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ABSTRACT In the MicroGrid environment, the high penetration of uncertain energy sources such as solar
Photovoltaics (PVs), Energy Storage Systems (ESSs), Demand Response (DR) programs, Vehicles to Grid
(V2G or G2V) and Electricity Markets make the Energy Resource Management (ERM) problem highly
complex. All such complexities should be addressed while maximizing income and minimizing the total
operating costs of aggregators that accumulate all types of available energy resources from the MicroGrid
system. Due to the presence of mixed-integer, discrete variables and non-linear network constraints, it is
sometimes very difficult to solve such problem using traditional optimizationmethods. This paper proposes a
newmetaheuristic optimization technique entitled the ‘‘Enhanced Velocity Differential Evolutionary Particle
Swarm Optimization’’ (EVDEPSO) algorithm to tackle the ERM problem. Its key feature is the updation of
the Velocity by the terms named as EnhancedVelocity, Cooperation and Stochastic Uni-RandomDistribution
and position by the term Deceleration Factor. The performance of the proposed method is measured by
a case study comprises of 100 scenarios of a 25-bus MicroGrid with high penetration of aforementioned
energy sources. IEEE Computational Intelligence Society organized the competition on the above mentioned
problem, in which EVDEPSO secured a second rank. The results of EVDEPSO are compared with the
competition participated optimization algorithms. It also comparedwithwell-known optimization algorithms
such as Variable Neighborhood Search and Differential Evolutionary Particle Swarm Optimization. The
comparison results show that the performance of EVDEPSO is superior in terms of the Ranking Index (R.I)
andAverage Ranking Index (A.R.I) as compared to the aforementioned algorithms. For effective comparative
analysis of algorithms, standard statistical test named as One-Way ANOVA and Tukey Test is used. The
results of this test also prove the effectiveness of EVDEPSO algorithm as compared to all tested algorithms.

INDEX TERMS Enhanced velocity differential evolutionary particle swarm optimization, distributed energy
resource management, smart grid, electric vehicles, demand response, electricity market, energy storage.

SYMBOLS
SYMBOLS Description
DiG Conventional DG units
Sup External power suppliers
Solar Solar Generation (PV) units
ST Energy Storage Systems (ESSs)
Ev Electric vehicles(Ev)
Ms Electricity Markets
LD Load
SE Scenario

The associate editor coordinating the review of this manuscript and
approving it for publication was Sheng Huang.

T Total number of periods
t Time slot
O.C Operation cost of aggregator (m.u.)
Minimize_f Minimize Objective function (m.u.)
Income Income of aggregator (m.u.)
NB Total buses
NSE Total Scenarios
NP Total Population
Niteration Total Iterations
NDiG Total DG units
Ni
DiG Total connected DG units to bus i

NSolar Total PV units
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Ni
Solar Total connected PV units to bus i

NLD Total loads
Ni
LD Total loads LD connected to bus i

NK Total lines
NST Total storage units
Ni
ST Total storage units ST connected to

bus i
NSup Total external power suppliers
Ni
Sup Total connected Sup connected to

bus i
NEv Total electric vehicles Evs
Ni
Ev Total electric vehicles connected to

bus i
ηCha(Ev) Charge mode Grid-to-Vehicle(G2V)

efficiency of Ev
ηDis(Ev) Discharge mode Vehicle-to-

Grid(V2G) efficiency of Ev
ηCha(ST) Storage charge efficiency of ST in

charge mode
ηDis(ST) Storage discharge efficiency of ST in

discharge mode
CDiG(DiG,t) Cost of DiG unit generation in time

slot t (m.u./kWh)
CSup(Sup,t) Cost of Sup generation in time slot t

(m.u./kWh)
CSolar(Solar,t) Cost of Solar generation in time slot

t (m.u./kWh)
CDis(ST,t) Discharge cost of ST in time slot t

(m.u./kWh)
CDis(Ev,t) Discharge cost of Ev in time slot t

(m.u./kWh)
CGC(DiG,t) Curtail generation power cost of DiG

unit in time slot t (m.u./kWh)
CNSLoad(LD,t) Non-supplied cost of LD load in time

slot t (m.u./kWh)
CCutDR(LD,t) Demand response curtailment cost

of LD load in time slot t (m.u./kWh)
PiCha(ST,t,SE) Real power storage charge of ST at

bus i in time slot t for SE scenario
(kW)

PiCha(Ev,t,SE) Real power storage charge of Ev at
bus i in time slot t for SE scenario
(kW)

PChaLimit(ST,t,SE) Maximum real power charge limit of
ST in time slot t for SE scenari(kW)

PChaLimit(Ev,t,SE) Maximum real power charge limit of
Ev in time slot t for SE scenario (kW)

PCutLD(LD,t,SE) Demand response real power curtail-
ment of load LD in time slot t for SE
scenario (kW)

PiCutLD(LD,t,SE) Demand response real power curtail-
ment of load LD at bus i in time slot
t for SE scenario (kW)

PDis(ST,t,SE) Real power discharge of ST in time
slot t for SE scenario (kW)

PiDis(ST,t,SE) Real power discharge of ST at bus i
in time slot t for SE scenario (kW)

PDis(Ev,t,SE) Real power discharge of Ev in time
slot t for SE scenario (kW)

PiDis(Ev,t,SE) Real power discharge of Ev at bus i
in time slot t for SE scenario (kW)

PDisLimit(ST,t,SE) Maximum real power discharge
limit of ST in time slot t for SE
scenario (kW)

PDisLimit(Ev,t,SE) Maximum real power discharge
limit of Ev in time slot t for SE
scenario (kW)

PDiG(DiG,t) Generation of real power by DiG
unit in time slot t (kW)

PiDiG(DiG,t) Generation of real power by DiG
unit at bus i in time slot t (kW)

PDi(t) Demand of real power at bus i in slot
t (kW)

PDiGMax(DiG,t) Maximum generation of real power
by DiG unit in time slot t (kW)

PDiGMin(DiG,t) Minimum generation of real power
by DiG unit in time slot t (kW)

PGC(DiG,t,SE) Generation curtailment power by
DiG unit in time slot t for SE sce-
nario (kW)

PiGC(DiG,t,SE) Generation curtailment power by
DiG unit at bus in time slot t for SE
scenario (kW)

PGi(t) Generation of real power at bus i in
time slot t (kW)

PiLoad(LD,t,SE) Load LD demand of real power at
bus i in time slot t for SE scenario
(kW)

PMaxCutDR(LD,t) Maximum DR curtailment of load
LD in time slot t (kW)

PNSLoad(LD,t) Non-supplied demand of real power
for load LD in time slot t (kW)

PiNSLoad(LD,t,SE) Non-supplied demand of real power
for load LD at bus i in time slot t for
SE scenario(kW)

