = α
(
1− Cp

)
+ (1− α)

(
1−

Sf
Tf

)
(5)

where α is a hyperparameter that decides the tradeoff between
the classifier performance Cp, and the size of the feature
subset Sf with respect to the total number of features Tf .
In this work the classifier performance is the accuracy.

The steps of BPSO-DT are presented in Algorithm 1,
where the input is the tumor gene expression dataset con-
sisting of RNA-seq that needs optimization. By following
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all steps 1 through 16 mentioned in Algorithm 1, the Gbest
position representing the best specific features of RAN-seq
is returned. During this experiment, the parameters of BPSO
were set as follows: the maximum number of iterations =
10, number of particles = 600, c1 = c2 = 1.5, w = 0.7,
vmax = 6, vmin = −6, and D = 971 which is the dimension
of the dataset used.

In BPSO-DT processing, 615 features out of 971 features
were chosen as the best features of RNA-seq. Then, a set of
steps have been applied to the optimized tumor gene expres-
sion dataset to convert it from data format to image format.
The preprocessing phase include 1) loading the tumor gene
expression on memory, 2) Change the data numerical domain
range from [0, 24248] to image range [0, 255] according to
equation (6), 3) Construct image by converting the optimized
data record of 615 cells into a 25 × 25 pixels image. The
result of this phasewill be 2086 images classified into 5 tumor
categories. Figure 1 illustrates a set of images after the pre-
processing phase.

PixelValue = Round
(
Cell Value ∗ 255

24248

)
(6)

where 24248 is the maximum cell value in the tumor gene
expression data, and 255 is the maximum value of the image
domain.

FIGURE 1. Magnetization as a function of applied field. The output of the
pre-processing phase for KIRC (a), BRCA (b), and LUSC (c).

B. DATA AUGMENTATION PHASE
The proposed architecture for the deep learning model, which
will be presented in the section on the following phase, has a
huge number of learnable parameters compared to the num-
ber of images in the training set. The original dataset after
the preprocessing phase contains 2086 images for 5 classes
of tumor gene expression. Because of the great difference
between learnable parameters and the number of images in
the training set, the model is very likely to overfit. Deep
learning models perform better with large datasets. One very
widespread way to make datasets bigger is data augmentation
or jittering. Data augmentation can increase the size of the
dataset up to 10 or 20 times the original one or more, which
helps avoid overfitting when training on very little data. The
approach assists in building simpler and robust models which
can generalize better. In this section, the common techniques
that have been used in this research for overcoming the
overfitting problem are presented.

C. AUGMENTATION TECHNIQUES
The most common method to overcome overfitting is to
increase the number of images used for training by applying
label-preserving transformations. In addition, data augmen-
tation schemes are applied to the training set to make the
resulting model more invariant to reflection, zooming and
small noise in pixel values. To apply augmentation, each
image in the training data is transformed as follows:

• Reflection around X axis,
• Reflection around Y axis,
• Reflection around X-Y axis,
• Zooming.

The mentioned data augmentation techniques have been
applied to the dataset, this raises the dataset a number of
images from 2086 images to 10430 images, doubled 5 times.
This will lead to a significant improvement in the neural
network training phase. Additionally, will make the proposed
deep learning architecture immune to memorize the data and
be more robust and accountable for the testing phase.

D. DEEP LEARNING TRAINING PHASE
This research conducted many experimental trails to propose
the following deep learning architecture. Those experiments
were already implemented in previous studies in [42]–[46]
but the testing accuracy was unacceptable. Therefore, there
was a need to propose a new one.

The proposed deep learning architecture of tumor gene
expression is introduced in detail in Figure 2 and Figure 3.
A graphical representation of the proposed architecture is
shown in Figure 2. Figure 3 illustrates the layer details of the
proposed architecture. The architecture consists of 14 layers,
including two convolutional layers for features extraction
with different convolution window 3*3 pixels, followed by
two fully connected layers for classification.

The first layer is the input layer with input size 25*25 pix-
els. The second layer is the convolution layer with window
size 3*3 pixels and 16 different filters. The third layer is a
ReLU, which is used as the nonlinear activation function,
then followed by an intermediate pooling with subsampling
in layer four. A convolution layer with window size 3*3 pixels
and 32 different filters and ReLU activation function are
applied in the sixth and seventh layers. A dropout layer is
in layer number eight to overcome the overfitting problem.
Then, layer nine is a fully connected layer with 64 neurons,
with a ReLU activation function. The last fully connected
layer has 5 neurons to classify 5 classes for the tumor gene
expression in layer number thirteen and uses a softmax layer
to obtain the class memberships.

