
SPECIAL SECTION ON UTILITY PATTERN MINING: THEORETICAL ANALYTICS
AND APPLICATIONS

Received December 26, 2019, accepted January 15, 2020, date of publication January 29, 2020, date of current version February 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2970181

Efficient Discovery of Weighted Frequent
Neighborhood Itemsets in Very Large
Spatiotemporal Databases
R. UDAY KIRAN 1,2, P. P. C. REDDY 3, KOJI ZETTSU 1, MASASHI TOYODA 2,
MASARU KITSUREGAWA 2,4, AND P. KRISHNA REDDY 3
1Big Data Analytics Laboratory, National Institute of Information and Communications Technology, Tokyo 184-8795, Japan
2Kitsuregawa Laboratory, Institute of Industrial Science, The University of Tokyo, Tokyo 113-8655, Japan
3Data Sciences and Analytics Center, Kohli Center on Intelligent Systems, International Institute of Information Technology at Hyderabad,
Hyderabad 500032, India
4Director General, National Institute of Informatics, Tokyo 101-8430, Japan

Corresponding author: R. Uday Kiran (uday_rage@tkl.iis.u-tokyo.ac.jp)

ABSTRACT Weighted Frequent Itemset (WFI) mining is an important model in data mining. It aims to
discover all itemsets whose weighted sum in a transactional database is no less than the user-specified
threshold value. Most previous works focused on finding WFIs in a transactional database and did not
recognize the spatiotemporal characteristics of an item within the data. This paper proposes a more flexible
model of Weighted Frequent Neighborhood Itemsets (WFNI) that may exist in a spatiotemporal database.
The recommended patternsmay be found very useful inmany real-world applications. For instance, anWFNI
generated from an air pollution database indicates a geographical region where people have been exposed to
high levels of an air pollutant, say PM2.5. The generated WFNIs do not satisfy the anti-monotonic property.
Two new measures have been presented to effectively reduce the search space and the computational cost
of finding the desired patterns. A pattern-growth algorithm, called Spatial Weighted Frequent Pattern-
growth, has also been presented to find all WFNIs in a spatiotemporal database. Experimental results
demonstrate that the proposed algorithm is efficient. We also describe a case study in which our model
has been used to find useful information in air pollution database.

INDEX TERMS Data mining, weighted frequent itemset, pattern-growth technique, spatiotemporal
database.

I. INTRODUCTION
Frequent Itemset Mining (FIM) is an important data mining
model [1]–[3] with many real-world applications [4]. FIM
aims to discover all itemsets in a transactional database that
satisfy the user-specified minimum support (minSup) con-
straint. The minSup controls the minimum number of trans-
actions that an itemset must cover in the data. Since only a
singleminSup is used for the whole data, the model implicitly
assumes that all items within the data have the uniform fre-
quency. However, this is the seldom case in many real-world
applications. In many applications, some items appear very
frequently in the data, while others rarely appear. If the
frequencies of items vary a great deal, then we encounter the
following two problems:

The associate editor coordinating the review of this manuscript and

approving it for publication was Jerry Chun-Wei Lin .

1) If minSup is set too high, we miss those itemsets that
involve rare items in the data.

2) To find the itemsets that include both frequent and rare
items, we have to set minSup very low. However, this
may cause a combinatorial explosion, producing too
many itemsets, because those frequent items associate
with one another in all possible ways and many of them
are meaningless depending upon the user or application
requirements.

This dilemma is known as the rare item problem [5]. When
confronted with this problem in real-world applications,
researchers have tried to find frequent itemsets using multiple
minSups [6], [7], where theminSup of an itemset is expressed
with minimum item support of its items. An open problem
of this extended model is the methodology to determine the
items’ minimum item supports.

Cai et al. [8] introduced Weighted Frequent Itemset Min-
ing (WFIM) to address the rare item problem. WFIM takes

27584 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-5417-0289
https://orcid.org/0000-0002-8083-7403
https://orcid.org/0000-0003-4062-2376
https://orcid.org/0000-0001-9473-5531
https://orcid.org/0000-0003-4027-2994
https://orcid.org/0000-0003-1238-5174
https://orcid.org/0000-0001-8768-9709

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

into account the weights (or importance) of items and tries to
find all Weighted Frequent Itemsets (WFIs) that satisfy the
user-specified weight constraint in a transactional database.
Several weight constraints (e.g.,weighted sum,weighted sup-
port, and a weighted average) have been discussed in the
literature to determine the interestingness of an itemset in a
transactional database. Selecting an appropriate weight con-
straint depends on the user or application requirements. Some
of the practical applications of WFIM include market-basket
analytics [8], spectral signature analytics in astronomical
databases [9], and finding events in Twitter data [10].

This paper argues that though studies on WFIM con-
sider the importance of items within the data, they disregard
the spatiotemporal characteristics of an item. Consequently,
WFIM is inadequate to find only those WFIs that have
items close (or neighbors) to one another in a spatiotemporal
database. A naïve approach to tackle this problem involves
discovering all WFIs from the data and pruning the WFIs
whose items are not neighbors to each others. Unfortunately,
this approach is inefficient due to its huge search space
and the computational cost. With this motivation, this paper
introduces the model of Weighted Frequent Neighborhood
Itemsets (WFNI) that may exist in a spatiotemporal database.
Before we describe the contributions of this paper, we discuss
the usefulness of the proposed itemsets with a real-world
application.

Air pollution is a significant factor for many cardio-
respiratory problems found in the people living in Japan.
In this context, the Atmospheric Environmental Regional
Observation System (AEROS) constituting of several mon-
itoring stations has been set up by the Ministry of Environ-
ment, Japan. The data generated by these stations represent
a non-binary spatiotemporal database. An WFNI found in
this pollution database provides the information regarding the
geographical region (or a set of neighboring stations) where
people have been exposed to high levels of an air pollutant.
This information is useful for the users of the pollution
control board in devising appropriate policies to control the
industrial emissions.

HighUtility ItemsetMining (HUIM) [11]–[13] generalizes
WFIM (respectively, FIM) by taking into account the items’
internal utility and external utility values. However, discov-
ering WFIs (respectively, frequent itemsets) using a HUIM
algorithm is inefficient due to the additional cost of trans-
forming a binary spatiotemporal database into a non-binary
spatiotemporal database. (This topic is further discussed in
latter parts of this paper).

This paper proposes a more flexible model of WFNI that
may exist in a spatiotemporal database. An itemset in a
spatiotemporal database is considered as an WFNI if it satis-
fies the user-specified minimum weighted sum and maximum
distance constraints. The generated WFNIs do not satisfy the
anti-monotonic property. Two upper bound measures, called
estimated weighted sum (EWS) and cumulative neighbor-
hood weighted sum (CNWS), have been employed to reduce
the search space and the computational cost of finding the

desired itemsets.EWS aims to identify candidate items whose
supersets may be WFNIs. CNWS seeks to identify those
items that have to be projected (or build conditional pattern
bases) to find all WFNIs. A pattern-growth algorithm, called
Spatial Weighted Frequent Pattern-growth (SWFP-growth),
has also been presented to find all WFNIs in a spatiotemporal
database efficiently. Experimental results demonstrate that
SWFP-growth is not only memory and runtime efficient, but
also scalable as well. We also describe a case study in which
we apply our model to find useful information in air pollution
database.

Reddy et al. [14] proposed the model of WFNI by tak-
ing into account the items as points. This paper general-
izes the model of WFNI by taking into account items of
any geometric form (e.g,, point, line, or polygon). We will
also provide the correctness of our algorithm. Furthermore,
we strengthen the paper with extensive experiments and
describe the real-world application of the proposed model
using air pollution database.

The remainder of this paper is organized as follows.
Section 2 discusses the previous literature related to the prob-
lem. Section 3 introduces the proposed model of WFNI that
may exist in a spatiotemporal database. Section 4 describes
the SWFP-growth. Experimental results are reported in
Section 5. Section 6 concludes the paper with future research
directions.

