
Received December 25, 2019, accepted January 18, 2020, date of publication January 29, 2020, date of current version February 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2970266

Enhancing Real-Time and Determinacy for
Network-Level Schedule in Distributed
Mixed-Critical System
JUN LU , HUAGANG XIONG , FENG HE , AND RONGWEI WANG
School of Electronic and Information Engineering, Beihang University, Beijing 100191, China

Corresponding author: Feng He (robinleo@buaa.edu.cn)

ABSTRACT Time-triggered Ethernet (TTE) is designed as a deterministic real-time network for
mixed-critical real-time systems, such as industrial automation, aerospace, and aviation. Due to asynchrony
between tasks and the network in end systems (ESes), time-triggered (TT) messages have to spend uncertain
time in waiting for being scheduled after they are generated. The waiting time uncertainly increases end to
end delays for TT messages and will degrade the real-time and determinacy of TT messages sequentially.
The contribution of this paper is to present a new architecture SDTTE to minimize the end to end delays,
so as to enhance real-time and determinacy of TTmessages. More specifically, a frame-based network model
is built to describe distributed network resources. Under the network model, the end to end delay model with
asynchrony between tasks and the network is analyzed. To match the generated time with the triggered time
for TT messages, the triggered mechanism of the TT traffic in ESes is regarded as event strategy to detect the
generated time of TTmessages automatically. Based on this, the software defined TTE (SDTTE) is presented
to optimize TT schedule online in switches. Furthermore, a simplified algorithm based on Satisfiability
Modulo Theories (SMT) is proposed to satisfy real-time computing requirements. Finally, experiments with
three network sizes verify the availability of SDTTE and analyze its performance. The results show that end
to end delays for TT messages in SDTTE are decreased by about 95% compared with those in TTE. And
the delays for rate-constrained and best-effort messages in SDTTE are almost as well as those in TTE. The
processing time is less than 10s. In general, SDTTE provides a method to optimize end to end delays for TT
messages in TTE, thus SDTTE has more determinacy and real-time than TTE. Meanwhile, SDTTE makes
dynamic reconfiguration possible in practice.

INDEX TERMS End to end delay, determinacy, real-time, software defined network, time-triggered ethernet.

I. INTRODUCTION
A. TIME-TRIGGERED SCHEDULE TABLE
Network is a core technology of architectural concepts
tailored for deterministic operation, clean interfacing and
predictable resource sharing in integrated fault-tolerant sys-
tems with time-, mission- and safety-critical functions.
Time-triggered ethernet (TTE), as a deterministic network-
ing solution based on 802.3 Ethernet, adds time-triggered
(TT) mechanism to eliminate the transmission indetermi-
nacy of the TT traffic [1]–[5]. As prerequisite, a global TT
schedule table is required to avoid collision among different
time-triggered windows [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Merlino .

When an avionics system maintains its mission pattern,
the coresponding end systems (ESes) will also hold their
task states, the generated time of a TT message in ES is
usually a fixed value. A static global TT schedule table can
meet time-triggered communication requirements. However,
when an end system changes its task states or reconfigures,
the generated time of a TT message may be changed as
task is executed in different mission model. It needs some
static global TT schedule tables that correspond to different
missions. Whatever the state of the avionics system is, global
TT schedule tables are static. Focus on the static schedule
table design, various heuristic TT scheduling algorithms have
been researched widely to obtain a feasible TT schedule table
with different calculation complexity [7]–[9].

As the research further develops, Satisfiability Modulo
Theories (SMT) is presented to solve the satisfiability of logic

23720 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2086-0158
https://orcid.org/0000-0002-9980-5161
https://orcid.org/0000-0001-5128-3061
https://orcid.org/0000-0002-9895-4122
https://orcid.org/0000-0002-1469-7860

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

formulas [10], [11]. Naturally, TT schedule suits the SMT
problem well since periodic frames can be represented by
finite sets which repeat infinitely with a given period [12].
SMT was introduced into planning TT schedule to obtain a
feasible TT schedule table easily [13]–[15].

However, the queuing delay for a TT message in an end
system (ES) has not been considered into the conventional
end to end delay [16]–[18]. Indeed, a TT frame might have
to wait a full transmission period in the ES before being
scheduled out [19]. Namely, the TT traffic introduces another
delay from TT schedule due to inconsistency between its
generated time and its triggered time. The range of the delay is
from zero to a full transmission period. It might lead that the
rate-constrained (RC) traffic has better real-time and deter-
minacy than the TT traffic in some cases of low bandwidth
utilization.

B. RELATED WORK
Hard real-time systems add synchronous model of compu-
tation and communication (MOCC) support [20]. Namely,
a hard real-time system is a time-triggered architecture
(TTA), where tasks, partitions, and network are synchronous.
So the queuing delays in end systems usually are a constant
value (e.g. millisecond-level), thus the real-time of the TT
traffic has a dramatic decline. Meanwhile, in the case of
reconfiguration, TT messages have to wait different queuing
delays. It may lead a dramatic scheduling jitter for the TT
traffic. Many researchers tried to synthesize tasks and the net-
work to obtain an integrated TT schedule table [21]–[23]. The
generated time of TT messages is known in hard real-time
systems, the gap between the generated time and the triggered
time can be used as a constraint to optimize TT schedule table.

In hard real-time systems, all tasks must schedule dur-
ing the special time. Fraboul’s team thinks that the loosely
time-triggered architecture (L-TTA) is better in practice [20].
In addition to time-triggered, L-TTA can also realize some
uncertain scheduling mechanisms, such as multi-priority
in RC traffic. In L-TTA, TT-tasks continue being per-
formed by static task schedule to guarantee the periodicity
of TT-tasks. But system and network have their own syn-
chronization mechanism, respectively. So task-level time and
network-level time are inconsistent. It becomes difficult to
predict the accurate generated time based on network-level
time. It varies with task execution and can be different in each
startup of an ES. How to obtain the accurate generated time
of TT frames is the key problem on TT schedule table design.

Meanwhile, task-level time and network-level time are
dynamically changing. So time drift between the generated
time and the triggered time is also dynamical. It leads a
jitter for the TT traffic. There must be an online detection
mechanism to keep the TT traffic from a dramatic schedul-
ing jitter. To solve this problem, it needs a centralized con-
troller, mixed-critical network to support TT schedule online.
McKeown presented software defined network (SDN) to
dynamically adjust network configuration on campus net-
work [24]. It makes centralized control possible. Thereafter,

SDN has a considerable development in the mixed-critical
network. Sampigethaya analyzed opportunities and chal-
lenges of SDN in aviation qualitatively [25]. SDN has huge
advantages in the real-time network. Based on this, Heise ana-
lyzed performance evaluation of SDN hardware for avionic
networkswith avionics full duplex switched ethernet (AFDX)
through the experiment [26]. However, the flow tables in
switches are configured statically during the initial only,
the advantage of dynamic adjustment in SDN is not taken.
Further, Guck established network models in SDN-based
real-time network [27]. The combination of a routing pro-
cedure and a network model needs to be further analyzed.
Recently, Kumar introduced SDN to guarantee end-to-end
network delay, but they only consider the optimization prob-
lem for RC traffic [28]. How to realize dynamic TT schedule
by SDN is another critical problem to guarantee determinacy
online.