PSell(Ms,t) Real power sell to market Ms in time
slot t (kW)

PiSell(Ms,t,SE) Real power sell to market Ms at bus
i in time slot t for SE scenario (kW)

PSup(Sup,t) Generation of real power by Sup in
time slot t (kW)

PiSup(Sup,t) Generation of real power by Sup at
bus i in time slot t (kW)

PSup_MaxLimit(Sup,t) Maximum generation limit of real
power of external supplier Sup in
time slot t (kW)

QSup_MaxLimit(Sup,t) Maximum generation limit of reac-
tive power of external supplier Sup
in time slot t (kVAr)

Qi
DiG(DiG,t) Generation of reactive power by DG

unit at bus i in time slot t (kVAr)
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QDi(t) Demand of reactive power at bus i in
slot t (kVAr)

QDiGMax(DiG,t) Maximum generation of reactive
power by DG unit in time slot t
(kVAr)

QDiGMin(DiG,t) Minimum generation of reactive
power by DG unit in time slot t
(kVAr)

QGi(t) Reactive power generation at bus i in
slot t(kVAr)

Qi
Load(LD,t,SE) Demand of reactive power of load

LD at bus i in time slot t for SE
scenario(kVAr)

Qi
NSLoad(LD,t,SE) Non-supplied demand of reactive

power for load LD at bus i in time
slot t for SE scenario(kVAr)

Qi
Sup(Sup,t) Reactive power generation of the

external supplier Sup at bus i in time
slot t (kVAr)

Apmax
Lk Maximum apparent power flow per-

missible in line k connecting bus i
and j (kVA)

EBatCap(ST) Battery capacity of ST (kWh)
EBatCap(Ev) Battery capacity of Ev (kWh)
EMinCha(ST,t,SE) Guaranteed minimum stored energy

in storage ST for SE scenario (kWh)
EMinCha(Ev,t,SE) Guaranteed minimum stored energy

in Ev for SE scenario at the end of
time slot t (kWh)

EStored(ST,t,SE) Energy stored in ST for SE scenario
at the end of time slot t (kWh)

EStored(Ev,t,SE) Energy stored in Ev for SE scenario
at the end of time slot t (kWh)

ETrip(Ev,t,SE) Energy consumption during a tour of
the electric vehicle Ev in slot t for SE
scenario (kWh)

θij(t,SE) Voltage angle between bus i and j in
time slot t for SE scenario (rad)

θ
max
i Maximum allowable angle of volt-

age at bus i in (rad)
θmin
i Minimum allowable angle of voltage

at bus i (rad)
Bij In the admittance matrix, the imagi-

nary part of the element corresponds
to row i and column j(S)

Gii In admittance matrix,the real part of
the diagonal element corresponding
to row i (S)

Gij In admittance matrix,the real part of
the element corresponding to row i
and column j (S)

Li Line set connected to the bus i
Ui(t,SE) Voltage phasor at bus i in time slot t

for scenario SE (V)
Uj(t,SE) Voltage phasor at bus j in time slot t

for scenario SE (V)

Ui(t,SE) Voltage magnitude at bus i in time
slot t for scenario SE (V)

Uj(t,SE) Voltage magnitude at bus j in time
slot t for scenario SE (V)

Umax
i Maximum voltage limit at bus i (V)

Umin
i Minimum voltage limit at bus i (V)

XCha(ST,t,SE) Storage unit ST binary variable asso-
ciated with power charge in time slot
t for SE scenario

XCha(Ev,t,SE) Electric vehicle Ev binary variable
associated with power charge in time
slot t for SE scenario

XCutDR(LD,t,SE) DR curtailment binary variable of
Load LD in time slot t for SE sce-
nario

XDis(ST,t,SE) Storage unit ST binary variable asso-
ciated with power discharge in time
slot t for SE scenario

XDis(Ev,t,SE) Electric vehicle Ev binary variable
associated with power discharge in
time slot t for SE scenario

XDiG(DiG,t,SE) Conventional DG unit DiG binary
variable related to connected or dis-
connected in time slot t for SE sce-
nario

XSolar(Solar,t,SE) Solar binary variable related to con-
nected or disconnected in time slot t
for SE scenario

Adij Series admittance phasor of line that
connect bus i and j (S)

Adsh_i Shunt admittance phasor of line that
connected to bus i (S)

Adsh_j Shunt admittance phasor of line that
connected to bus j (S)

I. INTRODUCTION
In a microgrid environment, the increasing penetration of
Distributed Energy Resources (DERs), including renewable
resources such as photovoltaic, V2G (Vehicle to Grid),
Energy Storage Systems (ESSs), Demand Response pro-
grams (DR) and the electricity market endanger the operation
of the distribution networks due to its excessive fluctuating
nature. Consequently, in a real-world microgrid situation, it is
important that energy aggregators address the issues aris-
ing from uncertainty. However, energy aggregators require
powerful models to deal with the growing variety of energy
resources and their uncertainty. When essential decisions
are to be taken a day in advance to maximize income by
minimizing operating expenses, day-to-day energy planning
is a major problem in the management of energy resources.
However, due to the large number of energy resources and
their natural uncertainties, the problem of energy planning
becomes very difficult.

The difficulty of DERs management considered in this
paper is a massive integrative problem aimed at maximizing
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aggregator revenue by minimizing the total operating cost of
DERs by taking into account the uncertainties related to solar
generation, load demand, electric vehicle travel scheduling
and market price variations. The integration of the uncertain-
ties transforms the ERM problem into a Mix-integer non-
linear problem (MINLP) [1]. This type of problem is very
difficult to solve using a deterministic technique, because it
may take several hours to determine the optimal scheduling
for these huge dimensions and complex problems. In evo-
lutionary computing [2], uncertainties can be classified into
four groups, namely fitness estimation, noise, time-varying
fitness functions and robustness. In this paper, the ERM
problem relates to the robustness group in which the control
variables and parameters are subject to change after each
optimal solution has been determined. Therefore, in solving
an ERM problem with uncertainties, the energy aggregator
aims to find solutions that are near optimal in terms of oper-
ating costs and as low as sensitive to parameter variations.
In other words, the solution obtained should be close to the
optimum and robust for parameter variations. In view of the
above-mentioned uncertainty, the ERM problem has become
very difficult and complex. Recently, many metaheuristic
algorithms have been widely used to solve real-world opti-
mization problems with uncertainty [3].