II. RELATED WORK
A. FREQUENT ITEMSET MINING
Frequent itemsets are an important class of regularities that
exist in databases. Since it was first introduced in [2],
the problem of finding these itemsets has received a great
deal of attention. Several algorithms (e.g., Apriori [2],
ECLAT [15] and Frequent Pattern-Growth (FP-growth) [3],
[16]) have been described in the literature to find fre-
quent itemsets. Though there exists no universally acceptable
best algorithm to find frequent itemsets in any database,
FP-growth is widely accepted as the best algorithm to mine
frequent itemsets in real-world databases [17]. Consequently,
several extensions of FP-growth using GPUs, disks and par-
allel processing have been discussed to find frequent itemsets
efficiently.

FP-growth is a depth-first search algorithm that discov-
ers frequent patterns using pattern-growth technique. The
pattern-growth technique briefly involves the following two
steps: (i) compress the database into a tree, and (ii) recursively
mine the entire tree to find all frequent itemsets. We also
employ a pattern-growth based algorithm to find all WFNIs
in a spatiotemporal database. However, it has to be noted that
the tree structure and the mining procedure of our algorithm
are different from that of the FP-growth algorithm.

B. WEIGHTED ITEMSET MINING
Cai et al. [8] introduced WFIM to address the rare item
problem in FIM. TwoApriori algorithms, calledMinWAL(O)

VOLUME 8, 2020 27585

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

and MinWAL(M), have been discussed for finding WFIs in
a transactional database. Unfortunately, both algorithms suf-
fer from the performance issues involving multiple database
scans and the generation of too many candidate itemsets.
Yun and Leggett [14] discussed a pattern-growth algo-
rithm, called WFIM, to find the weighted frequent itemsets.
Kiran et al. [10] described an improved WFIM based on the
concept of cutoff weight, which represents the maximum
weight among all weighted items.

Cai et al. [9] used a variant of WFIM algorithm to find
weighted frequent itemsets in an astronomical database. An
entropy-based weighting function has been employed to
determine the interestingness of an itemset.

In the literature, researchers have studied WFIM by taking
into account other parameters. Tao et al. [18] proposed a
weighted association rule model by taking into account the
weight of a transaction. An Apriori-like algorithm, called
WARM (Weighted Association Rule Mining) algorithm, was
discussed to find to the itemsets. Vo et al. [19] proposed
a Weighted Itemset Tidset tree (WIT-tree) for mining the
itemsets and used a Diffset strategy to speed up the com-
putation for finding the itemsets. Lin et al. [20] studied the
problem of finding weighted frequent itemsets by taking
into account the occurrence time of the transactions. The
discovered itemsets are known as recency weighted frequent
itemsets. Furthermore, Lin et al. [21] extended the basic
weighted frequent itemset model [8] to handle uncertain
databases. Ahmed et al. [22] discussed a weighted frequent
itemset model with an assumption that weights of items
can vary with time and proposed the algorithm AWFPM
(Adaptive Weighted Frequent Pattern Mining). Please note
that though some of the above studies consider the tempo-
ral occurrence information of items within the data, they
completely disregard the spatial information of the items.
On the contrary, the proposed study investigates the problem
of finding WFNIs in spatiotemporal databases by taking into
account the spatiotemporal characteristics of the items within
the data.

C. HIGH UTILITY ITEMSET MINING
Yao et al. [13] introduced HUIM by taking into account
the items’ internal utility (i.e., number of occurrences of an
item within a transaction) and external utility (i.e., weight
of an item in the database) values. Since then, the problem
of finding HUIs from the data has received a great deal of
attention [11], [12], [23], [24]. As HUIM generalizes WFIM
(respectively FIM),WFIs (respectively, FIs) can be generated
using a HUIM algorithm. This paper argues that such
an approach to finding WFIs using HUIM algorithms is
inefficient because of two main reasons:

1) To employ aHUIM algorithm, we need to transform the
binary transactional database into a non-binary transac-
tional database by adding one as the internal utility for
every item in a transaction. This process of transform-
ing a huge binary database into a non-binary database

is a costly operation concerning to both memory and
runtime.

2) The size of the resultant non-binary transactional
database is substantial larger (approximately 1.5 to
2 times) than the actual size of a binary database. Con-
sequently, HUIM algorithms have to find WFIs from
much larger databases consuming more memory and
runtime.

In practice, a WFIM algorithm (respectively, FIM algorithm)
is generally faster than a HUIM algorithm for mining WFIs
(respectively, FIs) in a binary transactional database. It is
because they are more optimized for that specific problem.

Kiran et al. [25] discussed an algorithm, called
Spatial High Utility Itemset Miner (SHUIMiner), to find all
spatial high utility itemsets in a non-binary spatiotemporal
database. Unfortunately, finding the proposed WFNIs using
SHUIMiner turns out to be costly due to the above mentioned
reasons.

D. SPATIAL CO-OCCURRENCE ITEMSET MINING
The problem of finding spatiotemporal co-occurrence item-
sets (or association rules) in spatiotemporal databases has
received a great deal of attention [26]–[29]. These algorithms
can be broadly classified into distance-based approaches [26],
[27] and transaction-based approaches [28], [29]. A distance-
based approach typically uses a parameter, called the preva-
lence, to determine how interesting the spatiotemporal
co-occurrences are in the data. A transaction-based approach
initially cluster the data over space and time and then apply
traditional association rule mining algorithms on each cluster
to find useful information. Unfortunately, all spatiotempo-
ral co-occurrence itemset mining algorithms determine the
interestingness of an itemset by taking into account only its
support and disregard the internal and external utility values
of an item. Moreover, most of these algorithms cannot handle
numeric data. On the contrary, the proposed model considers
internal and external utility values of an item and handles
numeric data.

Overall, the proposed model of finding WFNIs in a
spatiotemporal database is novel and distinct from current
studies.

III. PROPOSED MODEL
Without loss of generality, a spatiotemporal database can be
represented as a spatial database and a temporal database.
For brevity, we first describe the neighborhood itemset using
a spatial database. Next, we introduce weighted frequent
neighborhood itemset using a temporal database and items’
weight database.

A. NEIGHBORHOOD ITEMSET
Let I = {i1, i2, · · · , in}, n ≥ 1, be a set of
geometric (or spatial) items. Let Pij denote a set of
coordinates for an item ij ∈ I . The spatial database SD
is a collection of items and their coordinates. That is,
SD = {(i1,Pi1), (i2,Pi2), · · · , (in,Pin)}. The above notion of

27586 VOLUME 8, 2020

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

TABLE 1. Running example. (a) spatial database, (b) neighbors of an item, (c) temporal database, (d) items’ weight database, and (e) weighted frequent
neighborhood itemsets.

spatial database facilitates us to capture items of various
geometric forms, such as point, line, or polygon. Two items,
ip, iq ∈ I , are said to be neighbors to each other ifDist(ip, iq)
(= Dist(iq, ip)) ≤ maxDist , where Dist(.) is a dis-
tance function and maxDist is a user-specified maximum
distance.
Example 1: Let I = {a, b, c, d, e, f , g} be the set of items

(or air pollution monitoring station identifiers). A spatial
database of these items is shown in Table 1a. Given the
distance measure as Euclidean, the distance between the
items c and d , i.e., Dist(c, d) = 5. If the user-specified
maxDist = 5, then c and d are considered as neighbors
because Dist(c, d) ≤ maxDist . Table 1b lists the neighbors
of every item in Table 1a.
Definition 1 (Neighborhood Itemset): Let X ⊆ I be an

itemset (or a pattern). If X contains k items, then it is called a
k-itemset. An itemset X in SD is said to be a neighborhood
itemset if the maximum distance between any two of its items
is no more than the user-specified maxDist . That is, X is
a neighborhood itemset if max(Dist(ip, iq)|∀ip, iq ∈ X) ≤
maxDist .
Example 2: The set of items c and d , i.e., cd is an itemset.

This itemset contains two items. Therefore, it is a 2-itemset.
The itemset cd is also a neighborhood itemset because
max(Dist(a, b)) ≤ maxDist .