Scheduling algorithm determines the matching accuracy
between the tasks schedule and the network schedule. The
above SMT-based algorithms can obtain a feasible solution,
but they can not solve optimal problem. Craciunas presented
an optimized SMT-based methods to suit online scheduling
scenarios [29]. Thereafter, Craciunas transformed the task-
and network-level schedule co-synthesis into a Mixed Integer
Programming (MIP) problem with different objectives [12].
But he found that the MIP spends too much time to perform
calculating online, and the processing time of the optimized
SMT-based method is still too long. According to the pro-
cessing time and matching accuracy of the tasks schedule
and the network schedule, how to optimize the SMT-based
algorithm is the third problem to guarantee task-level real-
time and determinacy requirement.

C. CONTRIBUTIONS
To solve the above three problems, we propose the software
defined time-triggered ethernet (SDTTE) framework which
decreases the end to end delay and jitter for TT messages
caused by asynchrony between tasks and the network and
can increase real-time and determinacy of the TT traffic.
The primary contributions of this paper are summarized as
follows.

1) A triggered mechanism of the TT traffic, which makes
the generated time of each TT message indirectly
detectable, is presented to ease asynchrony between
tasks and the network in end systems (ESes). The
triggered mechanism of the TT traffic is regarded as
event-triggered type in the source ESes. Meanwhile,
the TT traffic keeps time-triggered mechanism among
switches.

2) A SDN-based TTE network architecture SDTTE is
proposed to guarantee online synchronization between
tasks and the network, when variable mission and
reconfiguration occur. The SDTTE can detect the gen-
erated time of each TT frame and plan TT schedule
table for all switches online.

VOLUME 8, 2020 23721

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

3) A simplified SMT-based algorithm is presented to
reduce the processing time of TT schedule with syn-
chronization between tasks and the network.

D. PAPER ORGANIZATION
The remainder of this paper is organized as follows.
Section 2 builds network model and the end to end delay
model. Subsequently, section 3 presents a new message
model by changing the triggered mechanism of the TT traffic
to make the generated time of TT frames detectable. And then
SDTTE is proposed to synchronize tasks with the network
online. Meanwhile, to reduce the processing time of TT
schedule, a simplified algorithm based on SMT is presented.
Section 4 verifies the availability of SDTTE by using a
simulation experiment based on OMNeT++. Subsequently,
the performance of messages in SDTTE is compared with
those in TTE by statistical experiments in middle and large
mesh network. Meanwhile, some phenomena in the experi-
ments are described and illustrated. Finally, some conclusions
are given in section 5.

II. SYSTEM MODEL
A. NETWORK MODEL
A TTEthernet network is a full duplex switched network with
time-triggered and event-triggered mechanism. A TTE net-
work can be formally modeled as a directed graph G(V ,E),
where the set of vertices V comprises the communication
nodes (switches and end-systems) and the edges E represent
the directional communication links between nodes, similar
to Zhao et al. [18]. For an edge ei,j with the bandwidth Cei,j
(e.g. 100 Mbit/s, 1 Gbit/s, etc.), it can be given by

ei,j = [vi, vj] ∈ E, vi, vj ∈ V (1)

We model time-triggered communication via the concept
of virtual link (VL), where a virtual link is a logical data-flow
path in the network from a sending node to one or several
receiving nodes. A typical virtual link vlp ∈ VL from a
producer task running on ES ve1 to a consumer task running
on ES ve2, routed through the switches v1, . . . , vn can be
described as follows, similar to Steiner [14].

vlp = [ve1, v1][v1, v1][v1, v2] · · · [vn, vn][vn, ve2]

= ee1,1e1,1e1,2 · · · en,nen,e2 (2)

where en,n denotes a frame delivering in a switch.
Let M denote the set of all messages in the system.

We model a message mp ∈ M associated with the virtual link
vlp by the tuple.

mp =< Pp,Lp, vlp > (3)

where Pp is the period and Lp is the size in bytes. mp,q can
represent the qth instance of the message mp.

mp,q =< Tp,q,Pp,Lp, vlp > (4)

where Tp,q is the generated time of the message instancemp,q
in an ES.

FIGURE 1. All possible delays of a frame between two nodes.

A frame f
ei,j
p,q uniquely corresponds to a message instance

mp,q scheduled on a particular link ei,j. Let F be the set of
all frames f

ei,j
p,q in the system. F

ei,j
p ∈ F denotes the ordered

set of all frames f
ei,j
p,q carried by virtual link vlp scheduled on

physical link ei,j and the sequence of all frames is decided by
frame offsets. Furthermore, we denote the first and last frame
in the set F

ei,j
p with f

ei,j
p,1 and f

ei,j
p,end , respectively.

A frame f
ei,j
p,q ∈ F

ei,j
p is defined by the following tuple,

similar to Steiner [14].

f
ei,j
p,q =< of

ei,j
p,q , pf

ei,j
p,q , lf

ei,j
p,q , cf

ei,j
p,q > (5)

where of
ei,j
p,q is the offset of the frame f

ei,j
p,q , pf

ei,j
p,q is its period,

lf
ei,j
p,q is the transmission time, and cf

ei,j
p,q is the bandwidth of

physical links ei,j. For a frame f
ei,j
p,q , it typically has

pf
ei,j
p,q = Pp (6)

lf
ei,j
p,q = Lp/cf

ei,j
p,q (7)

B. END TO END DELAY MODEL
A frame can be regard as the basic unit of an instance of a
message on a particular link. For a frame f

ei,j
p,q , all possible

delays can be illustrated in Fig. 1, where df CTp,q,ei,j denotes
computational delay in a ES processor or technical delay in
a switch processor, df SHp,q,ei,j denotes the transmission delay
between the processor and the sending buffer, df SWp,q,ei,j is
the queuing delay of the message waiting to be sent in the
sending buffer within a node, df SPHp,q,ei,j is the communica-
tion delay between the sending buffer and the physical port,
df Np,q,ei,j denotes the communication delay on physical link
ei,j, df RPHp,q,ei,j is the communication delay between the physical
port and the receiving buffer, df RWp,q,ei,j is the queuing delay of
the message waiting to be received in the receiving buffer
within a node, df RHp,q,ei,j denotes the communication delay
between the receiving buffer and the receiving processor,
df Tp,q,ei,j denotes transmitting delay. Usually, it can be given by

df Tp,q,ei,j=lf
ei,j
p,q (8)

23722 VOLUME 8, 2020

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

FIGURE 2. End to end delay description.