Some of the most popular metaheuristic algorithms
such as Particle Swarm Optimization (PSO), Evolution-
ary Particle Swarm Optimization (EPSO), Cuckoo Search
(CS), Flower Pollination (FP), Simulated Annealing (SA),
Differential Evolution (DE), Tabu Search (TS), and Genetic
Algorithm (GA) have been extensively used to solve power
system optimization problems and they give better results
than deterministic methods like MILP and MINLP. Due to
the economic environment of microgrid operation, the ERM
problem of the power network has gain much popularity
in recent decades. To solve this problem, many modified
and hybrid versions of metaheuristic algorithms have been
implemented in many literatures. Ref. [4] presents the Hybrid
Differential Search Algorithm (HDSA) andQuantum Particle
Swarm Optimization (QPSO) to solve the ERM problem,
this is the hybrid version of Differential Search (DS) and
PSO, respectively. The results showed that HDSA performs
better than QPSO, DS and PSO in terms of profit and exe-
cution time. The Multi- Objective Particle Swarm Optimiza-
tion (MOPSO) is used to address the ERM problem with the
aim of maximizing the profit of the aggregator and minimiz-
ing CO2 emissions from conventional DG units [5]. In [6]
the hybrid version of Ant Colony Optimization (ACO) and
Simulated Annealing (SA) called Hybrid Simulated Anneal-
ing (HSA) approach was used to handle ERM by considering
the excess use of EVs. The solution given by HSA was better
than the SA and faster than the MINLP. Signaled Particle
Swarm Optimization (SiPSO) was proposed in [7] to handle
shortterm energy resource planning and found a very good
solution in terms of low operating costs compared to PSO
and its variant called NPSO, but higher than MINLP. The
performance of all of these metaheuristic methods could be

improved by tuning the different parameters of each method
and hybridizing two or more good algorithms to find the
near-optimal solution and reduce the convergence time of the
optimization methods [8].

Thus, the literature review of latest papers reveals the fact
that even though excellent advancements have been carried
out in the performance of the aforementioned algorithms,
finding of ‘‘Sub-optimum’’ solutions are still a great chal-
lenge in optimization field. So to tackle this challenge a
novel, robust and efficient hybrid optimization algorithm
entitled ‘‘Enhanced Velocity Differential Evolutionary Par-
ticle Swarm Optimization’’ (EVDEPSO) is proposed and its
superiority over the latest state of art optimization algorithms
are established for getting better sub-optimum solutions.

The EVDEPSO algorithm is the modified version of
the Differential Evolutionary Particle Swarm Optimization
(DEEPSO) [9]. The main purpose of this paper is to assess
the usefulness and effectiveness of the EVDEPSO algo-
rithm for the day ahead ERM problem with sourcere-
lated uncertainties. For this purpose, EVDEPSO and the
recently developed metaheuristic techniques such as Variable
Neighborhood Search(VNS) [10], DEEPSO and techniques
presented in the CEC 2018 competition [11] 5 such as the
Chaotic Evolutionary Particle Swarm Optimization Algo-
rithm (CEPSO), Particle Swarm Optimization with Global
Best Perturbation(PSO-GBP), ImprovedChaotic Differential
Evolutionary Particle Swarm Optimization (IC-DEEPSO),
Unified PSO (UPSO), Improved Differential Evolution (IDE)
and Firefly algorithms are applied to solve such complex
and non-linear optimization problem. These algorithms are
applied to a case study of a 25-bus microgrid system with
100 different scenarios generated by Monte Carlo Simula-
tion (MCS) techniques with high penetration of photovoltaic
generation, DR program for 90 residential loads, 36 electric
vehicles, 2 energy storage systems and 2 electricity mar-
kets (wholesale market, local market). Figure 1 shows the
Overview of Aggregator Energy Resource Management.

This paper contains the following sections after intro-
ductory part: Part II, Day-ahead Energy Resource Man-
agement (ERM) With Uncertain Environments. Part III.
EVDEPSO algorithm. Part IV. Case study and results Part V.
Conclusion and Future Work.

II. DAY-AHEAD ENERGY RESOURCE MANAGEMENT
(ERM) WITH UNCERTAIN ENVIRONMENTS
This section is divided into four following parts: A) Prob-
lem formulation, B) Network constraints C) Unpredictability
modeling andD) Fitness function and solution representation.

A. PROBLEM FORMULATION
The proposed problem is classified as a problem of
mix-integer non-linear programming (MINLP) because of the
existence of consistent, distinct and binary variables. The aim
of the energy aggregator is to reduce operating costs andmax-
imize the revenue. Operating costs (O.C) are associated with
the generation costs of all types of DG units managed by the
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FIGURE 1. Overview of aggregator energy resource management.

aggregator and represented by equation (1) consider the costs
of conventional DGs, external suppliers, non-dispatchable
DGs (i.e. Solar), ESS, EV discharge, penalization of excess
generation of DG units, penalization of non-supplied demand
and DR through direct load control programs (load curtail-
ment) [4].

Equation (2) represents the income obtained from market
transactions [11], where bids and offers are permitted in two
markets with unique features, namely local and wholesale
markets. The aim of the aggregator is to reduce operating
costs (O.C) while maximizing the income [21]. So objective
function becomesminimization to get themaximumprofit [4]
as shown in equation (3).

O.C

=

T∑
t=1

NDiG∑
DiG=1

CDiG(DiG,t)×PDiG(DiG,t)

+

T∑
t=1

NSup∑
Sup=1

CSup(Sup,t)×PSup(Sup,t)+
NSE∑
SE=1

T∑
t=1

×





NSolar∑
Solar=1

CSolar(Solar,t)×PSolar(Solar,t,SE)

+

NST∑
ST=1

CDis(ST,t)×PDis(ST,t,SE)

+

NEv∑
Ev=1

CDis(Ev,t)×PDis(Ev,t,SE)

+

NDiG∑
DiG=1

CGC(DiG,t)×PGC(DiG,t,SE)

+

NLD∑
LD=1

CNSLoad(LD,t)×PNSLoad(LD,t,SE)

+

NLD∑
LD=1

CCutDR(LD,t)×PCutDR(LD,t,SE)



• π (SE)


(1)

Income

=

NSE∑
SE=1

T∑
t=1

( NMs∑
Ms=1

(PBuy(Ms,t)−PSell(Ms,t)).MP(Ms,t,SE)

)
•π (SE) (2)

Minimize_f = O.Cd+1
total − Incomed+1total (3)

B. NETWORK CONSTRAINTS
Objective function given by equation (3) has the following
network constraints from equations (4-29) taken from [1].
Power balance of network active and reactive power, with

power loss at bus i in period t for the SE scenario are given
by equations (4) and (5):

Pgi(t,SE)−Pdi(t,SE)
= Gii×U2

i(t,SE)

+Ui(t,SE)×
∑
j∈Li

Uj(t,SE)( Gij cos(θij(t,SE))

+Bij sin(θij(t,SE)))

Pgi(t,SE)

=

Ni
DiG∑

DiG=1

(PiDiG(DiG,t) − PiGC(DiG,t))

+

Ni
Solar∑

Solar=1

PiSolar(Solar,t,SE) +

Ni
Sup∑

Sup=1

PiSup(Sup,t)