Several distance functions (e.g. Euclidean distance and
Geodesic distance) have been described in the literature to
compute the distance between the items. Selecting a right
distance function depends on the user and/or application
requirements. In our example, we have represented spatial
items with points and employed Euclidean as the distance
function for brevity. However, our model is generic and can
be employed with any distance function that satisfies the
commutative property (see Property 1) and anti-monotonic
property (see Property 2). We now define weighted frequent
neighborhood itemset using temporal database and items’
weight database.
Property 1 (Commutative Property): Dist(ia, ib) =

Dist(ib, ia).
Property 2 (Anti-Monotonic Property): IfX ⊂ Y , then the

maximum distance between any two items in X will always
be less than or equal to the maximum distance between any
two items in Y . That is, max(Dist(ip, iq)|∀ip, iq ∈ X) ≤
max(Dist(ir , is)|∀ir , is ∈ Y).

B. WEIGHTED FREQUENT NEIGHBORHOOD ITEMSET
A transaction, denoted as Tts = (ts,Y), where ts ∈
R+ represents the transactional identifier (or timestamp)
of the corresponding transaction and Y ⊆ I is an item-
set. A (binary) temporal database, denoted as TDB =

{T1,T2, · · · ,Tn}, n ≥ 1. Let w(ij,Tts), 1 ≤ ts ≤ n,
denote the weight of an item ij in a transaction Tts. Let
W (ij) = {w(ij,T1),w(ij,T2), · · · ,w(ij,Tn)} denote the set of
all weights of ij in a temporal database. The items’ weight
database,WD, is the set of weights of all items in I . That is,
WD =

⋃
ij∈I

W (ij).

Example 3: Continuing with the previous example, a tem-
poral database generated by all items in Table 1a is shown
in Table 1c. The items’ weight database is shown in Table 1d.
Each transaction in this database represents the measurement
of an air pollutant, say PM2.51, determined by a weather
station for a particular time period. The weight of an item
c in the second transaction, i.e., w(c,T2) = 30. In other
words, station d located at (3,−4) has recorded 30µg/m3 of
PM2.5 at the timestamp of 2.
Definition 2 (The support of X in a Temporal Database):

If X ⊆ Tk .Y , 1 ≤ k ≤ n, it is said that X occurs in transaction
Tk (or Tk contains X). Let TDBX ⊆ TDB denote the set of all
transactions containing X in TDB. The support of X in TDB,
denoted as S(X) = |TDBX |.
Example 4: The itemset cd ⊆ T4.bcd . Thus, the fourt

transaction contains the itemset cd . Similarly, the fifth trans-
action also contains the itemset cd . The set of all transactions
containing cd in Table 1c, i.e., TDBcd = {T4,T5}. The
support of cd in Table 1c, i.e., S(cd) = |TDBcd | = 2.
Definition 3 (Weighted Sum of an Itemset X in a Trans-

action): The weighted sum of an itemset X in Tk , denoted
as WS(X ,Tk), is the sum of weights of all items of X in Tk .
That is, WS(X ,Tk) =

∑
ij∈X w(ij,Tk). If X 6⊆ Tk .Y , then

WS(X ,Tk) = 0.
Example 5: The weighted sum of cd in T4, i.e.,

WS(cd,T4) = w(c,T4)+w(d,T4) = 80+10 = 90. It means
the stations c and d have cumulatively recorded 90µg/m3 of
PM2.5 at the timestamp 4.

1PM2.5 refers to the particle matter of size less than 2.5 microns. The unit
of measurement for PM2.5 is µg/m3.

VOLUME 8, 2020 27587

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

Definition 4 (Weighted Sum of an Itemset X in a Temporal
Database): The weighted sum of X in TDB, denoted as
WS(X) =

∑
Tts∈TDBX WS(X ,Tts).

Example 6: The weighted sum of cd in Table 1c,
i.e., WS(cd) =

∑
Tts∈TDBcd WS(cd,Tts) = WS(cd,T4) +

WS(cd,T5) = (80 + 10) + (40 + 20) = 90 + 60 = 150. It
means the stations c and d have together recorded 150µg/m3

of PM2.5 in the entire data.
Definition 5 (Weighted Frequent Neighborhood Itemset

X): A neighborhood itemset X is said to be a weighted
frequent neighborhood itemset if WS(X) ≥ minWS, where
minWS represents the user-specified minimum weighted
sum.
Example 7: If the user-specified minWS = 150, then

the neighborhood cd is a weighted frequent neighborhood
itemset because WS(cd) ≥ minWS. The complete set of
WFNIs generated from the Tables 1a 1c and 1d are shown
in Table 1e.
Definition 6 (Problem Definition): Given a temporal

database (TDB), items’ weight database (WD) and items’ spa-
tial database (SD), the problem ofWeighted Frequent Neigh-
borhood Itemsets mining involves discovering all itemsets in
TDB that have weighted sum no less than the user-specified
minimum weighted sum (minWS) and the distance between
any two of its items is no more than the user-specified
maxDist . It is interesting to note that WFIM is a special case
of the problem WFNIM when maxDist = ∞ (or very large).

C. A SMALL DISCUSSION
In our model, we have set a strict constraint that all items in
an WFNI must be close (or neighbors) to one another. If we
relax this constraint, then too many uninteresting itemsets
with items far away from the rest can be generated asWFNIs.
Example 8 illustrates the importance of employing a strict
spatial constraint on WFNIs.
Example 8: Let l = (0, 0), m = (2, 0), n = (4, 0) and

o = (6, 0) be four items located on a straight line. Let
maxDist = 2. If we relax the constraint that all items in a
WFNI need not be close to each other, then we may find lmno
as a WFNI. Unfortunately, this itemset may be uninteresting
to the user as the items n and o are located far away from l.

To reduce the number of input parameters, the proposed
model does not determine the interestingness of an itemset
usingminSup constraint. However, if an application demands,
the user can employminSup as an additional constraint to find
WFNIs. Please note that significant changes are not needed
for our SWFP-growth algorithm as it inherently records the
support information of an itemset.

IV. PROPOSED ALGORITHM
The space of items in a database gives rise to a subset lattice.
The itemset lattice is a conceptualization of the search space
when miningWFNIs. The itemset lattice of the items a, b and
c is shown in Figure 1. The proposed SWFP-growth performs
a depth-first search on this itemset lattice to find all WFNIs
in the data. The main reason for choosing pattern-growth

FIGURE 1. Itemset lattice of a, b and c .

technique is due to the fact that algorithms based on this
technique can be easily extended to develop disk-based algo-
rithms and parallel algorithms [10]. In this paper, we confine
to the sequential memory-based pattern-growth algorithm.

In this section, we first introduce the basic idea of
SWFP-growth algorithm. Next, we describe the working of
SWFP-growth using the database shown in Table 1c.

A. BASIC IDEA
The weighted sum of an ordered itemset can be more,
less, or equal to the weighted sum of its ordered superset (see
Property 3). Consequently, the WFNIs generated from the
data do not satisfy the convertible anti-monotonic, convert-
ible monotonic, or convertible succinct properties [30]. This
increases the search space, which in turn increases the com-
putational cost of finding the WFNIs. Two upper bound mea-
sures, called optimized estimated weighted sum (OEWS) and
cumulative neighborhood weighted sum (CNWS), have been
presented to reduce the search space and the computational
cost. These two measures aim to identify itemsets (or items)
whose supersets may yield WFNIs. We now describe each of
these measures.
Property 3: If X ⊂ Y , thenWS(X) ≥ WS(Y) orWS(X) ≤

WS(Y).

1) OPTIMIZED ESTIMATED WEIGHTED SUM
The key objective of OEWS measure is to identify items
whose supersets may yield WFNIs. The items whose OEWS
value is no less than the user-specified minWS are called as
candidate items. Definitions 7 and 8 define the estimated
weighted sum (EWS) of an itemset in a transaction and tem-
poral database, respectively. Definitions 9 and 10 respectively
define the candidate item and candidate itemsets. Pruning
technique to remove itemsets whose supersets may not yield
any WFNI is given in Property 4. Definition 11 defines the
calculation of optimized EWS value of an item based on the
prior knowledge regarding the pattern-growth technique.
Definition 7 (Estimated Weighted Sum of an Item ij in a

Transaction): Let Nij denote the set of all neighbors of an
item ij ∈ I . That is, ∀ik ∈ Nij , dist(ij, ik) ≤ maxDist . The
estimated weighted sum (EWS) of an item ij in a transaction
Tts, denoted as EWS(ij,Tts), represents the sum of weights
of ij and its neighboring items in Tts. That is, EWS(ij,Tts) =
w(ij,Tts)+

∑
ik∈Tts.Y∩ik∈Nij

w(ik ,Tts).