As the example in Fig. 1 shows, a frame delay is defined
as df

ei,j
p,q .

df
ei,j
p,q =

df
CT
p,q,ei,j , i = j∑

z∈Za
z, i 6= j (9)

where Za is the set of all the possible transmission delays
in Fig. 1.
A message instance is the set of frames, its delay can be

derived by delays of frames. Conventional end to end delay,
namely the network-level transmission delay, begins from
the time that a message is sent out from a sending buffer in
the corresponding ES and ends the time that the last bit is
received from the physical link by the destination node. Thus,
the conventional end to end delay for a message instance can
be given by

Dcmp,q =
∑
ei,j∈vlp

(df
ei,j
p,q + df CTp,q,ei,j)−

∑
z∈Zc

z (10)

where Zc = {df CTp,q,ee1,1 , df
SH
p,q,ee1,1 , df

SW
p,q,ee1,1 , df

RH
p,q,ee1,1 ,

df RWp,q,ee1,1} is the set of some transmission delays in Fig. 1.
The conventional end to end delay and the end to end delay

are shown in Fig. 2. For distributed mixed-critical system,
the task and network are asynchronous. The network schedule
table based on conventional end to end delay might keep a
time-triggered frame waiting for a full transmission period in
the end system. The end to end delay must contain the source
queuing delay. Meanwhile, the network schedule table is not
related to the destination queuing delay. So the end to end
delay should not include the destination queuing delays for
optimizing network schedule table.

In order to describe the entire delay for TT message in the
network scheduling, we define the end to end delay beginning
from the generated time point, which is simialr as Craciunas
and Oliver [12]. Thus the end to end delay for a message
instance is given by

Dcmp,q =
∑
ei,j∈vlp

(df
ei,j
p,q + df CTp,q,ei,j)−

∑
z∈Z

z (11)

where Z = {df CTp,q,ee1,1 , df
RH
p,q,ee1,1 , df

RW
p,q,ee1,1} is a set of some

transmission delays in Fig. 1.

The end to end delay for a message mp can be derived by
the max end to end delay for message instances mp,q.

Dmp = max
q=1,...,n

Dmp,q (12)

III. SDTTE
A. PRELIMINARY BACKGROUND
For each message in the TTE, there are three traffic classes,
TT traffic, RC traffic and best effort (BE) traffic.

1) A time-triggered (TT) traffic needs a global schedule
table which defines the triggered time when frames
should be sent. A global synchronized clock is required
to support the global schedule table.

2) A rate-constrained (RC) traffic has two key parameters:
a Bandwidth Allocation Gap (BAG) which is the mini-
mum time interval between two consecutive frames of
a RC traffic in the source ES and a maximal frame size
which limits the frame length. The constraints are the
same as AFDX.

3) A best-effort (BE) traffic is simply a class for
low-priority Ethernet traffic without time-triggered
and BAG guarantees, but the timing behavior
should pay respect to memory and frame delay
constraints [30]–[32].

Though the three type traffics have different schedule strat-
egy, the most delays shown in Fig. 1 are the same or similar,
except the queuing delay caused by triggered mechanism.
As RC traffic and BE traffic are both event-triggered, there
is no fixed triggered time for their message transmission so
that the queuing delay of the sending buffer in the source
ESes is usually quite short when considering messages in
the corresponding ES could not be generated at the the same
time. But they are probably blocked by other messages when
they are forwarded across every switch along their path due to
asynchronous message arrival from different physical links or
network segments. The TT traffic is time-triggered, so there
is no blocked delay when it is forwarded across every switch
according to predesigned schedule table. But a TT message
has queuing delay in the sending buffer which is related to the
generated time and the triggered time.

B. MESSAGE MODEL
Due to asynchrony between tasks and the network, usually the
triggered time of TT messages does not match with the gen-
erated time so that the queuing delays of the sending buffer
is uncertain. If the generated time of TT messages is known,
the triggered time in TT schedule table can be designed to
match with the generated time. It leads to sharply reduce the
queuing delays of the sending buffer for TT messages so that
the real-time and determinacy are improved. In practice, it is
impossible to measure the generated time of TT messages as
it varies with time drift between system time and network
time in each startup or reconfiguration.

In fact, the dynamic generated time of TT messages is
so difficult to measure that we have to take a roundabout

VOLUME 8, 2020 23723

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

FIGURE 3. New architecture of an ES without sending buffer and
receiving buffer for TT.

FIGURE 4. The network architecture of Software Defined TTE.

method. Our method does not change the frame format of
the TT messages. Only the TT buffers in end systems and
ingresses of edge switches, which are the red shaded com-
ponents as shown in Fig. 3, are disabled. So TT traffic is
delivered by using event-triggered mechanism in end systems
and ingresses of edge switches. As the highest priority traf-
fic they are, TT traffic can be regarded as RC traffic with
the highest priority in end systems and ingresses of edge
switches. TT traffic still keeps time-triggered mechanism in
other switches.

TT frames in ESes do not have to be sent/received dur-
ing the predesigned sending/receiving time window. Instead,
TT frames can be sent from the source ESes as soon as they
are generated, and they can be received by the destination
ESes as soon as they arrive at the receiving ports. In the same
way, TT frames from the source ESes can be also received
by switches as soon as they arrive at the receiving ports. The
receiving time of TT messages from ESes to switches can
indirectly reflect the generated time of TT messages. So the
problem about detecting the generated time of TT messages
can be solved in the first connected switch from the source
ES for the TT traffic.

C. NETWORK ARCHITECTURE
To measure the dynamic received time of TT messages from
ESes to switches, software defined network is introduced
into TTE as shown in Fig. 4. TTE switches must have the
ability of software defined path. Namely, the flow table in
TTE switches can be configured by a central controller.

A TT frame is sent to the connected switch as soon as
the corresponding TT message is generated. Although the
TT traffic is regarded as event-triggered type in all ESes,
it is time-triggered in all switches. TT schedule table is still
required for switches.

FIGURE 5. The asynchrony between tasks and the network. (Cluster
cycle (CC) is the lowest common multiple (LCM) of all message periods
and integration cycle (IC) is the greatest common divisor (GCD) of all
message periods. PCF is the protocol control frame for clock
synchronization in TTE, and the major time frame (MAF) is defined as the
least common multiple of all partition periods in the corresponding ES.
In each major time frame, there are several identical partition scheduling
windows. TS denotes time slicing.)