+

Ni
Ev∑

Ev=1

PiDis(Ev,t,SE) +
Ni
ST∑

ST=1

(PiDis(ST,t,SE)

+

Ni
Ms∑

Ms=1

PiBuy(Ms,t,SE))

Pdi(t,SE)

=

Ni
LD∑

LD=1

(PiLoad(LD,t,SE)−P
i
NSLoad(LD,t,SE)

−PiCutDR(LD,t,SE))

VOLUME 8, 2020 27005



D. Dabhi, K. Pandya: EVDEPSO for Optimal Scheduling of a DERs With Uncertain Scenarios

+

Ni
Ev∑

Ev=1

PiCha(Ev,t,SE) +
Ni
ST∑

ST=1

PiCha(ST,t,SE)

+

Ni
Ms∑

Ms=1

PiSell(Ms,t,SE)) (4)

Qgi(t,SE)−Qdi(t,SE)

= Ui(t,SE)×
∑
j∈LDi

Uj(t,SE)( Gij sin(θij(t,SE))

−Bij cos(θij(t,SE)))− Bii×U2
i(t,SE)

Qgi(t,SE)

=

Ni
DiG∑

DiG=1

Qi
DiG(DiG,t) +

Ni
Sup∑

Sup=1

Qi
Sup(Sup,t)

Qdi(t,SE)

=

Ni
LD∑

LD=1

Qi
Load(LD,t,SE)−Q

i
NSLoad(LD,t,SE)

(5)

Here, θij(t,SE) = θi(t,SE)− θj(t,SE).
Voltage and angle limit at bus i in time slot t are given by

equations (6) and (7):

Umin
i ≤ Ui(t,SE) ≤ Umax

i (6)

θ
min
i ≤ θi(t) ≤ θ

max
i ; (7)

Thermal limit of line k in period t is given by equation (8)∣∣Ui(t,SE) × [Adij × (Ui(t,SE) − Uj(t,SE))

+Adsh_i × Ui(t,SE)]∗
∣∣ ≤ Apmax

Lk∣∣Uj(t,SE) × [Adij × (Uj(t,SE) − Ui(t,SE))

+Adsh_j × Uj(t,SE)]∗
∣∣ ≤ Apmax

Lk

∀t ∈ {1, . . . ,T }; i 6= j; ∀SE ∈ {1, . . . ,NSE}

∀i, j ∈ {1, . . . ,NB} (8)

Conventional types of distributed generation the active and
reactive generation limit in time slot t for the DiG unit are
formulated by equations (9) and (10):

PDiGMin(DiG,t) × XDiG(DiG,t) ≤ PDiG(DiG,t) ≤ PDiGMax(DiG,t)

×XDiG(DiG,t,SE) (9)

QDiGMin(DiG,t) × XDiG(DiG,t) ≤ QDiG(DiG,t) ≤ QDiGMax(DiG,t)

×XDiG(DiG,t,SE)

∀t ∈ {1, . . . ,T}; ∀DiG ∈ {1, . . . ,NDiG} (10)

Maximum active and reactive power generation limit of exter-
nal supplier Sup in time slot t are given by equations (11) and
(12):

PSup(Sup,t) ≤ PSup_MaxLimit(Sup,t)

QSup(Sup,t) ≤ QSup_MaxLimit(Sup,t) (11)

∀t ∈ {1, . . . ,T }; ∀Sup ∈ {1, . . . ,NSup} (12)

1) ELECTRIC VEHICLES CONSTRAINTS
In the proposed model, Ev are regarded as a virtual battery
bank. Battery balance for each Ev for scenario SE in time
slot t is given by equation (13):

EStored(Ev,t,SE) = EStored(V,t-1,SE)−ETrip(Ev,t,SE)

+ (ηCha(Ev)×PCha(Ev,t,SE)−
1

ηDis(Ev)

×PDis(Ev,t,SE))×1t (13)

Maximum and minimum energy stored in the Ev for the
scenario SE in time slot t is given by equation (14):

EMinCha(Ev,t,SE) ≤ EStored(Ev,t,SE) ≤ EBatCap(Ev) (14)

Equation (15) states that, charging and discharging processes
in Ev cannot be simultaneous in time slot t:

XCha_Ev(Ev,t,SE)+XDis_Ev(Ev,t,SE) ≤ 1 (15)

Charge and Discharge limit of Ev in time slot t for scenario
SE is represented by equations (16) and (17):

PCha(Ev,t,SE)

≤ PChaLimit(Ev,t,SE)×XCha_Ev(Ev,t,SE)

ηCha(Ev)×PCha(Ev,t,SE)×1t

≤ EBatCap(Ev)−EStored(Ev,t-1,SE) (16)

PDis(Ev,t,SE)

≤ PDisLimit(Ev,t,SE)×XDis_Ev(Ev,t,SE)

1
ηDis(Ev)

×PDis(Ev,t,SE)×1t

≤ EStored(Ev,t,SE) (17)

∀t ∈ {1, . . . ,T}; ∀Ev ∈ {1, . . . ,NEv}; ∀SE ∈ {1, . . . ,NSE}

XCha_Ev(Ev,t,SE),XDis_Ev(Ev,t,SE) ∈ {0, 1} ;1t = 1;

2) ENERGY STORAGE CONSTRAINTS
Battery balance equation (18) of Energy storage unit ST in
time slot t for scenario SE is:

EStored(ST,t,SE) = EStored(ST,t-1,SE)+(ηCha(ST)×PCha(ST,t,SE)

−
1

ηDis(ST)
× PDis(ST,t,SE))×1t

t = 1→ EStored(ST,t-1,SE) = EInitial(ST) (18)

Maximum and minimum energy storage limit in Energy stor-
age unit ST in time slot t is given by equation (19):

EMinCha(ST,t,SE) ≤ EStored(ST,t,SE) ≤ EBatCap(ST) (19)

Equation (20) states that, charge and discharge processes
in energy storage unit ST cannot be simultaneous in time
slot t:

XCha_ST(ST,t,SE)+XDis_ST(ST,t,SE) ≤ 1 (20)
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Charge and Discharge limit of Energy Storage unit ST in time
slot t is given by equations (21) and (22):

PCha(ST,t,SE)
≤ PChaLimit(ST,t,SE)×XCha_ST(ST,t,SE)

ηCha(ST)×PCha(ST,t,SE)×1t

≤ EBatCap(ST)−EStored(ST,t-1,SE) (21)

PDis(ST,t,SE)
≤ PDisLimit(ST,t,SE)×XDis_ST(ST,t,SE)

1
ηDis(ST)

×PDis(ST,t,SE)×1t

≤ EStored(ST,t,SE) (22)