27588 VOLUME 8, 2020

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

TABLE 2. Neighborhoods of each item at maxDist = 5.

Example 9: Consider the item a in Table 1c. The neighbors
of a, i.e., Na = {bce} (see Table 1b). The estimated weighted
sum of a in T1 is the sum of weights of a and its neighboring
items in T1. That is, EWS(a,T1) = w(a,T1) + w(b,T1) =
20 + 15 = 35. Please note that the weights of remaining
items (i.e., g and f) in T1 are not used in the calculation of
EWS(a,T1). It is because these two items are not neighbors
of a.

The above definition of EWS captures the maximum
weighted sum of a and its neighboring items in a transaction.
We now extend this definition by taking into account a set of
transactions (or a temporal database).
Definition 8 (EWS of an Item in a Temporal Database):

Let TDBij denote the set of all transactions containing ij in
TDB. The EWS of an item ij in TDB, denoted as EWS(ij),
represents the sum of estimated weighted sum of ij in all trans-
actions of TDBij . That is, EWS(ij) =

∑
Tk∈TDB

ij EWS(ij,Tk).
Example 10: The transactions containing a in Table 1c

are: T1, T2 and T6. Therefore, TBDa = {T1,T2,T6}. TheEWS
of a in T1, i.e.,EWS(a,T1) = 35. Similarly,EWS(a,T2) = 35
and EWS(a,T6) = 85. The EWS of a in the entire database,
i.e., EWS(a) = EWS(a,T1) + EWS(a,T2) + EWS(a,T6) =
35 + 35 + 85 = 155. In other words, EWS(a) provide the
information that an item a with all its neighboring items
has resulted in a maximum weighted sum of 155 µg/m3 in
the entire database. Henceforth, this value can be used as
a upper-bound constraint to identify candidate items whose
supersets may yield WFNIs.

The above definition captures the maximumweighted sup-
port an item and its supersets (constituting of its neighbor-
ing items) can have in the entire spatiotemporal database
with respect to its neighboring items. Thus, EWS acts as a
weighted sum upper bound on the items. For an item ij ∈ I ,
if EWS(ij) < minWS, then neither ij nor its supersets will
result in WFNIs. So only those items whose EWS is no less
than minWS will generate WFNIs at higher order. We call
these items as candidate items and defined in Definition 9.
Definition 9 (Candidate Item): An item ij in TDB is said

to be a candidate item if EWS(ij) ≥ minWS.
Example 11: Continuing with the previous example,

the item a in Table 1c is a candidate item because EWS(a) ≥
minWS.

We now generalize the above definition by taking into
account the notion of itemset. This generalization facilitates
uses to push the above pruning technique to the lower levels
of itemset lattice.

Definition 10 (Candidate Itemset): Let α be a suffix item-
set. Let TDBα ⊆ TDB be the conditional pattern base (or
projected database) of α. (If α = ∅, then TDBα = TDB.)
Let WS(α) be the weighted sum of α in TDB. Let ij be an
item in TDBα . Let ÊWS(ij) denote the EWS value of an item
ij in TDBα∪ij . If ÊWS(ij) + WS(α) ≥ minWS, then α ∪ ij
is a candidate itemset (or ij is a candidate item in TDBα).
Otherwise, ij is an uninteresting item that can be pruned from
TDBα .
The proposed SWFP-growth employs the above definition
to identify candidate itemsets whose supersets may yield
WFNIs.
Property 4 (Pruning Technique): For an itemset X ,

if EWS(X) ≤ minWS, then neither X nor its supersets can
be WFNIs.
Definition 11 (Calculating the Optimized EWS Value

of an Item Using the Prior Knowledge Regarding the
Pattern-Growth Technique): In the pattern-growth technique,
the conditional pattern base (or CPB) of a suffix item does
not include any previous suffix items. For example, let a, b, c
and d be the sorted list of items in a lexicographical order.
In the pattern-growth technique, the search space of finding
WFNIs from these four items can be divided into four smaller
search spaces: (i) d’s conditional pattern base (or d-CPB),
(ii) c-CPB excluding d (which is after c in the sorted list),
(iii) b-CPB excluding c and d and (iv) a-CPB exclud-
ing b, c and d . Thus, given a sorted transaction, T̂k =
(ts, {i1, i2, · · · , ik}), the optimized EWS value of an item
ip in T̂k , denoted as OEWS(ip, T̂k), is the summation of
weighted sum of ij and neighboring items before ip in T̂k . That
is, OEWS(ip, T̂k) = w(ip, T̂k) +

∑
ia∈{ip-CPB∩Nip } w(ia, T̂k),

where ip-CPB denote the set of items that include in the con-
ditional pattern base of ip and Nip represent the neighboring
items of ip.
Example 12: Let us consider the first transaction T1

in Table 1c. The lexicographical sorted order of items in this
transaction is abfg. Let us consider the item g, which is the
last item in the sorted transaction. The conditional pattern
base of g, i.e., g-CPB = {abf } ∩ Ng = {abf } ∩ {f } =
{f }. Therefore, the EWS of g in T1, i.e., OEWS(g,T1) =
w(g,T1)+ w(f ,T1) = 20+ 20 = 40. Similarly, for the item
f , f -CPB = {ab} and Nf = {dg}. The OEWS of f in T1,
i.e., OEWS(f ,T1) = w(f ,T1) +

∑
ik∈{f -CPB∩Nf } w(ik ,T1) =

w(f ,T1) = 20.
Property 5: For an itemset X , EWS(X , T̂k) ≥ OEWS

(X , T̂k). In other words, OEWS is the more tighter constraint
than EWS.

The SWFP-growth employs EWS measure to find candi-
date items. After finding candidate items and sorting them
with respect to EWS descending order, items’ OEWS val-
ues in every transaction are used to find candidate itemsets
effectively.

2) CUMULATIVE NEIGHBORHOOD WEIGHTED SUM
The candidate items constitute of both weighted frequent
items and uninteresting items whose supersets may generate

VOLUME 8, 2020 27589

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

WFNIs. We have observed that constructing projected
databases (or conditional pattern bases) for all uninteresting
items is a costly operation. In this context, we exploit another
weight upper bound measure, called cumulative neighbor-
hoodweighted sum (CNWS), to identify those candidate items
whose projections will only WFNIs.
Definition 12 (Cumulative Neighborhood Weighted Sum):

Let S = {i1, i2, · · · , ik} ⊆ I be an ordered list of candidate
items such that EWS(i1) ≤ EWS(i2) ≤ · · · ≤ EWS(ik). The
cumulative neighborhood weighted sum of an item ij ∈ S,
denoted as EWS(ij), is the sum of weighted sum of remain-
ing items in the list which are neighbors of ij. That is,
CNWS(ij) =

∑|S|
p=j+1WS(ip) if ip ∈ N (ip). For the last item

in S, cnws(ik) = 0.
Example 13: Let us order the candidate items in increasing

order of their EWS values. Let � denote this order of items.
The candidate items in � order are a, e, c, b and d . Let us
consider item a, which is the first item in � order. The
neighbors of this item are b, c and e (see Table 1b). Thus,
the item a will generate WFNIs by combining with the items
b, c and e. Thus, the cumulative neighborhood weighted sum
of a, i.e., CNWS(a) = WS(b)+WS(c)+WS(e) = 365. The
CNWS of a provides the crucial information that the item a
and its supersets containing only a’s neighborhood items can
at most have the maximum weighted sum of 365 in the entire
database. This information can be used to determine whether
a suffix item in the tree needs to be projected or not. If sum
of weighted support of suffixitemset and CNWS of a suffix
itemset is less than the user-specified minWS, then we can
prevent the depth-first search (or construction of conditional
pattern bases) to findWFNIs. Thus, significantly reducing the
search space.
Property 6 (Additive Property): For an itemset X ,

WS(X) ≤
∑

ij∈X WS(ij).