When the system need be reconfigured, there is no flow
table or a huge difference between the generated time and the
triggered time, the switch would report the TT message to
a centralized controller so that the centralized controller can
obtain the received time of the TT message from the source
ES to the first connected switch. And then the generated
time of the TT message can be calculated indirectly by the
centralized controller. By using this method, we can get the
practical generated time of TT messages, it also provides a
basis to further optimize the schedule table.

When the system need not be reconfigured, we defined a
threshold and time drift which are relative to the first gener-
ated time for a time-triggered message after last update. If the
time drift exceeds the threshold, the network schedule table
will be reconfigured online. Calculating a time-triggered
schedule table, which is a NP-complete problem, needs a
long time consumption [12]. So the threshold avoids big
jitters for time-triggered messages during updating the online
time-triggered schedule table. The reason for selecting the
threshold is that time-triggered messages may update their
schedule table simultaneously so that resource consumption
of scheduling solution is reduced, when system and network
have their own synchronization mechanisms.

D. TT SCHEDULING CONSTRAINTS
To get the optimal TT schedule table, the constraints must
be suitable. Since TT messages are not triggered by time in
ESes, there is no ES constraint for TT schedule table, not like
Craciunas and Oliver [12].

For ∀vi 6= vj 6= vk ∈ V ,mp 6= mp1 6= mp2 ∈ M , fp,q 6=
fp,q1 6= fp,q2 ∈ F , scheduling constraints of the end to end
delay are illustrated as follows.

1) BOUND CONSTRAINT
To plan scheduling table, we need only program offset time
of all time-triggered frames during a cluster cycle tc as shown

23724 VOLUME 8, 2020

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

in Fig. 5. These offsets of
ei,j
p,q should be within the scope of

cluster cycle tc along virtual links. Namely, we need only
limit that the difference between the maximum offset and
minimum offset in an edge ei,j is not greater than the cluster
cycle tc as follows. Because these offsets are relative value
based on a discretionary reference point.

max(of
ei,j
p,q)− min(of

ei,j
p,q) < tc (13)

2) COLLISION-FREE CONSTRAINT
Any frames (e.g. ofp1,q1, ofp2,q2) can not collide with each
other on the link ei,j at the same time. They need to satisfy
with inequality (14) or inequality (15) which just separates
the related frames according to different offsets.

of
ei,j
p1,q1 + lf

ei,j
p1,q1 < of

ei,j
p2,q2 (14)

of
ei,j
p2,q2 + lf

ei,j
p2,q2 < of

ei,j
p1,q1 (15)

3) TIME SERIES CONSTRAINT
The receiving time for a message instance mp,q on the physi-
cal link ei,j is less than the sending time on the next physical
link ej,k according to the required transmission time.

of
ei,j
p,q + lf

ei,j
p,q + dInnerhop ≤ of

ej,k
p,q (16)

where dInnerhop is the technical delay in a switch.

4) PERIODIC MESSAGE CONSTRAINT
For any frames belonging to the samemessagemp on physical
link ej,k , their offsets should have fixed interval due to mes-
sage periodicity. For example, the interval between the q2th

frame and the q1th frame should be q2− q1 times period.

of
ei,j
p,q1 = of

ei,j
p,q2 + (q2− q1)pf

ei,j
p,q2 (17)

5) MAX DELAY CONSTRAINT
The end to end delay should not exceed the message deadline.
In a general way, the message deadline is the message period
pf

ee1,j
p,q . Namely, the end to end delay should not exceed the

message period pf
ee1,j
p,q .

of
ej,e2
p,q + lf

ee1,j
p,q − of

ee1,j
p,q < pf

ee1,j
p,q (18)

6) OFFSET CONSTRAINT
The offset in the first connected switch must be larger than
the generation time to ensure the arrival TT frame can find
an appropriate triggered window to be scheduled out from
queuing buffer. Also the offset should not be too large to avoid
a long time waiting. So it is the key parameter which should
be calculated accurately as shown in Fig. 5.
Considering the synchronization precisions of the tasks

schedule and the network schedule (e.g. Jp,q and J
ee1,1
p,q),

the offset constraint can be described as follows.

of
ee1,j
p,q > Tp,q + J

ee1,1
p,q + Jp,q (19)

7) MINIMUM DELAY CONSTRAINT
If the sum of end-to-end delays is limited to a minimum,
there are more network resource to transmit other messages
with low priorities. Meanwhile, it leaves an adequate safe
distance between the arrived time and receipt time to keep
the time-triggered message from missing receipt time in a
destination end system. Moreover, the sum of end-to-end
delays is limited to a minimum, so that there is enough time
resource to select an appropriate time window for designing
the receipt time. Time-triggered messages are not only high
determinacy but also high real-time.

D =
∑
mp∈M

Dmp = min (20)

E. SMT-BASED SCHEDULING ALGORITHM
The basic constraint formulae are not specific to SMT solvers,
but the task- and network-level schedule co-synthesis can
be transformed into a Mixed Integer Programming (MIP)
problem to minimize end-to-end delay [12]. All the switches
send the TT frames according to the online TT schedule
table dispatched by SDN centralized controller. To obtain an
optimal online TT schedule table, the scheduling algorithm
must be fast. However, it often costs too much time to finish
resolving by MIP solver. For example, focused on a network
with fewer than 64 TT messages, MIP solver Gurobi needs at
least twenty times as the processing time as SMT solver Yices
(the detailed values are about 50s/2s) [12]. So it is impractical
to use MIP solver in the online scheduling context.

Algorithm 1 SMT-Based Scheduling Algorithm
1: Data: G(V ,E),VL,M ,F ;
2: Result: S(TT schedule table);
3: Initialize: delaymin ← ∞, delay ← 0, count ←

0, S ← ∅;
4: Stmp← SMTSolve(constaints);
5: if Stmp 6= ∅ then
6: while Stmp 6= ∅||delaymin 6= 0.75delay do
7: if Stmp = ∅&&delaymin 6= 0.75delay then
8: delaymin← 0.75delay;
9: update: constaint(delaymin)(21);
10: else
11: S ← SMTSolve(constaints);
12: calculate: delay;
13: delaymin← 0.5delay;
14: update: constaint(delaymin) (21);
15: end if
16: count ++;
17: Stmp← SMTSolve(constaints);
18: if time > timethd ||count > forthd then
19: break;
20: end if
21: end while
22: end if
23: return S;

VOLUME 8, 2020 23725

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

In order to work with mixed time-triggered message peri-
ods, the algorithm need calculate the lowest common mul-
tiple (LCM) of all time-triggered message periods as a
cluster cycle first. In the cluster cycle, the algorithm dis-
plays the number of each time-triggered message so that the
time-triggered frames in all links can be known. According
to the constraints 1-6, SMT can obtain a feasible solution for
all frames. Finally, SMT-based scheduling algorithm with the
constraints 1-7 can obtain a better solution by iterations.