VI. EXPERIMENTAL RESULTS
The proposed architecture was developed using a software
package (MATLAB). The implementation was GPU specific.
All experiments were performed on a computer server with an
Intel Xeon E5-2620 processor (2 GHz), 32 GB of RAM and
12 GB Nvidia GTX Titan X.
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FIGURE 2. Magnetization as a function of applied field. Graphical representation of
the proposed deep learning CNN architecture for tumor gene expression
classification.

FIGURE 3. Detailed layer description for the proposed deep learning CNN
architecture for tumor gene expression classification.

A. TESTING ACCURACY MEASUREMENT
To measure the accuracy of the proposed architecture for
tumor gene expression using deep convolutional neural net-
works, 5 different trials were performed, and the median
accuracy was calculated for different training and testing
splitting. This research adopted three splitting strategies to
evaluate the proposed architecture. The first strategy is split-
ting the data into 60% for training and 40% for testing, while
the second strategy is splitting the data into 70% for training
and 30% for testing. The last strategy is splitting the data into
80% for training and 20% for testing. The confusion matrices
for the different strategies are presented in Figure 4, 5, and 6.

Figure 4, 5, and 6 illustrates that the more data is used
for training phase the more accuracy the model will achieve.

FIGURE 4. Confusion matrix for 60% training and 40% testing strategy.

TABLE 2. Median testing accuracy for different training and testing
strategies using BPSO-DT or without using BPSO-DT.

Table 2 summarizes the achieved median accuracy for the
different adopted training and testing strategies with/without
BPSO-DT. The proposed deep learning architecture for tumor
gene expression had achieved median testing accuracy with
96.90% in the 80% training and 20% testing strategy with
BPSO-DT, which means that the using BPSO-DT algorithm
and more data the architecture had, the better accuracy the
architecture could achieve.

Another measure of performance is the progress of vali-
dation accuracy through the training phase. The progress of

VOLUME 8, 2020 22879



N. E. M. Khalifa et al.: Artificial Intelligence Technique for Gene Expression by Tumor RNA-Seq Data: A Novel Optimized DL Approach

FIGURE 5. Confusion matrix for 70% training and 30% testing strategy.

FIGURE 6. Confusion matrix for 80% training and 20% testing strategy.

validation accuracy shows the improvement of the leaning
process. Figure 7 presents the progress of the validation accu-
racy through the training process while Figure 8 illustrates
samples of testing classification accuracy using the proposed
architecture.

B. PERFORMANCE EVALUATION AND DISCUSSION
To evaluate the performance of the proposed architecture,
more performance measures need to be investigated through
this research. The most common performance measures
in the field of deep learning are Precision, Recall, and
F1 Score [47] and are presented in equation (7), equation (8)
and equation (9).

Precision =
TP

(TP+ FP)
(7)

Recall =
TP

(TP+ FN )
(8)

F1Score = 2 ∗
Precision ∗ Recall
(Precision+ Recall)

(9)

where The TP is an acronym for ‘‘True Positive’’ which
represents the outcomewhere themodel correctly predicts the
positive class. Accordingly, The TN is an acronym for ‘‘True
Negative’’ which represents the outcome where the model
correctly predicts the negative class. Moreover, The FP is
an abbreviation for ‘‘False Positive’’ which presents the out-
come where the model incorrectly predicts the positive class.
In addition, FN is the abbreviation for ‘‘False Negative’’
which presents the outcome where the model incorrectly
predicts the negative class.

TABLE 3. Precision, Recall and F1 Score values for the different adopted
training and testing strategies.

Table 3 represents the values of Precision, Recall and
F1 Score for the different adopted training and testing strate-
gies. From the values presented in Table 3, the 80% training
and 20% testing strategies give the best values which reflect
the amount of data to be trained, the validation accuracy have
been used through the training phase after every epoch as
presented in Figure 7. The black circles showed up in Fig-
ure 7 presented the validation accuracy after every epoch
of training. Using the augmentation techniques helped in
generatingmore data which lead to a significant improvement
in Precision, Recall, and F1 Score values.