B. SWFP-GROWTH
The proposed SWFP-growth algorithm is presented in
Algorithms 1 and 2. Briefly, SWFP-growth algorithm
involves the following steps: (i) finding candidate items (ii)
constructing Spatial Weighted Frequent Pattern-tree (SWFP-
tree) by compressing the spatiotemporal database using can-
didate items (iii) Recursively mining SWFP-tree to find all
candidate itemsets and (iv) finding all WFNIs from candidate
itemsets by performing another scan on the spatiotemporal
database. Before we explain each of these steps, we describe
the structure of SWFP-tree.

1) STRUCTURE OF SWFP-TREE
In SWFP-tree, each node N includes N .name, N .support ,
N .oews, N .parent , N .hlink and a set of child nodes. The
details are as follows. N .name is the item name of the node.
N .support represents the support of an item in node N .
N .oews represents the OEWS value of an item in node N .
N .parent records the parent node of the node. N .hlink is a

Algorithm 1 SWFP-Tree (TDB: Temporal Database, I : Items
in a Database, SD: Spatial Database, WD: Weight Database,
minWS: Minimum Weighted Sum, minDist: Minimum Dis-
tance)
1: Scan the spatial database SD and identify neighbors for

each item ij in I . Let N (ij) denote the neighbors for item
ij in I .

2: Scan the database TDB and calculate EWS, WS and
minimumwieghts for each item ij in I . Prune all items
in I that have EWS less than the user-specified minWS.
Consider the remaining items in I as candidate items and
sort them in descending order of their EWS values. Let L
denote this sorted list of candidate items.

3: Create the root node of SWFP-tree T and label it as
‘‘null’’. Scan the temporal database TDB for the sec-
ond time and update SWFP-tree as follows. For each
transaction Tts ∈ TDB do the following. Identify and
sort the candidate items in Tts in L order. Let T̂ts denote
the sorted transaction of Tts containing only candidate
items. Let the sorted candidate item list in T̂ts be [p|P],
where p is the first element and P is the remaining
list. Call insert_tree([p|P],T), which is performed as
follows. If T has a child N such that N .item-name =
p.item-name, then increment the N .support value by 1,
calculate the OEWS value of p in T̂ts and add this value
to the existing N .oews value. If T has a child N such that
N .item-name 6= p.item-name, then create a new node N ,
set its support count to 1, calculate the OEWS value of p
in T̂ts and set this value as N .oews. Next, its parent link is
linked to T , and its node-link to the nodes with the same
item-name via the node-link structure. If P is non-empty,
call insert_tree(P, N) recursively.

Algorithm 2 SWFP-Growth
1: input: TX : SWFP-tree, HX : header table for TX , X : an

itemset
2: output: all candidate weighted frequent itemsets in TX
3: for each item ai ∈ HX do
4: generate an itemset Y = X ∪ ai. The EWS(Y) is set as

ai.oews in HX .
5: ifWeightedSum(Y) +CNWS(ai) is no less thanminWS

then construct Y ’s conditional pattern base constitut-
ing of only neighbors of ai. Next, recalculate each
node’s oews value. Consider items having oews value
greater than minWS as candidate items in Y -CPB and
put them inHY . Readjust the oews values for the items
by removing non-candidate items in Y -CPB. Create a
new tree TY by calling insert_tree([p|P],TY). If Ty 6=
null, call SWFP− growth(TY ,HY ,Y).

6: end for

node link which points to a node whose item name is the same
as N .name.
Header table is employed to facilitate the travel of SWFP-

tree. In this table, each entry is composed of an item name,

27590 VOLUME 8, 2020

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

OEWS value, and a link. The link points to the last occurrence
of the node which has the same item as the entry in the SWFP-
tree. By following the link in the header table and the nodes
in SWFP-tree, the nodes whose item names are the same can
be traversed efficiently.

2) FINDING CANDIDATE ITEMS
In the first database scan, we calculate the EWS, minimum
weight sum and weightedsum of each item in database TDB.
The calculated EWS values for all items in Table 1c are
shown in Fig. 2(a). From these items, the candidate items
are generated by pruning all items that have EWS value less
than the user-specified minWS. The candidate items are later
sorted in descending order of their EWS value. Let this sorted
list of candidate items be denoted as L. The sorted list of can-
didate items generated from Table 1c for the user-specified
minWS = 150 is shown in Fig. 2(b). (The iabove pro-
cess can be repeated until no more items get pruned from
the temporal database. However, for computational reasons
we recommend limiting this step to single scan on the
database.)

FIGURE 2. Generating temporal database containing only candidate
items.

3) CONSTRUCTION OF SWFP-TREE
Using the generated candidate items, we scan the temporal
database for the second time and generate SWFP-tree by
following the procedure similar to that Frequent Pattern-tree
(or FP-tree). It has to be noted that we will maintaining both
support and OEWS value of an item at each node.
The sorted transactional database constituting of only can-

didate items is shown in Fig. 2(c). The scan on the first sorted
transaction, ‘‘1: ba,’’ generates a branch 〈b : 1 : 15〉, 〈a :
1 : 35〉 (format is 〈item : support : OEWS〉). Fig. 3(a) shows
the branch generated after scanning first transaction. The scan
on the second sorted transaction, ‘‘2:ca,’’ generates another
branch 〈c : 1 : 30〉, 〈a : 1 : 35〉 (see Fig. 3(b)). Similar
process is repeated for remaining transactions and SWFP-tree
is updated accordingly. The tree constructed after scanning
the last transaction is shown in Fig. 3(c). To facilitate tree
traversal, an item header table is built so that each item
points to its occurrences in the tree via a chain of node-links.
The final SWFP-tree generated after scanning entire temporal
database is shown in Fig. 3(d).

FIGURE 3. Construction of SWFP-tree. (a) After scanning first
transaction (b) after scanning second transaction (c) after scanning the
entire database and (d) final SWFP-tree.

4) RECURSIVE MINING OF SWFP-TREE
After constructing SWFP-tree, we start with the last item
in the header table. Choosing this item as a suffix itemset,
we determine its CNWS. If the sum of weighted support
of the suffix item and its CNWS value is more than the
user-specified minWS, then we construct its conditional pat-
tern base constituting of neighboring items of suffix itemset,
construct its conditional SWFP-tree, and generate all candi-
date itemsets. If CNWS value of a suffix item is less than
the user-specified minWS, then we skip the construction of
conditional pattern bases and move to the next item in the
header table. Similar process is repeated for the other items
in the header table.

Mining of the SWFP-tree is summarized in Table 3 and
defined as follows. We first consider a, which is the last
item in the SWFP-list. Item a occurs in three branches of the
SWFP-tree of Figure 3. (The occurrences of a an easily be
found by following its chain of node-links.) The paths formed
by these branches are 〈b, c, e, a : 1 : 85〉, 〈b, a : 1 : 35〉 and
〈c, a : 1 : 35〉. Therefore, considering a as a suffix item, its
corresponding three prefix are 〈b, c, e : 1 : 85〉, 〈b : 1 : 35
and 〈c : 1 : 35〉 (format is 〈item_1, item_2, · · · , item_k :
support : oews), which form its conditional pattern base.
The ÔEWS value of the items b, c and e in the conditional
pattern base of a (i.e., T a) is less than the minWS. So forth,
we prune all items in the conditional pattern base of a, and
generate only a as the candidate item. Next, we consider the
next item e in the SWFP-list. This item occurs in two branches
of the SWFP-tree of Figure 3. The paths formed by these
branches are 〈d, b, c, e : 1 : 125〉 and 〈b, c, e : 1 : 75〉.
Therefore, considering e as a suffix item, its corresponding

VOLUME 8, 2020 27591

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

TABLE 3. Mining SWFP-tree.