The processing time of SMT solver Yices is feasible,
but it can not support the optimal problem (e.g. the mini-
mum). To solve the problem, the minimum delay constraint
is converted as the following inequality, where the parameter
delaymin is the predicted delay bound of all messages.

D =
∑
mp∈M

Dmp < delaymin (21)

Though updating the parameter delaymin by dichotomy,
the approximate optimal solution can be obtained by SMT
solver Yices. Meanwhile, the 75% limitation is added into
the scheduling algorithm to ensure that the minimum sum
of end-to-end delays for all messages is not less than 75%
of the calculated value, so as to guarantee the validity of
the calculated value. Moreover, the thresholds of processing
time and iteration are added to guarantee real-time online
scheduling. Although the above algorithm can not obtain the
optimal solution, but the SMT-based scheduling algorithm
is a tradeoff between fast scheduling and optimal schedul-
ing. If the SMT solver can not give a feasible solution,
the traditional scheduling algorithm also has no feasible
solution. The network can not load so many TT messages.
Some TT messages should be degraded to rate-constrained
messages. It does not happen under reasonable task
requirements.

IV. ARCHITECTURE VALIDATION
A. EXPERIMENTAL STRATEGY
1) SIMULATION MODEL
The self-designed software based on OMNeT++ is used to
perform experiments to evaluate the performance of the new
method. The switch module and the controller module are
similar to Klein and Jarschel [33] and Salih et al. [34]. But
the buffers in the switch module and the centralized controller
module are divided into three types, TT buffers, RC buffers,
and BE buffers.

An ES module is displayed in Fig. 6, where Sflow
modules generate all frames with different traffic types,
Rflow modules receive all frames with different traffic types,
flowDispatch module is responsible for dispatching frames
to different Sflow/Rflow modules, buffer modules temporar-
ily store different frames, and scheduler module realizes
scheduling for different traffics according to traffic con-
straints discussed in section III-A. flowCheck module is used
to check whether the received frames satisfy rules, such as the
TT schedule table.

FIGURE 6. Implemented model of the ES.

FIGURE 7. Network topology with three network sizes.

TABLE 1. Network configuration.

2) NETWORK CONFIGURATION
There are three types of network sizes for performance anal-
ysis in experiments. All networks are mesh network shown
in Fig. 7, any two switches in the network are interconnected
with each other. Meanwhile, there is a SDN centralized con-
troller for each network to dispatch flow tables.

To verify the availability of SDTTE, a case with a small
network is used. In middle and large networks, the number of
messages grows to evaluate the performance of our algorithm.
Detailed network configurations are shown in Table 1.

The bandwidth of each link is 100Mbit/s. When the period
of TTmessages is small (such as 2ms and 4ms), TTmessages

23726 VOLUME 8, 2020

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

FIGURE 8. Processing time in different networks.

can not be scheduled in the above networks as the solution
space is too big to traverse. So in our experiment, the periods
of TT messages are not same, they are randomly selected
from the set (16ms, 32ms, and 64ms). The BAG of RC
messages is a random value among 2ms, 4ms, and 8ms to
make full use of bandwidth.

B. EXPERIMENT VERIFICATION
1) MECHANISM VERIFICATION
The SMT-based scheduling algorithm was processed by a
laptop where operating system is Win7, CPU is i3-M380,
memory is 4G, and software platform is VS2013 with VC++
language. The processing time of SMT-based scheduling
algorithm is illustrated by ten independent repeated experi-
ments for different networks as shown in Fig. 8, respectively.
The results show that the processing time is less than 10s. The
time drift is less than 1us during updating, when we assume
that the clock drift is 100ns per second [35]. The threshold
is mainly related to minimum gap between the generated
time and the triggered time for a time-triggered message (it
is 0.1ms in experiments). If the time drift becomes 0.1ms,
it costs 1000s (about 15 minutes) at least. So the update
frequency is more than 15 minutes. System and network are
not synchronized, but system and network are synchronized
respectively, such as SAE AS62580 in network synchroniza-
tion. Thus the time drift between systems and network is
much less than 100ns, the update frequencymay be hour-level
generally.

When the clock drift is bigger than 100ns per second or
the update frequency is too high, it is feasible that compen-
sation (some millisecond) can be added to the triggered time.
Because the sum of end-to-end delays is limited to a mini-
mum, there is an adequate safe distance between the arrived
time and receipt time to keep the time-triggeredmessage from
missing receipt time in a destination end system. Moreover,
jitters in Offset constraint can be changed to increase min-
imum gap between generated time and triggered time. The
threshold can be higher by using the above two methods so
that the update frequency becomes lower.

FIGURE 9. End to end delays for TT messages in a small mesh network.

FIGURE 10. End to end delays for RC and BE messages in a small mesh
network.

2) AVAILABILITY VERIFICATION
The small mesh network is used to verify the availability
of SDTTE and the simulation results are shown in Fig. 9,
which can illustrate the correctness of our simulation model.
According to the results, the end to end delays for TT mes-
sages are almost reduced from the millisecond range to the
microsecond range. Meanwhile, the end to end delays for RC
messages and BE messages only have some slight changes
which are shown in Fig. 10. It is verified that SDTTE can
reduce the end to end delays for TT messages to guarantee
their real-time and determinacy requirements. At the same
time, SDTTE has no side effect on the RC traffic and the BE
traffic.

C. EXPERIMENTAL RESULT AND ASSESSMENT
1) MIDDLE NETWORK
To obtain statistical regularity of end to end delay, the middle
size network case is used to evaluate the performance of our
model and algorithm, and the simulation results are shown
in Fig. 11. It is clear that the end to end delays for TT

VOLUME 8, 2020 23727

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

FIGURE 11. End to end delays for TT messages in a middle mesh network.

FIGURE 12. End to end delays for RC and BE messages in a middle mesh
network.

messages are also reduced from the millisecond range to
the microsecond range, except the 9th, 18th, and 27th TT
messages. Meanwhile, the trends of the end to end delays for
RC messages and BE messages are similar as in the small
size network case, which are shown in Fig. 12. The delay
differences between in TTE and SDTTE are quite small and
the changing rate is less than 10%.