∀t ∈ {1, . . . ,T}; ∀ST ∈ {1, . . . ,NST}; ∀SE ∈ {1, . . . ,NSE}

XCha_ST(ST,t,SE), XDis_ST(ST,t,SE) ∈ {0, 1} ; 1t = 1;

3) DEMAND RESPONSE CONSTRAINTS
Equation (23) formulates a Demand response load model.
The maximum amount of load that can be curtailed by each
load LD in each time slot t in the scenario SE is formulated
as:

PCutDR(LD,t,SE) ≤ PMaxCutDR(LD,t)×XCutDR(LD,t,SE)

t ∈ {1, . . . ,T}; ∀LD ∈ {1, . . . ,NLD}

∀SE ∈ {1, . . . ,NSE}; XCutDR(LD,t,SE) ∈ {0, 1} (23)

Equation (24) states that, the non-supplied load cannot be
more than the difference between forecasted load and demand
response curtailed load in scenario SE in each time slot t:

PiNSLoad(LD,t,SE) ≤ PiLoad(LD,t,SE) − PiCutDR(LD,t,SE)
∀t ∈ {1, . . . ,T}; ∀i ∈ {1, . . . ,NB}; ∀SE ∈ {1, . . . ,NSE}

∀LD ∈ {1, . . . ,NLD} (24)

4) RESTRICTIONS OF THE ELECTRICITY MARKET
Equations (25) and (26) state that, themarket offers for selling
and buying the electricity respectively are constrained by
maximum and minimum market offer:

PMktOfferMin(Ms,t) × XMktSell(Ms,t,SE)

≤ PSell(Ms,t) ≤ PMktOfferMax(Ms,t)×XMktSell(Ms,t,SE) (25)

PMktBuyMin(Ms,t) × XMktBuy(Ms,t,SE)

≤ PBuy(Ms,t) ≤ PMktBuyMax(Ms,t)×XMktBuy(Ms,t,SE)

∀t∈{1, . . . ,T}; ∀Ms∈{1, . . . ,NMs};

∀SE∈{1, . . . ,NSE} (26)

Equation (27) represents that, at each time slot t of the market,
either buying or selling bids are allowed:

XMktBuy(M,t,SE)+XMktSell(M,t,SE) ≤ 1 (27)

5) PV CURTAILMENT POWER LIMITATION
In some scenarios, generation is more than the load
demand. At that time, we must curtail the generation of
non-dispatchable DG units such as solar to strike a balance

between generation and load. In this case, the solar generation
curtailment must be lower than the predicted solar generation
value as per equation (28):

PGC(DiG,t,SE) ≤ PSolarScenario(Solar,t, SE) (28)

In each time t, upstream solar power limits can be articulated
as equations (29):

PSolar(Solar,t)
≤ PSolarMAX(Solar,t)×XSolar(Solar,t,SE)

∀t ∈ {1, . . . ,T}; ∀Solar ∈ {1, . . . ,NSolar};

∀SE ∈ {1, . . . ,NSE} (29)

C. UNPREDICTABILITY MODELING
The energy aggregator relies on forecast load demand,
weather conditions (to forecast solar generation), electricity
market prices and electric vehicle trips to perform the day
ahead ERM. The assumption of a perfect prediction could
have a disastrous corollary for the grid operation if the results
do not meet the expected forecast.
To deal with this problem, we presume that a correct

set of scenarios that imitate actual conditions can be pro-
duced based on trends or past experiences with forecasts
and associated errors. The uncertainties considered in this
work are: (I) solar power generation, (ii) EV scheduling,
(iii) load demand profiles and (iv) local and wholesale market
prices [11].
The Monte Carlo Simulation (MCS) technique is applied

to scenario generations and reduction [12]. In MCS, the prob-
ability distribution function (PDF) is used to produce sce-
narios from historical data. Equation (30) is used to generate
scenarios.

ySE (t) = ypredict (t)+ yerror,SE (t) (30)

where, yerror,SE (t) is a normal distribution function with aver-
age zero and standard deviation σ , ypredict (t) is predicted
value of y variable at t time and ySE (t) is final value of y
variable for scenario SE at t time. In addition, the scenario
reduction method is used to exempt low probability scenarios
and merge with the high probability scenario in terms of
static metrics. Detailed information about this technique is
available in [12].
In this problem, 5000 scenarios are generated for solar

power generation, market price deviations and load demand.
Errors of 15%, 20% and 10% are considered for solar power
generation, market price deviations and load demand respec-
tively. The scenarios are also reduced by 100 using the MCS
reduction method. In MCS technique, all forecast errors of
the uncertain inputs are signified by the normal distribution
functions. To produce uncertainty related to electric vehicle
trips, the tools described in ref. [13] is used to randomly
generate 100 different scenarios.

D. FITNESS FUNCTION AND SOLUTION REPRESENTATION
The fitness function F presented by equation (31) is the
sum of objective function f and the summation of the
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penalties [11]. Penalties due to the constrains violation found
during assessment of the solutions:

F(X ) = f + ρ
Nco∑
i=1

max[0, gi] (31)

where x is the solution of problem, it is presented in vector
form. Here, gi indicate the value of the ith constraint and ρ is
the penalty coefficient, Nco is number of constraints.

In this case, we consider uncertainty in some solution
parameters of X , which changes the fitness function value
according to the different scenarios generated by MCS. The
fitness function [11] value is modified by equation (32):

FSE (X ) = f (X + δSE ) (32)

where, δSE is the deviation of parameters and variable in
scenario SE, FSE (X ) is the fitness value for the scenario SE.
The mean value and the standard deviation [11] of fitness
function for considered scenarios SE can be evaluated by
equations (33) and (34) respectively:

Mean_FSE (X ) =
1
NSE

NSE∑
SE

f (X + δSE ) (33)

Std_FSE (X )=

√√√√ 1
NSE

NSE∑
SE=1

[f (X+δSE )−Mean_FSE (X )]2

(34)

The mean and standard deviation values of fitness func-
tion obtained from equations (33) and (34) rely on consid-
ered scenarios in the fitness function evaluation. Therefore,
the number of function evaluations during the execution of
the metaheuristic algorithms are based on the size of the
population and the number of scenarios considered.

Figure 2 shows a schematic representation of the Internal
functioning of fitness function. Here, the fitness function
receives the input arguments as an array with the solutions,
the information of the case study, some additional parame-
ters, and the number of scenarios to evaluate (a maximum
of 100 scenarios is considered). The internal operation of
the fitness function, which randomly selects the number of
scenarios NSE = 100 from the total number of available
scenarios.

The number of functions evaluations are calculated by the
equation (35) as follows:

NFEs = NP∗NSE∗Niteration (35)

The solution structure is an important part of metaheuris-
tics to represent a solution. In this work, the solution demon-
stration follows the vector representation shown in Figure 3.
Each solution is encoded as a vector with six group of vari-
ables contains total 142 different variables in each period t
of 1 hour, which are repeated sequentially for 24 hours.
Therefore, dimension of solution vector in 24 hours period
is 1∗3408. Detail information about the solution structure is
given in [11].