FIGURE 4. Spatial visualization of items in various databases.

two prefix are 〈b, d, c : 1 : 125 and 〈b, c : 1 : 75〉, which
form its conditional pattern base. The ÔEWS value of the
items b and c are no less than the minUtil value. So forth,
conditional SWFP-tree is constructed with the items b and c.
From this conditional SWFP-tree, we generate eb, ec and e
as candidate itemsets. Similar process is performed for the
remaining items in the SWFP-list of Figure 3(d) to find all
candidate itemsets. The complete set of candidate itemsets
generated from Figure 3(d) are a, eb, ec, e, c, cd, b, bd . The
correctness of finding all candidate itemsets is shown in
Theorem 1.
Theorem 1: Let α be an itemset in SWFP-tree. Let B be

the α’s conditional pattern base, and β be an item in B. If α
is a suffix itemset and ̂OEWS(α, β)+WS(α) ≥ minWS, then
〈α, β〉 is a candidate itemset.

Proof: According to the definition of conditional pattern
base and compact SWFP-tree, each subset in B occurs under
the condition of the occurrence of α in the transactional
database. If an item β appears in B, then β appears with α.
Thus, 〈α, β〉 is a candidate itemset if ̂OEWS(α, β)+WS(α) ≥
minWS. Hence proved.

5) GENERATING ALL WFNIS FROM CANDIDATE ITEMSETS
After finding all candidate itemsets from SWFP-tree, we per-
form third scan on the database and calculate actual weighted
support for each candidate itemset. The candidate itemset
that has weighted support no less than the user-specified
minWS will be generated as WFNI. The complete set of
WFNIs generated fromTable 1c for the user-specifiedminWS
of 150 is shown in Table 1e.

V. EXPERIMENTAL RESULTS
Since there exists no algorithm to mine WFNIs in a binary
spatiotemporal database, we only evaluate the proposed algo-
rithm using various databases. We show that our algorithm is
not only memory and runtime efficient, but also scalable as
well.

A. EXPERIMENTAL SETUP
The SWFP-growth algorithm has been written in java and
executed on i7 1.5 GHz processor having 8GB of mem-
ory. The experiments have been conducted using synthetic
(T10I4D100K) and real-world (Retail, Chess and PM2.5)
databases.

TheT10I4D100K [2] is a sparse synthetic database, which
is widely used for evaluating various pattern mining algo-
rithms. This transactional database is converted into a tem-
poral database by considering tids as timestamps. A spatial
database for all the items in T10I4D100K has been gen-
erated by assigning random coordinates between (0, 0) to
(100, 100). The coordinates of these items in a Cartesian
coordinate system is shown in Fig. 4a. It can be observed that
items have non-uniformly spread throughout the region. The
statistical details of this database were provided in Table 4.

TABLE 4. Statistics of the datasets.

The Retail is a sparse real-world transactional database,
which is widely used for evaluating various pattern min-
ing algorithms. This database is converted into a tempo-
ral database by considering tids as timestamps. A spatial
database for all the items has been generated by assigning
random coordinates between (0, 0) to (200, 200). The coordi-
nates of these items in a Cartesian coordinate system is shown
in Fig. 4b. It can be observed that items have non-uniformly
spread throughout the region. The statistical details of this
database were provided in the third row of Table 4.

AEROS consists of several air pollution measuring
stations located throughout Japan. Each station measures
several air pollution concentrates (e.g., NO, NO2, PM2.5 and

27592 VOLUME 8, 2020

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

FIGURE 5. WFNIs generated by SWFP-growth algorithm at different minWS and maxDist values in various databases.

FIGURE 6. Memory requirements of SWFP-growth in various databases at different minWS and MaxDist values.

SO2) over hourly intervals. In this paper, we only consider
PM2.5 pollution concentrate. The pollution data is gener-
ated at 1 hour time interval for 24 hours of a day. For our
experiments, we are using air pollution data of 6 months
(i.e., from 01-12-2018 to 04-06-2019). The PM2.5 database
contained 5366157 data points and 1065 items (or station ids).
UTC time is used to record the transactions. Without loss
of generality, the pollution database was split into a tem-
poral database, spatial database and items weight database.
PM2.5 is a dense high dimensional database. The statistical
details of this database are shown in Table 4.

The Chess is a dense real-world transactional database,
which is widely used for evaluating various pattern min-
ing algorithms. This database is converted into a tempo-
ral database by considering tids as timestamps. A spatial
database for all the items has been generated by assigning
random coordinates between (0, 0) to (20, 20). The coordi-
nates of these items in a Cartesian coordinate system is shown
in Fig. 4d. It can be observed that items have non-uniformly
spread throughout the region. The statistical details of this
database were provided in the fourth row of Table 4.

B. EVALUATION OF SWFP-GROWTH AT VARIOUS
minWS VALUES
Figs. 5a, 5b, 5c and 5d show the number of WFNIs gen-
erated in T10I4D100K, Retail, PM2.5 and Chess databases
at different minWS and maxDist values, respectively. The
following observations can be drawn from these two figures :
(i) increase in minWS causes a decrease in WFNIs as many
itemsets fail to satisfy the increased minWS value and (ii)
increase in maxDist causes increase in WFNIs as higher
maxDist facilitates the items to increase their neighborhood
sizes. It can be observed that at higher maxDist values, too

many WFNIs are getting generated. It is because of the
increase in neighborhood size facilitates items to combine
with far away items and generate WFNIs. Many WFNIs
generated at high maxDist may found to be uninteresting to
the users.

Figs. 6a, 6b, 6c and 6d show the memory requirements
of SWFP-growth (in megabytes) on T10I4D100K, Retail,
PM2.5 and Chess databases at different minWS and maxDist
values, respectively. The following observations can be drawn
from these two figures : (i) increase in minWS results in the
decrease of memory as relatively less number of WFNIs get
generated and (ii) increase in maxDist results in increase of
memory required to findWFNIs. It is because a large number
of WFNIs get generated at higher maxDist values.

Figs. 7a, 7b, 7c and 7d show the runtime requirements of
SWFP-growth algorithm on T10I4D100K, Retail, PM2.5 and
Chess databases at different minWS and maxDist values,
respectively. The following observations can be drawn from
these two figures : (i) increase in minWS results in a decrease
of runtime as fewer WFNIs are getting generated and (ii)
increase in maxDist results in the increase of runtime.

C. SCALABILITY TEST OF SWFP-GROWTH
We study the scalability of proposed algorithm on exe-
cution time and required memory by varying the size of
T10I4D100K database. We concatenated the T10I4D100K
database ten times to produce a very large database, which
we call as T10I4D1000K database. Next, we divided this
database into five portions of 0.2 million transactions in each
part. Then we investigated the performance of our algorithm
after accumulating each portion with previous parts while
finding SWFIs each time. To find same itemsets as SWFIs
with the increase in database sizes, the minWS was doubled

VOLUME 8, 2020 27593

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

FIGURE 7. Runtime requirements of SWFP-growth in various databases at different minWS and MaxDist values.

FIGURE 8. Scalability of SWFP-growth.

TABLE 5. Some of the interesting WFNIs generated in pollution database.

to reflect the database size. The minWS for the first database
was set at 40,000.

Fig. 8a and 8b respectively show the memory and runtime
requirements of SWFP-growth algorithm on T10I4D100K
database. It is clear from the graphs that as the database
size increases, the memory and runtime requirements of
our algorithm increase. However, SWFP-growth has sta-
ble performance of about linear increase of runtime and
memory consumption with respect to the data size. Thus,
SWFP-growth can mine SWFIs over large databases and dis-
tinct items with considerable amount of runtime and memory.
(We can conduct the above experiment by directly generating
T10I4D1000K database using the synthetic database gener-
ator. However, such generated results may be misleading as
the number of generated itemsets can vary with the database
size. In our scaled database, the number of patterns remain
the same irrespective of the database size.)