Tominimize the sum of end to end delays for TTmessages,
it just means that probably not all the generated time of all TT
messages can match with their triggered time. It depends on
the detailed traffic configuration and topology. In some case,
the difference between the generated time and the triggered
time in SDTTEmight become larger than that in TTE. It leads
that the 9th TT message in SDTTE has a bigger end to end
delay. Under the constraint about minimizing the sum of end
to end delays for TT messages, it is allowed that the delays
for some TT messages could be large in order to obtain a
holistic optimal solution. But the big delay is still smaller
than the corresponding deadline which is 32ms. In another

FIGURE 13. End to end delays for TT messages in a large mesh network.

FIGURE 14. End to end delays for RC and BE messages in a large mesh
network.

word, the calculated scheduling table still meets the real-time
requirement for the 9th TT message.

2) LARGE NETWORK
The end to end delays in a large mesh network are obtained
in Fig. 13–14. The trends of the delay differences are the same
as those in a middle mesh network. The results show that the
end to end delays for TT messages in SDTTE are far less than
those in TTE. Similarly, the end to end delays for RC and BE
messages in SDTTE are approximate to those in TTE.

Just like in the middle size network, the generated time of
some TT messages can not match well with their triggered
time, such as the 10th and 19th TT messages. But still, their
transmission deadlines are satisfied according to the results.

D. PHENOMENA ANALYSIS
The distribution of end to end delays for TT messages in the
three networking cases are illustrated in Fig. 15. The result
shows that end to end delays for TT messages in SDTTE

23728 VOLUME 8, 2020

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

FIGURE 15. Statistical distribution of end to end delays for TT messages
in mesh networks.

TABLE 2. End to end (e2e) delays in different scales of network.

have a tighter distribution than that in TTE. The determinacy
for TT messages in SDTTE is also improved. The most of
end to end delays for TT messages are concentrated at the
sub-millisecond level. Meanwhile, the distribution of end to
end delays for TT messages is from an irregular distribution
in TTE to a Poisson-like distribution in SDTTE as shown
in Fig. 15. In some sense, It just agrees with the rule ‘‘The
arrival of a message is a Poisson process’’ in queuing theory.

Statistical values about end to end delays in different scales
of network are shown in Table 2. Compared with TTE,
the mean end to end delays for TT messages in SDTTE are
reduced to 4.5%, 5.9%, and 4.3% in the small, middle, and
large network, respectively. The reducing rate in the middle
network is less than those in other networks. The reason lies in
that the 9th TTmessage in SDTTE has a bigger delay than that
in TTE, which just pulls up the reducing rate. If necessary,
the separated constraints for each TT messages can be added
in the last iteration process.

When there are some messages like the 9th TT message
in Fig. 10, the median end to end delays for TT messages
can be used to analyze the overall performance. Compared
with TTE, the median end to end delays for TT messages in
SDTTE are reduced to 2.3%, 2.6%, and 1.8% in the small,
middle, and large networks, respectively. The performance of
TT messages in SDTTE is improved by about 40 times.

FIGURE 16. Delay biases for RC and BE messages in different mesh
networks.

TABLE 3. Mean delay jitters in different scales of network.

Meanwhile, Table 2 also shows that median end to end
delays for TT messages are less than those of RC messages
and BE messages, which means most of the TT messages can
be optimized well.

Moreover, delay biases for RC and BE messages between
SDTTE and TTE are also calculated and illustrated in Fig. 16.
The results show that SDTTE has a sub-millisecond level
impact on RC and BE messages. The mean delay biases for
RC and BE messages in SDTTE are less than 1% of end to
end delays for RC and BE messages. So the influence for RC
and BE messages in SDTTE can be ignored.

Additionally, mean delay jitters for different types of mes-
sages are shown in Table 3, where the time synchronization
accuracy is set as same as the time tick (20ns). The results
show that the delay jitter for TT messages is the smallest,
followed by the delay jitter for RC messages, and the delay
jitter for BE messages is the largest. Combined with table 2
and table 3, it can be seen that SDTTE not only takes full
advantages of strict deterministic transmission in the TT
traffic, but also greatly reduces the end to end delay for the
TT traffic in the task-level. When message configuration is
reasonable, messages could have low delay and jitter so that
they can obtain good real-time and determinacy.

V. CONCLUSION
The synchronization between tasks and the network is a
critical prerequisite for the TT traffic to ensure real-time and

VOLUME 8, 2020 23729

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

determinacy requirement. Due to the asynchrony between
tasks and the network, the end to end delays for TT messages
are uncertain.

Detecting the generated time of TT messages is the critical
mechanism to minimize the end to end delays. To make the
generated time of TT messages detectable, the TT traffic
is regarded as the event-triggered traffic with the highest
priority in the source ES. The detailed generated time can
be indirectly detected when TT messages arrive at the first
connected switch.

And then SDN is introduced into TTE as SDTTE to
detect the generated time of TT messages in different pat-
terns and obtain the online TT schedule table. Thereafter,
TT scheduling constraints is revised so that SMT can replace
MIP to solve optimization problem. Meanwhile, SMT-based
scheduling algorithm is optimized to process fast for online
TT schedule.

Subsequently, the small scale case is used to verify the
availability of SDTTE. Finally, two middle and large cases
are realized to analyze the performance of SDTTE. The statis-
tical results show that the end to end delays for TT messages
are reduced by 95% and the end to end delays for RC and BE
messages are almost unchanged. Meanwhile, the processing
time is less than 10s, the threshold triggered the update avoids
big jitters for time-triggered messages during updating.

ACKNOWLEDGMENT
The authors wish to acknowledge the efforts of all the entities
contributing to the Open Networking Foundation (ONF) and
TTTech. The colleagues who provided insight and stimu-
lating discussions that greatly assisted in the preparation of
this article. They also gratefully acknowledge the anonymous
reviewers for carefully reading the article and providing con-
structive comments.

REFERENCES

[1] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, ‘‘The
time-triggered Ethernet (TTE) Design,’’ in Proc. 8th IEEE Int. Symp.
Object-Oriented Real-Time Distrib. Comput. (ISORC), Seattle, WA, USA,
Jun. 2005, pp. 22–33, doi: 10.1109/isorc.2005.56.

[2] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan, ‘‘TTEther-
net dataflow concept,’’ in Proc. 8th IEEE Int. Symp. Netw. Comput. Appl.,
Cambridge, MA, USA, Jul. 2009, pp. 319–322, doi: 10.1109/nca.2009.28.

[3] R. Obermaisser, Time-Triggered Communication. Boca Raton, FL, USA:
CRC Press, 2018.