Another measure of performance is the progress of vali-
dation accuracy through the training phase. The progress of
validation accuracy shows the improvement of the leaning
process. Figure 7 presents the progress of the validation accu-
racy through the training process while Figure 8 illustrates
samples of testing classification accuracy using the proposed
architecture.

The progress of validation accuracy has been improved
through the training phase as after every epoch, the validation
accuracy has been calculated and presented in Figure 7 with
black circles while blue lines are the training accuracy.

The work presented in this research is novel in terms of
pre-processing phase which include optimization process and
the design of deep learning architecture. One of the related
works presented in [36] made a similar contribution to ours.
Table 4 illustrates the main difference between work pre-
sented in [36] and our presented work. The question that may
raise itself in this section why compare our work with work
presented in [36] andwhy not comparedwith the other related
work in [5], [35], [38], [39].The main reason is the work
presented in [36] uses the same methodology similar to ours
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FIGURE 7. The progress of validation accuracy through the training phase.

FIGURE 8. Samples of testing classification accuracy using the proposed
architecture.

which included converting the RNA sequence to images then
applying deep learning models, while the other related works
used different methodologies which will be unfair to compare
our work with them. Also, the selected dataset [40] which
is used in this research in newly published in May 2018,
it is an open opportunity to experiment the proposed model
on this newly published data. Table 4 shows clearly that the
proposed architecture in this work had lower training data
but using the adopted augmentation techniques gave a better
overall testing accuracy with 96.16% beating the related work
in terms of overall testing accuracy for 5 classes. Moreover,
this work did not apply any type thresholding the values
and consider the training of the whole dataset, while the
related work had dropped some of thresholding techniques on
data. Additionally, the proposed deep learning architecture is
power in complexity, as it had only 14 layers. whereas the
related work had 23 layers will a huge number of neurons
in fully connected layers with 36864 neurons in FC layer
number 1 and 1024 FC layer number 2 which will reflect
on the time of training on hardware. On the other hand,
the related work achieved better testing accuracies for BRCA
and LUAD, while ours achieved better testing accuracies for
KIRC, LUSC and UCEC. Moreover, the related work was
able to identify 33 classes, while this work identifies 5 classes.

TABLE 4. A comparison between related work and the presented work.

VII. CONCLUSION AND FUTURE WORKS
Cancer is a group of diseases exhibiting abnormal cell growth,
which may have the ability to invade or spread to various
parts of the human body. This type of disease is responsible
for more than 9 million deaths globally. The existence of
RNA-Seq currently has greatly boosted the analysis of human
genomics due improvements in the efficiency and accuracy,
which help in understanding the nature of the cancer dis-
eases. This paper introduced a novel approach to classifying
different type of cancer: breast invasive carcinoma (BRCA),
kidney renal clear well carcinoma (KIRC), E:at Adenocarci-
noma (LUAD), Lung Squamous Cell Carcinoma (LUSC) and
Uterine Corpus Endometrial Carcinoma (UCEC). The pro-
posed approach consisted of three phases. The first phase is
the pre-processing, which included the optimization process
using binary particle swarm optimization with design trees
(BPSO-DT) algorithm to select the best features of RNA-Seq
then converted it to 2D images. The second phase is the data
augmentation, which increased the original dataset volume to
5 times larger. The third phase is the deep convolutional neu-
ral network architecture, in this phase, an architecture of two
convolutional layers for feature extraction and two fully con-
nected layers was presented to classify the 5 different cancer
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types. The presented results and the performance metrics
preformed in this research showed that the proposed approach
achieved an overall testing accuracy of 96.90%. The compar-
ative results were introduced, and the accuracy achieved in
the present work outperforms those of other related work for
the testing accuracy for 5 classes of the tumour. Moreover,
the proposed approach is less complexity and had less time
in training. One of the potential future works is applying
new architectures of deep neural networks such as Generative
Adversarial Neural networks. GAN will be used before the
proposed architecture. It will help in generating new images
from the trained images, which will reflect on the accuracy of
the proposed architecture. Additionally, to expand the current
work to classify the 33 types of cancer if the datasets would
be available with different deep learning architecture such as
AlexNet, Vgg-16, and google-net.
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