FIGURE 2. Internal functioning of fitness function.

FIGURE 3. Solution representation [11].

III. ENHANCED VELOCITY DIFFERENTIAL EVOLUTIONARY
PARTICLE SWARM OPTIMIZATION (EVDEPSO)
ALGORITHM
Enhanced Velocity Differential Evolutionary Particle Swarm
Optimization (EVDEPSO) algorithm, which is an improved
version of Differential Evolutionary Particle Swarm Opti-
mization (DEEPSO). Where DEEPSO is the hybrid version
of PSO, EA and DE. Please refer ref. [9] for more details on
the DEEPSO algorithm.

In the EVDEPSO algorithm, the first step is to set the
strategic parameters and then initialize the position and veloc-
ity of the population by equations (36) and (37) respectively:

Xp,d = Xmin
d + (Xmax

d − Xmin
d ) (36)

Vp,d = Vmin
d + (Vmax

d − Vmin
d ) (37)

Initialize the position and velocity of the population by the
minimum and maximum limit of each particle variable and
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ensure that the solution vector is within the maximum and
minimum possible bound.

Where, Xp,d and Vp,d is the initial position and velocity of
the particle ‘p’ for dimension ‘d’. Here, p=1, 2. . . .,NP and
d=1, 2. . . , D. Where, ‘NP ’ is the size of population and ‘D’
is the dimension of the solution vector, After initialization of
the populations, evaluate the fitness of each particle by using
the equation (31) and find the global best particle Gbest .

W ∗(I ,C,G) = W(I ,C,G) + τN (0, 1) (38)

G∗best = Gbest (1+W ∗G) (39)

V new
p = Xp + Vp(1+W ∗I N [0, 1])

+PW ∗C (G
∗
best − Xp)

+ 2[1+ rand(0, 1)+ U (0, 1)] (40)

Equation (40) presents the new velocity V new
p of pth parti-

cle, which is the vector sum of current particle position, Xp
Enhanced Velocity, Cooperation and Stochastic Uni-random
Distribution (SUD). The detailed explanation about the equa-
tion (40) is give below.

A. CURRENT POSITION
By adding the current particle position Xp to the new velocity
V new
p , it boosts up the search process to find the nearly optimal

solution in a reasonable computational time. This term thus
helps to achieve the best results in a short period of time,
which is good for the day ahead ERM problem.

B. ENHANCED VELOCITY
This term called enhanced velocity Vp or mutated current
velocity due to the mutation of current velocity by mutated
inertia weight and normal distribution function N [0,1].
WI Enhanced velocity term helps in searching the local search
space to find the nearest optimal solution. Where, is the
inertia weight obtain from the random value between [0,1],
WI is the mutation of inertia weight obtained by using equa-
tion (38),Mutation rate (or learning parameter) τ , whichmust
be fixed externally.

C. COOPERATION
In this term, the current particle position Xp follows the
mutated current global best particle, G∗best which is obtained
from equation (39), where, Gbest is the current global best
particle among all particles, WG is the global weight obtain
from the random value between [0,1], W ∗G is the mutation of
global weight by using equation (38). The term ‘P’ called
Communication factor, which creates the communication
topology among the current particles to controls the passage
of information within the population. This will helpful for the
global exploration of search space to find the nearest optimal
solution. The tuned value of ‘P’ for this problem is set to 0.5.

D. STOCHASTIC UNI-RANDOM DISTRIBUTION (SUD)
It is generated by a uniform distribution function and a ran-
dom number between [0,1]. This term stochastically enlarges

the step length and changes the search direction towards the
near optimal solution.

New velocity V new
p found by equation (40) is the particle

step length to reach the optimal solution. The value of the step
length is neither too small nor large; otherwise, the solution
may stuck into local minima. Therefore, the metaheuristic
algorithm is designed in such a way that it gives the optimal
value and direction of the step length to achieve the near
optimal solution in short period of time. If the new velocity
obtained by equation (40) violates the boundary limit, then it
is modified using equation (41).

V new
p =

{
VMin
p +L.F(V

Max
p − VMin

p ) . . . if ..V new
p > VMax

p
VMin
p +L.F(V

Max
p − VMin

p ) . . . if ..V new
p < VMin

p

(41)

where, the limit factor (L.F) keeps the new velocity V new
p

away from the boundary limit.

Xnewp = D.F ∗
(
Xp + V new

p

)
(42)

After finding the optimal value of the new velocity,
V new
p the new position Xnewp of each particle ‘p’ is found

using equation (42). This equation is the modified version
of the conventional new position equation described in all
population-based algorithms. In this equation, the vector sum
of the current particle position Xp and new velocity mul-
tiplied by Deceleration Factor (D.F), which decelerates the
movement of particles and save them from trapping into the
local minima. Figure 4 illustrates the concept of EVDEPSO
movement rule.

FIGURE 4. Illustration of the EVDEPSO movement rule.

Figure 5 illustrates the concept of the EVDEPSO algorithm
in terms of flowchart for the optimal scheduling of the dis-
tributed energy resources with consideration of uncertainties.
The EVDEPSO algorithm considers the following steps:

Step 1: Set the strategic parameter of EVDEPSO and then
initialize the velocity and position of each particle using
equations (36) and (37).
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Start

Initialization: Set the strategic parameters of EVDEPSO, Initialize the position and velocity of of each particle using equations (36) and (37) respectively

Evaluate the fitness of each particle and update memory

Iteration=1

For each individual of population,Copy the current individual and update memory

Mutate the Weights of the copied population using Eq.(38)

rand(0,1) >local Search Probability?

Compute the new velocity and position of the current
population using Eqs.(40) and (42) Compute the new position of the current population

using local search

Compute the new velocity and position of the Copied population
using Eqs.(40) and (42)

Enforce the search space limits of the current and copied population

Evaluate the fitness of the current and copied population

Select the individual with the best fitness to be a
part of the new population of next iteration

Enforce the search space limits of the current population

Evaluate the fitness of the current population to
find the global best particle

Update Global best

Iteration= Iteration +1

Iteration <=Iter.max?

YES NO

End

NO

YES

Global exploration
Local exploitation

FIGURE 5. Flowchart of the EVDEPSO algorithm.

Step 2: Evaluate the fitness of each initialized particle using
the fitness function given by equation (31) to find the global
best particle, and then update the EVDEPSO memory with
the global best particle.

Step 3: Start the iterations. Copy the current position and
velocity of each particle and update memory by copied pop-
ulation and current global best particle.

Step 4: Randomly generate the number between [0, 1], if its
value is higher than the local search probability then go to step
5 for global exploration of search space, otherwise go to step
9 for local exploitation of search space.