[4] D. Tǎmaş-Selicean, P. Pop, and W. Steiner, ‘‘Design optimization of
TTEthernet-based distributed real-time systems,’’ Real-Time Syst., vol. 51,
no. 1, pp. 1–35, Jan. 2015, doi: 10.1007/s11241-014-9214-8.

[5] AEE Committee, ‘‘Arinc specification 664p7: Aircraft data network, part
7: Avionics full-duplex switched Ethernet (AFDX) network,’’ Aeronautical
Radio Inc, Annapolis, MD, USA, Tech. Rep., 2005.

[6] H. Kopetz, ‘‘Event-triggered versus time-triggered real-time systems,’’ in
Operating Systems of the 90s and Beyond. Berlin, Germany: Springer,
1991, pp. 86–101, doi: 10.1007/BFb0024530.

[7] S. Gopalakrishnan, M. Caccamo, and L. Sha, ‘‘Switch scheduling and
network design for real-time systems,’’ in Proc. 12th IEEE Real-Time
Embedded Technol. Appl. Symp. (RTAS), San Jose, CA, USA, Apr. 2006,
pp. 289–300, doi: 10.1109/rtas.2006.42.

[8] E. Suethanuwong, ‘‘Scheduling time-triggered traffic in TTEthernet
systems,’’ in Proc. IEEE 17th Int. Conf. Emerg. Technol. Factory
Autom. (ETFA), Krakow, Poland, Sep. 2012, pp. 1–4, doi: 10.1109/
etfa.2012.6489749.

[9] S. S. Craciunas, R. S. Oliver, and V. Ecker, ‘‘Optimal static scheduling
of real-time tasks on distributed time-triggered networked systems,’’ in
Proc. IEEE Emerg. Technol. Factory Autom. (ETFA), Barcelona, Spain,
Sep. 2014, pp. 1–8, doi: 10.1109/etfa.2014.7005128.

[10] C. Barrett and C. Tinelli, ‘‘Satisfiability modulo theories,’’ inHandbook of
Model Checking. Cham, Switzerland: Springer, 2018, pp. 305–343.

[11] R. Sebastiani, ‘‘Lazy satisfiability modulo theories,’’ J. Satisfiability,
Boolean Model. Comput., vol. 3, nos. 3–4, pp. 141–224, 2007.

[12] S. S. Craciunas and R. S. Oliver, ‘‘Combined task-and network-level
scheduling for distributed time-triggered systems,’’ Real-Time Syst.,
vol. 52, no. 2, pp. 161–200, Mar. 2016, doi: 10.1007/s11241-015-9244-x.

[13] C. Scholer, R. Krenz-Baath, A.Murshed, andR. Obermaisser, ‘‘Computing
optimal communication schedules for time-triggered networks using an
SMT solver,’’ in Proc. 11th IEEE Symp. Ind. Embedded Syst. (SIES),
Krakow, Poland, May 2016, pp. 1–9, doi: 10.1109/sies.2016.7509415.

[14] W. Steiner, ‘‘An evaluation of SMT-based schedule synthesis for
time-triggered multi-hop networks,’’ in Proc. 31st IEEE Real-Time
Syst. Symp., San Diego, CA, USA, Nov. 2010, pp. 375–384, doi:
10.1109/rtss.2010.25.

[15] F. Pozo, W. Steiner, G. Rodriguez-Navas, and H. Hansson, ‘‘A decompo-
sition approach for SMT-based schedule synthesis for time-triggered net-
works,’’ in Proc. IEEE 20th Conf. Emerg. Technol. Factory Autom. (ETFA),
Luxembourg, Sep. 2015, pp. 1–8, doi: 10.1109/etfa.2015.7301436.

[16] D. Tamasselicean, P. Pop, and W. Steiner, ‘‘Timing analysis of rate
constrained traffic for the TTEthernet communication protocol,’’ in
Proc. IEEE 18th Int. Symp. Real-Time Distrib. Comput., Auckland,
New Zealand, Apr. 2015, pp. 119–126, doi: 10.1109/isorc.2015.32.

[17] J. Yao, X. Xu, and X. Liu, ‘‘MixCPS: Mixed time/event-triggered architec-
ture of cyber–physical systems,’’ Proc. IEEE, vol. 104, no. 5, pp. 923–937,
May 2016, doi: 10.1109/jproc.2016.2519381.

[18] L. Zhao, P. Pop, Q. Li, J. Chen, and H. Xiong, ‘‘Timing analysis of
rate-constrained traffic in TTEthernet using network calculus,’’ Real-Time
Syst., vol. 53, no. 2, pp. 254–287, Mar. 2017, doi: 10.1007/s11241-016-
9265-0.

[19] M. Boyer, H. Daigmorte, N. Navet, and J. Migge, ‘‘Performance impact of
the interactions between time-triggered and rate-constrained transmissions
in TTEthernet,’’ Die Medizinische Welt, vol. 14, no. 2, pp. 217–225, 2016,
doi: 10.1017/S0021859600022838.

[20] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, ‘‘Schedul-
ing dependent periodic tasks without synchronization mechanisms,’’ in
Proc. 16th IEEE Real-Time Embedded Technol. Appl. Symp., Stockholm,
Sweden, Apr. 2010, pp. 301–310, doi: 10.1109/rtas.2010.26.

[21] W. Steiner, ‘‘Synthesis of static communication schedules for
mixed-criticality systems,’’ in Proc. 14th IEEE Int. Symp.
Object/Compon./Service-Oriented Real-Time Distrib. Comput. Work-
shops, Mar. 2011, pp. 11–18, Newport Beach, CA, USA, doi: 10.1109/
isorcw.2011.12.

[22] D. Tamas-Selicean, P. Pop, and W. Steiner, ‘‘Synthesis of communication
schedules for TTEthernet-based mixed-criticality systems,’’ in Proc. 8th
IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth., Tampere,
Finland, 2012, pp. 473–482, doi: 10.1145/2380445.2380518.

[23] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty, ‘‘Task-and
network-level schedule co-synthesis of Ethernet-based time-triggered sys-
tems,’’ in Proc. 19th Asia South Pacific Design Autom. Conf. (ASP-DAC),
Singapore, Jan. 2014, pp. 119–124, doi: 10.1109/aspdac.2014.6742876.

[24] N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
p. 69, Mar. 2008, doi: 10.1145/1355734.1355746.

[25] K. Sampigethaya, ‘‘Software-defined networking in aviation: Opportu-
nities and challenges,’’ in Proc. Integr. Commun., Navigat. Surveill.
Conf. (ICNS), Herdon, VA, USA, Apr. 2015, pp. 1–21, doi: 10.1109/icn
surv.2015.7121310.