D. A CASE STUDY: IDENTIFYING HIGHLY POLLUTED
PM2.5 REGIONS IN JAPAN
Table 5 shows the WFNIs generated in the PM2.5 database at
maxDist = 5 kilometers and minWS = 10, 000µg/m3. The
spatial location of all these stations in the entire Japan are
shown in Fig. 9. The spatial location of the sensors present
in eachWeighted Frequent Neighborhood Itemsets are shown

FIGURE 9. Spatial location of sensors that have recorded high levels of
PM2.5 values in Japan.

FIGURE 10. Spatial location of sensors that have recorded high levels of
PM2.5 values in Sapporo.

FIGURE 11. Spatial location of sensors that have recorded high levels of
PM2.5 values in Tokyo.

in Fig. 10, 11, 12, and 13. These itemsets in these figures indi-
cate the geographical areas where people have been exposed
to high levels of PM2.5 pollutant. It can be observed that high
levels of PM2.5 have been observed at the places close to the
bay areas (or harbors). This information can be found very
useful in devising policies to control pollution at bay areas.

27594 VOLUME 8, 2020

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

FIGURE 12. Spatial location of sensors that have recorded high levels of
PM2.5 values in Osaka.

FIGURE 13. Spatial location of sensors that have located high levels of
PM2.5 values in Okayama.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a flexible model of spa-
tial weighted frequent itemset that exist in a spatiotemporal
database. Two novelmeasures have been introduced to reduce
the search space effectively. A pattern-growth algorithm has
also been presented to find all desired itemsets in a spa-
tiotemporal database. Experimental results demonstrate that
the proposed algorithm is efficient. Finally, we have also
demonstrated the usefulness of the proposed model with a
real-world case study on air pollution data.

In this paper, we have studied the problem of finding
SWFIs by taking into account positiveweights for the items in
a spatiotemporal database. As a part of future work, we would
like to investigate finding SWFIs in a spatiotemporal database
using both positive and negative weights for the items. Addi-
tionally, we would like to investigate disk-based and parallel
algorithms to find SWFIs.

REFERENCES
[1] R. Agrawal, T. Imieliński, and A. Swami, ‘‘Mining association rules

between sets of items in large databases,’’ SIGMOD Rec., vol. 22, no. 2,
pp. 207–216, Jun. 1993.

[2] R. Agrawal and R. Srikant, ‘‘Fast algorithms for mining association rules,’’
in Proc. Int. Conf. Very Large Data Bases, vol. 1215, 1994, pp. 487–499.

[3] H. Cheng and J. Han, ‘‘Pattern-growth methods,’’ in Encyclopedia of
Database Systems, L. Liu and M. T. Özsu, 2nd ed. Boston, MA, USA:
Springer, 2018, pp. 2051–2054, doi: 10.1007/978-0-387-39940-9_263.

[4] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Springer, 2014.
[5] G. M. Weiss, ‘‘Mining with rarity: A unifying framework,’’ SIGKDD

Explor. Newsl., vol. 6, no. 1, p. 7, Jun. 2004.
[6] B. Liu, W. Hsu, and Y. Ma, ‘‘Mining association rules with multiple min-

imum supports,’’ in Proc. 5th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining (KDD), 1999, pp. 337–341.

[7] R. U. Kiran and P. K. Reddy, ‘‘Novel techniques to reduce search space in
multiple minimum supports-based frequent pattern mining algorithms,’’ in
Proc. 14th Int. Conf. Extending Database Technol. (EDBT/ICDT), 2011,
pp. 11–20.

[8] C. Cai, A. Fu, C. Cheng, and W. Kwong, ‘‘Mining association rules
with weighted items,’’ in Proc. Int. Database Eng. Appl. Symp. (IDEAS),
Nov. 2002, pp. 68–77.

[9] J.-H. Cai, X.-J. Zhao, S.-W. Sun, J.-F. Zhang, and H.-F. Yang,
‘‘Stellar spectra association rule mining method based on the weighted
frequent pattern tree,’’ Res. Astron. Astrophys., vol. 13, no. 3, pp. 334–342,
Mar. 2013.

[10] R. U. Kiran, A. Kotni, P. K. Reddy, M. Toyoda, S. Bhalla, and
M. Kitsuregawa, ‘‘Efficient discovery of weighted frequent itemsets in
very large transactional databases: A re-visit,’’ in Proc. IEEE Int. Conf.
Big Data (Big Data), Dec. 2018, pp. 723–732.

[11] Q.-H. Duong, P. Fournier-Viger, H. Ramampiaro, K. Nørvåg, and
T.-L. Dam, ‘‘Efficient high utility itemset mining using buffered utility-
lists,’’ Appl. Intell., vol. 48, no. 7, pp. 1859–1877, Jul. 2018.

[12] R. U. Kiran, T. Y. Reddy, P. Fournier-Viger, M. Toyoda, P. K. Reddy, and
M. Kitsuregawa, ‘‘Efficiently finding high utility-frequent itemsets using
cutoff and suffix utility,’’ in Proc. Adv. Knowl. Discovery Data Mining-
23rd Pacific-Asia Conf. (PAKDD), Macau, China, Apr. 2019, pp. 191–203.

[13] H. Yao, H. J. Hamilton, and C. J. Butz, ‘‘A foundational approach tomining
itemset utilities from databases,’’ in Proc. SIAM Int. Conf. Data Mining,
Apr. 2004, pp. 482–486.

[14] U. Yun and J. J. Leggett, ‘‘WFIM: Weighted frequent itemset mining with
a weight range and a minimum weight,’’ in Proc. SIAM Int. Conf. Data
Mining, Apr. 2005, pp. 636–640.

[15] M. Zaki, ‘‘Scalable algorithms for association mining,’’ IEEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372–390, May/Jun. 2000.

[16] J. Han, J. Pei, Y. Yin, and R. Mao, ‘‘Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,’’ Data Mining
Knowl. Discovery, vol. 8, no. 1, pp. 53–87, Jan. 2004.

[17] J. Han, H. Cheng, D. Xin, and X. Yan, ‘‘Frequent pattern mining: Cur-
rent status and future directions,’’ Data Min Knowl Disc, vol. 15, no. 1,
pp. 55–86, Jul. 2007.

[18] F. Tao, F. Murtagh, and M. Farid, ‘‘Weighted association rule min-
ing using weighted support and significance framework,’’ in Proc. 9th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2003,
pp. 661–666.

[19] B. Vo, F. Coenen, and B. Le, ‘‘A new method for mining frequent
weighted itemsets based on WIT-trees,’’ Expert Syst. Appl., vol. 40, no. 4,
pp. 1256–1264, Mar. 2013.

[20] J. C.-W. Lin,W. Gan, P. Fournier-Viger, H.-C. Chao, and T.-P. Hong, ‘‘Effi-
ciently mining frequent itemsets with weight and recency constraints,’’
Appl. Intell., vol. 47, no. 3, pp. 769–792, Oct. 2017.

[21] J. C.-W. Lin, W. Gan, P. Fournier-Viger, T.-P. Hong, and V. S. Tseng,
‘‘Weighted frequent itemset mining over uncertain databases,’’ Appl.
Intell., vol. 44, no. 1, pp. 232–250, Jan. 2016.

[22] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, ‘‘Mining weighted
frequent patterns using adaptive weights,’’ in Intelligent Data Engineering
and Automated Learning-IDEAL (Lecture Notes in Computer Science).
2008, pp. 258–265.

[23] W. Gan, J. C. Lin, P. Fournier-Viger, H. Chao, T. Hong, and H. Fujita,
‘‘A survey of incremental high-utility itemset mining,’’ Wiley Interdiscipl.
Rev., Data Mining Knowl. Discovery, vol. 8, no. 2, 2018, Art. no. e1242.

[24] C. Zhang, G. Almpanidis, W. Wang, and C. Liu, ‘‘An empirical evaluation
of high utility itemset mining algorithms,’’ Expert Syst. Appl., vol. 101,
pp. 91–115, Jul. 2018.

[25] R. U. Kiran, K. Zettsu, M. Toyoda, P. Fournier-Viger, P. K. Reddy,
and M. Kitsuregawa, ‘‘Discovering spatial high utility itemsets in spa-
tiotemporal databases,’’ in Proc. 31st Int. Conf. Sci. Stat. Database Man-
age. (SSDBM), 2019, pp. 49–60.