Step 5:Global exploration-Compute the new velocity and
position of each particle using equations (40) and (42).

Step 6: Mutate the weights of the copied population using
equation (38) to alter it and then calculate the new velocity
and position of the copied population using equations (40)
and (42).

Step 7: Enforce the search space limits of the current and
copied population, if it violates the search space boundary.

Step 8: Evaluate the fitness of each current and copied
population to find the best particles and then generate a new
population for the next iteration. Then follow the step 12.

27010 VOLUME 8, 2020



D. Dabhi, K. Pandya: EVDEPSO for Optimal Scheduling of a DERs With Uncertain Scenarios

Step 9: Local exploitation- Compute the new position of
the current population using local search.

Step 10: Enforce the search space limits of the current
population if it violates the search space boundary.

Step 11: Evaluate the fitness of each current population to
find the global best particle.

Step 12: Update the EVDEPSOmemory by the global best
particle.

Step 13: Increase the iteration by one and then check the
threshold limit of the maximum number iterations.

Step 14: Terminate the EVDEPSO, if the threshold limit is
reached otherwise go to step 3.

IV. CASE STUDY AND RESULTS
The distribution network used in this case study is a real
network of a residential area in Portugal. The network com-
prises 24 underground lines connected to the main grid via
a MV / LV transformer at bus 1. The case study of 25-bus
microgrid comprises of 22 DGs (5 dispatchable units and
17 PV generators), 1 external supplier, 2 ESSs, 34 EVs and
90 loads with demand response capacities. In addition to
this, two markets (wholesale and local) are available for the
purchase and sale of energy. Figure 6 represents the single
line diagram of the 25-bus microgrid. Table 1 presents the
energy resources available in the considered network.

TABLE 1. Energy resources available in case study [15].

The proposed EVDEPSO algorithm had participated in
the IEEE Computational Intelligence Society sponsored
competition. The title of the competition was ‘‘Evolution-
ary Computation in Uncertain Environments: A Smart Grid
Application’’ which was held at IEEE World Congress on
Computational Intelligence conference 2018 (WCCI 2018),
at Rio de Janeiro, Brazil [11]. In this competition, EVDEPSO
had secured the second rank.

In this competition, the aim of the aggregator was to opti-
mally manage the available distributed energy resources of
the above described 25-bus microgrid in a day ahead context.

FIGURE 6. 25-Bus Microgrid system [14].

For that, EVDEPSO algorithmwas tested for solving the case
study with 100 different scenarios for different behaviors of
the PVs, load profiles, EVs trip profiles and the market price.
According to competition rule, to check the effectiveness and
robustness of the algorithms, all algorithms were executed
for 20 runs (trials) to solve the problem and in each run a
maximum of 50,000 function evaluations were permitted.

In order to confirm the competence of EVDEPSO solution
to the problem, the obtained results were compared with
the results of CEPSO, PSO-GBP, IC-DEEPSO, UPSO, IDE
and Firefly algorithms, which were submitted by the partic-
ipants of the competition at WCCI 2018. The results of all
the above-mentioned participated algorithms were extracted
from the database of competition [11]. It is also compared
with the Differential Evolutionary Particle Swarm Optimiza-
tion (DEEPSO) and Variable neighborhood search (VNS),
which were participated in IEEE PES WGMHO,2014 [16]
and 2017 [17] competitions respectively.

These approaches were tested on a computer with an Intel
Core(TM) i7- 2600 processor and 8 GB of RAM running on
Windows 7 Professional 64-bit operating system. MATLAB
R2016a was used to solve the EVDEPSO algorithm.

A. TUNING OF EVDEPSO PARAMETERS
The tuning of the optimization parameters is one of the
most important aspects when designing any metaheuristic
techniques. In EVDEPSO technique, experiments for the
tuning of the parameters to find the optimal values of all
strategic parameters were carried out. In this experiments
we fix the population size NP = 10 and No. of Iteration
(I_itermax) = 285 and changed the other strategic param-
eters like local search probability, Learning parameter (τ ),
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Deceleration Factor (D.F), Communication probability (P)
and Limit Factor (L.F) in their optimal ranges to find out the
A.R.I as shown in Table 2. For each change of any strategic
parameter, we set the optimal value for the remaining parame-
ters as per the given in Table 3. For example, for Local Search
Probability of 0.4, we set the other strategic parameters like
Learning parameter (τ ) = 0.7, Deceleration Factor (D.F) =
0.33, Communication probability (P) = 0.5 and Limit Factor
(L.F) = 0.25. From the results of these experiments given in
Table 2, we concluded that, the strategic parameters of the
EVDEPSO given in Table 3 gave the best results in terms of
A.R.I.

TABLE 2. Tuning the strategic parameters of EVDEPSO.

TABLE 3. The strategic parameters of the EVDEPSO.

After the sensitivity analysis (tuning) of the parameters,
the EVDEPSO algorithm is used to solve the optimal schedul-
ing of the DERs. The comparison of obtained results of all
tested algorithms in terms of average fitness and standard
deviation over 50,000 function evaluation in each run are pre-
sented in Table 4. Figure 7 shows the graphical representation
of average fitness of all tested algorithms over 20 runs, which
are given in Table 4.

Table 5 shows the Ranking Index (R.I) of all tested algo-
rithms, which is the sum of the average fitness function and
standard deviation of each run presented in Table 4 as per
the equation (43). Table 5 clearly shows that, compared to all
tested algorithms, R.I of EVDEPSO is the best in all 20 runs.
Figure 8 shows the graphical representation of R.I, which
are given in Table 5 for all tested algorithms over 20 runs.

Table 5. Shows that, the third run gives the best ranking
index of 18.79 out of 20 runs. It means that, for this run
EVDEPSO gives the best solution for the optimal scheduling
of the energy management problem in 20 runs. Solution of
the third run is presented in Appendix.

R.I = Mean_FSE (X )+ Std_FSE (X ) (43)

A.R.I =
1

NRuns

NRuns∑
i=1

(Mean_FSE (X )+ Std_FSE (X )) (44)

where, NRuns is the number of runs (trials) consider for the
calculation of A.R.I.

Table 6 presents the Average Ranking Index (A.R.I) of
the all tested algorithms and the deterministic approach,
i.e Mixed-Integer Non-linear Programming (MINLP) over
20 runs as per the equation (44). Table 6 also shows the
best and worst fitness function values as well as the mean
execution time over 20 runs for all tested methods.

Day ahead calculated total operating cost is the sum of the
fitness function calculated in each hour for 24-hour period.
As per Table 6, EVDEPSO algorithm achieved the lowest
A.R.I of 19.57 m.u., which is the sum of average fitness
of 17.67 m.u. and standard deviation of 1.90 m.u. Where,
MINLP, VNS and DEEPSO achieved the second, third and
fourth ranks with A.R.I of 20.74, 20.78 and 20.85 m.u
respectively.

It is clear from the comparison that, EVDEPSO gives the
best results among all tested eight metaheuristic techniques
and MINLP in terms of A.R.I. The best and worst value of
operation cost given by EVDEPSO is 13.20 and 22.99 m.u.
respectively. Best value of the operation cost attained by
EVDEPSO is also the lowest among all the tested algo-
rithms. However, the execution time is also an important
aspect to check the robustness of any algorithm. As per
Table 6 EVDEPSO, gets the sixth rank among all compared
algorithms in terms of mean execution time. The algorithms
UPSO, IC_DEEPO, IDE, and CEPSO get the first, second,
third, and fourth ranks respectively in terms of mean execu-
tion time but having very high value of A.R.I as compared
to EVDEPSO. VNS get the fifth rank with mean execution
time of 51.84 s, which is very nearer to the time taken by
EVDEPSO of 53.56 s. Mostly, the metaheuristic approaches,
as expected, present lower mean execution times than the
MINLP approach of 627 s, confirming their advantage in
tackling large-scale problems that require a decision in a short
time. Therefore, over all the EVDEPSO has found the best
solution in a competitive mean execution time, which shows
the computational efficiency and robustness of the proposed
technique.

The standard deviation presented in Table 6 shows the
deviation of the fitness function in 20 trials for 100 scenar-
ios. Here, high value of standard deviation indicates a high
variability of fitness function over the number of function
evaluation in each run.

Table 7 demonstrates the comparison of all tested meth-
ods in terms of no of iterations and mean execution
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TABLE 4. Comparison of algorithms in terms of average fitness and standard deviation for each run.

TABLE 5. Comparison of algorithm in terms of Ranking Index (R.I) in each run.

time. In competition, for effective comparison of algorithms,
the convergence criteria was set to 50,000 no of function
evaluation and scenario was set at 100 for all tested methods.
Different algorithms in this competition have chosen the

different number of population. Therefore, they have different
iterations according to the equation (35).

Nevertheless, a comparison based only on the ranking
index signifies a poor approach to compare the results. Aside
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FIGURE 7. Average fitness of all tested algorithms for each run.

TABLE 6. Comparison of algorithms over 20 runs.

from the fact that EVDEPSO’s ranking index value is lower
than the all tested methods, it is not possible to determine
whether this discrepancy is statistically significant.

B. STATISTICAL ANALYSIS
One-way ANOVA [18] is a statistical method used to check
whether the R.I of all tested algorithms for each run shows
any significant differences. In the context of this experiment,
a hypothesis experiment was used to validate the R.I equality.{

h0 : mi = mj, ∀i, j;
h1 : mi 6= mj, for_any_i

TABLE 7. Comparison in terms of Iterations and Mean execution time.

The null hypothesis h1, which assumes the ranking index
equality and the another hypothesis h1, suggests that there
is at least one ranking index that is not equal to the others.
If one-way ANOVA shows a significant result, it means that
at least one algorithm is distinct from another. The degree of
significance is set to 1% to check any statistical differences
between all tested methods. When the value of P in the
one-way ANOVA is below 0.01, then it can be said that there
is ample statistical proof to exclude null hypothesis, implying
that either one or more algorithms are significantly different
from other in terms of R.I, else, it is not possible to exclude the
null hypothesis. Although One-way ANOVA can only decide
whether the ranking index of all algorithms have significant
differences, it has no hint of which particular algorithm is
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FIGURE 8. Ranking Index of all tested algorithms for each run.

TABLE 8. One-way ANOVA for ranking index.

distinct from other. A pairwise comparison test, known as
Tukey’s HSD (honestly significant difference) test [19] was
used to classify which of the algorithms were significantly
distinct from EVDEPSO.

Table 8 shows the results of the one-way ANOVA test for
the R.I of all tested algorithms given in Table 5 for each
run. The P-value in one-way ANOVA is smaller than 0.01,
indicates a significant difference in one or more algorithms.

In Tukey HSD test, the critical value of the studentized
range statistic based on the k=9 treatments (algorithms) and
degrees of freedomDF=171 for within algorithms term given
in Table 8, for significance level P= 0.01 were selected. The
critical value Qcritical = 4.44 was obtained from the table
of studentized range distribution [20]. Then, the Tukey HSD
Q-statistic as per the equation (45) were calculated for all the
pairwise comparisons with EVDEPSO. The values ofQi,j are

TABLE 9. Tukey HSD Q statistic results.

given in Table 9.

Qi,j =

∣∣xi − xj∣∣√
(MS)
NRuns

(45)

where, i, j = 1, . . . k, i 6= j. xi − xj is the difference between
the Average Ranking Index (A.R.I) of the comparison pair
algorithms. MS =1.44 is the Mean Square for within algo-
rithms term from the Table 8.

Table 9 shows that, for all the pairwise treatments, Tukey
HSD Q statistic value Qi,j > Qcritical . It reveals that Rank-
ing Index of EVDEPSO is significantly different from all
tested eight algorithms in each run. So, it is cleared that,
EVDEPSO gives the best R.I and A.R.I as compared to all
tested algorithms and provides the competitive result for the
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TABLE 10. Optimal solution by EVDEPSO.

day ahead energy resource scheduling in a highly uncertain
environment.

V. CONCLUSION AND FUTURE WORK
In the Microgrid environment, the intensive use of uncertain
energy sources for different scenarios of PVs, ESSs, DR pro-
grams, V2G or G2V and Electricity Markets has significantly
increased the uncertainty and dimension of the day ahead
energy resource planning problem. This makes it extremely
important for the aggregator to use the appropriate approach
to achieve maximum profit.

This paper has introduced a new metaheuristic algorithm
called Enhanced Velocity Differential Evolutionary Parti-
cle Swarm Optimization to solve this problem. To check
the robustness and effectiveness of the EVDEPSO, it is
compared with other latest state of art algorithms, namely
VNS, DEEPSO, CEPSO, PSO-GBP, IC-DEEPSO, UPSO,
IDE, Firefly and MINLP. Comparative analysis shows that,
EVDEPSO gives low R.I and A.R.I as compared to the afore-
mentioned algorithms. It concludes that, with EVDEPSO,
aggregator gets more profits. Statistical analysis using
one-way ANOVA and Tukey HSD test also proves its effec-
tiveness by showing that EVDEPSO’s R.I is statistically sig-
nificantly different from the aforementioned algorithms. The

optimum results obtained by the proposedmethod shows that,
it is capable to handle the realistic problems involving large
number of variables.

In the future, EVDEPSOwill be applied to solve the highly
complex microgrid system with high penetration of uncertain
energy sources and large number of scenarios.

APPENDIX
See Table 10.
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