[26] W. Ding, C. Eick, J. Wang, and X. Yuan, ‘‘A framework for regional
association rule mining in spatial datasets,’’ in Proc. 6th Int. Conf. Data
Mining (ICDM), Dec. 2006, pp. 851–856.

[27] C. F. Eick, R. Parmar, W. Ding, T. F. Stepinski, and J.-P. Nicot, ‘‘Finding
regional co-location patterns for sets of continuous variables in spatial
datasets,’’ in Proc. 16th ACM SIGSPATIAL Int. Conf. Adv. Geograph. Inf.
Syst. (GIS), 2008, pp. 30:1–30:10.

[28] P. Mohan, S. Shekhar, J. A. Shine, J. P. Rogers, Z. Jiang, and N. Wayant,
‘‘A neighborhood graph based approach to regional co-location pattern
discovery: A summary of results,’’ in Proc. 19th ACM SIGSPATIAL Int.
Conf. Adv. Geograph. Inf. Syst. (GIS), 2011, pp. 122–132.

[29] H. Tran-The and K. Zettsu, ‘‘Discovering co-occurrence patterns of hetero-
geneous events from unevenly-distributed spatiotemporal data,’’ in Proc.
IEEE Int. Conf. Big Data (BigData), Boston, MA, USA, Dec. 2017,
pp. 1006–1011.

[30] J. Pei and J. Han, ‘‘Can we push more constraints into frequent pattern
mining?’’ in Proc. 6th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), 2000, pp. 350–354.

VOLUME 8, 2020 27595

http://dx.doi.org/10.1007/978-0-387-39940-9_263

R. U. Kiran et al.: Efficient Discovery of Weighted Frequent Neighborhood Itemsets

R. UDAY KIRAN received the Ph.D. degree in
computer science from the International Institute
of Information Technology, Hyderabad, Telan-
gana, India. He holds the position of a Project
Assistant Professor with the Kitsuregawa Labora-
tory, Institute of Industrial Science, The University
of Tokyo, Tokyo, Japan. He holds the position of
a Researcher with the Social Big Data Research
Collaboration Center, National Institute of Infor-
mation and Communications Technology, Tokyo,

Japan. He has published more than 50 articles in refereed journals and
international conferences, such as International Conference on Extending
Database Technology (EDBT), International Conference on Scientific and
Statistical Database Management (SSDBM), The Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD), Database Systems for
Advanced Applications (DASFAA), International Conference on Database
and Expert Systems Applications (DEXA), International Journal of Compu-
tational Science and Engineering (IJCSE), the Journal of Intelligent Infor-
mation Systems (JIIS), and the Journal of Systems and Software (JSS).
His current research interests include data mining, parallel computation,
air pollution data analytics, traffic congestion data analytics, recommender
systems, and ICTs for Agriculture.

P. P. C. REDDY is currently pursuing the dual
B.Tech. and M.S. degrees in computer science
from the International Institute of Information
Technology, Hyderabad.

KOJI ZETTSU received the Ph.D. degree in
informatics from Kyoto University, in 2005.
He has been doing research and development of
data analytics technology in NICT, where he has
been leading the Real Space Information Analytics
Project since 2016 to implement smart data plat-
form based on data mining and AI. For promot-
ing industry-academia-government collaboration
on the platform, he is also a leader of Cross-Data
Collaboration Project of Smart IoT Acceleration

Forum in Japan. He is currently a Director General of the Big Data Integra-
tion Research Center, National Institute of Information and Communications
Technology (NICT). He has serviced on numerous academic societies, con-
ference committees, and working groups. His research interests are database
systems, data mining, information retrieval, and software engineering.

MASASHI TOYODA received the B.S., M.S., and
Ph.D. degrees in computer science from the Tokyo
Institute of Technology, Japan, in 1994, 1996, and
1999, respectively. In 1999, he joined the Institute
of Industrial Science, The University of Tokyo
as a Research Fellow, and worked as a specially
appointed Associate Professor from 2004 to 2006,
and as an Associate Professor from 2006 to 2018.
He is currently a Professor with the Institute of
Industrial Science jointly affiliated with the Grad-

uate School of Information Science and Technology, The University of
Tokyo, Japan. His research interests include archiving and analysis of web,
social media, and the IoT data, information visualization, visual analytics,
and user interface.

MASARU KITSUREGAWA received the Ph.D.
degree from The University of Tokyo, in 1983.
He is currently the Director General of the
National Institute of Informatics and also a Pro-
fessor with the Institute of Industrial Science, The
University of Tokyo. He is a Fellow of ACM,
IEICE, and IPSJ. He has wide research inter-
ests, especially in database engineering. He has
received many awards including the ACM SIG-
MOD E. F. Codd Innovations Award, the IEICE

Achievement Award, the IPSJ Contribution Award, the 21st Century Inven-
tion Award of National Commendation for Invention, Japan and C and C
Prize. In 2013, he received the Medal with Purple Ribbon and in 2016,
the Chevalier de la Legion D’Honneur. He served in various positions such
as the Chairman of the Committee for Informatics, Science Council of Japan,
from 2014 to 2016 and the President of the Information Processing Society
of Japan, from 2013 to 2015.

P. KRISHNA REDDY received the M.Tech. and
Ph.D. degrees in computer science from Jawa-
harlal Nehru University, New Delhi, in 1991 and
1994, respectively. From 2013 to 2015, he has
served as the Program Director of ITRA-
Agriculture and Food, Information Technology
Research Academy (ITRA), India. From 1997 to
2002, he was a Research Associate with the Center
for Conceptual Information Processing Research,
Institute of Industrial Science, The University of

Tokyo. From 1994 to 1996, he was a Faculty Member with the Division
of Computer Engineering, Netaji Subhas Institute of Technology, Delhi.
In Summer 2003, he was a Visiting Researcher with the Institute for
Software Research International, School of Computer Science, Carnegie
Mellon University, Pittsburg, USA. He is currently a Faculty Member
with International Institute of Information Technology at Hyderabad (IIIT
Hyderbad), India. He is also the Head of the Agricultural Research Center
and the member of the Data Sciences and Analytics Center Research Team,
IIIT Hyderabad. He has published about 157 refereed research articles
which include 22 journal articles, three book chapters, and six edited
books. His research areas include data mining, database systems, and IT
for agriculture. He is a Steering Committee Member of the pacific-Asia
Knowledge Discovery and Data Mining (PAKDD) conference series and
Database Systems for Advanced Applications (DASFAA) conference series.
He has been a Steering Committee Chair of Big Data Analytics (BDA)
conference series since 2017. He was a Proceedings Chair of COMAD
2008, a Workshop Chair of KDRS 2010, a Media and Publicity Chair
of KDD 2015, and a General Chair of BDA2017. He has organized the
14th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD2010), the Third National Conference onAgro-Informatics and Pre-
cision Agriculture 2012 (AIPA 2012) and the Fifth International Conference
on Big Data Analytics (BDA 2017). He has delivered several invited/panel
talks at the reputed conferences and workshops in India and abroad. He has
got several awards and recognitions. He has executed research projects
by raising the research funding of about 80 million Indian rupees. Since
2004, he has been investigating the building efficient knowledge agricultural
knowledge transfer systems by extending developments in IT. He has
developed eSagu systems, which is an IT-based farm-specific agro-advisory
systems, which has been field-tested in hundreds of villages on about 50 field
and horticultural crops. He has also built eAgromet systems, which is an
IT-based agro-meteorological advisory systems to provide risk mitigation
information to farmers. He has conceptualized the notion of Virtual Crop
Labs to improve applied skills for extension professionals. He is currently
investigating the building of CropDarpan systems, which is a crop diagnostic
tool for farmers, with the funding support from India-Japan Joint Research
Laboratory Program. He has received two best paper awards. The eSagu
systems, which is an IT based farm-specific agro-advisory systems, has got
several recognitions including CSI-Nihilent e-Governance Project Award,
in 2006, Manthan Award, in 2008, and finalist in the Stockholm Challenge
Award 2008.

27596 VOLUME 8, 2020