[26] P. Heise, F. Geyer, and R. Obermaisser, ‘‘Deterministic openflow: Perfor-
mance evaluation of SDN hardware for avionic networks,’’ in Proc. 11th
Int. Conf. Netw. Service Manage. (CNSM), Barcelona, Spain, Nov. 2015,
pp. 372–377, doi: 10.1109/cnsm.2015.7367385.

[27] J. W. Guck, A. Van Bemten, and W. Kellerer, ‘‘DetServ: Network models
for real-time QoS provisioning in SDN-based industrial environments,’’
IEEE Trans. Netw. Service Manag., vol. 14, no. 4, pp. 1003–1017,
Dec. 2017, doi: 10.1109/tnsm.2017.2755769.

[28] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, ‘‘End-to-end network delay guarantees
for real-time systems using SDN,’’ in Proc. IEEE Real-Time Syst.
Symp. (RTSS), Paris, France, Dec. 2017, pp. 231–242, doi: 10.1109/
rtss.2017.00029.

23730 VOLUME 8, 2020

http://dx.doi.org/10.1109/isorc.2005.56
http://dx.doi.org/10.1109/nca.2009.28
http://dx.doi.org/10.1007/s11241-014-9214-8
http://dx.doi.org/10.1007/BFb0024530
http://dx.doi.org/10.1109/rtas.2006.42
http://dx.doi.org/10.1109/etfa.2012.6489749
http://dx.doi.org/10.1109/etfa.2012.6489749
http://dx.doi.org/10.1109/etfa.2014.7005128
http://dx.doi.org/10.1007/s11241-015-9244-x
http://dx.doi.org/10.1109/sies.2016.7509415
http://dx.doi.org/10.1109/rtss.2010.25
http://dx.doi.org/10.1109/etfa.2015.7301436
http://dx.doi.org/10.1109/isorc.2015.32
http://dx.doi.org/10.1109/jproc.2016.2519381
http://dx.doi.org/10.1007/s11241-016-9265-0
http://dx.doi.org/10.1007/s11241-016-9265-0
http://dx.doi.org/10.1017/S0021859600022838
http://dx.doi.org/10.1109/rtas.2010.26
http://dx.doi.org/10.1109/isorcw.2011.12
http://dx.doi.org/10.1109/isorcw.2011.12
http://dx.doi.org/10.1145/2380445.2380518
http://dx.doi.org/10.1109/aspdac.2014.6742876
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/icnsurv.2015.7121310
http://dx.doi.org/10.1109/icnsurv.2015.7121310
http://dx.doi.org/10.1109/cnsm.2015.7367385
http://dx.doi.org/10.1109/tnsm.2017.2755769
http://dx.doi.org/10.1109/rtss.2017.00029
http://dx.doi.org/10.1109/rtss.2017.00029

J. Lu et al.: Enhancing Real-Time and Determinacy for Network-Level Schedule in Distributed Mixed-Critical System

[29] S. S. Craciunas and R. S. Oliver, ‘‘SMT-based task-and network-level static
schedule generation for time-triggered networked systems,’’ in Proc. 22nd
Int. Conf. Real-Time Netw. Syst.-RTNS, Versailles, France, 2014, p. 45,
doi: 10.1145/2659787.2659812.

[30] J. Grieu, ‘‘Analyse et évaluation de techniques de commutation Ethernet
pour l’interconnexion des systèmes avioniques,’’ Ph.D. dissertation, Inst.
Nat. Polytechnique de Toulouse, Labège, France, 2004.

[31] C. Fouard, G. Malandain, S. Prohaska, and M. Westerhoff, ‘‘Blockwise
processing applied to brain microvascular network study,’’ IEEE Trans.
Med. Imag., vol. 25, no. 10, pp. 1319–1328, Oct. 2006, doi: 10.1109/
TMI.2006.880670.

[32] M. Boyer, J. Migge, and M. Fumey, ‘‘PEGASE-a robust and efficient
tool for worst-case network traversal time evaluation on AFDX,’’ Physiol.
Behav., vol. 25, no. 4, pp. 589–593, 2011, doi: 10.4271/2011-01-2711.

[33] D. Klein andM. Jarschel, ‘‘An openflow extension for the OMNeT++ inet
framework,’’ in Proc. 6th Int. ICST Conf. Simulation Tools Techn., Cannes,
France, 2013, pp. 322–329, doi: 10.4108/simutools.2013.251722.

[34] M. A. Salih, J. Cosmas, and Y. Zhang, ‘‘OpenFlow 1.3 extension for
OMNeT++,’’ in Proc. IEEE Int. Conf. Comput. Inf. Technol.; Ubiqui-
tous Comput. Commun.; Dependable, Autonomic Secure Comput.; Per-
vasive Intell. Comput., Liverpool, U.K., Oct. 2015, pp. 1632–1637,
doi: 10.1109/cit/iucc/dasc/picom.2015.246.

[35] J. Zhao, Q. Yuan, H. Sun, J. Yang, and L. Sun, ‘‘A high-performance
oscillator based on RF MEMS resonator and low-noise sustaining circuit
for timing applications,’’ IEICE Electron. Express, vol. 15, no. 10, 2018,
Art. no. 20180395.

JUN LU was born in Jingzhou, Hubei, China.
He received the M.S. degree in control engineer-
ing from the School of Electronics and Infor-
mation, Northwestern Polytechnical University,
Xi’an, China, in September 2014. He is cur-
rently pursuing the Ph.D. degree in communica-
tion and information system with the School of
Electronic Information Engineering, Beihang Uni-
versity, China.

His research interests include avionics informa-
tion integration, software defined networks, and embedded systems.

HUAGANG XIONG received the Ph.D. degree
in communication and information system from
the School of Electronic Information Engineering,
Beihang University, China, in 1998.

He is currently a Full Professor with Beihang
University. He has published more than 305 peer-
reviewed articles which are indexed by SCI or
EI and three books. He has presided more than
20 major projects in total, such as the National
Natural Science Foundation of China, national

863 program, and a Civil Aircraft Research. His research interests include
communication network theory and technology, avionics information inte-
gration, airborne network, and standards.

Dr. Xiong is a member of the China Aviation Electronics Standardization
Committee and the Avionics andAir Traffic Control Branch of China Society
of Aeronautics and Astronautics. He is the Director of the Beijing Electronic
Circuit Research Association and an Expert of the Civil Aircraft Scientific
Research Group. He is the Chief of the BUAA-TTTech Time-Triggered
Technology Joint Laboratory (TTTJL), Beihang University, where he is also
the Head of the Avionics and Bus Communications Research Team (ABC),
School of Electronic Information Engineering.

FENG HE received the Ph.D. degree in communi-
cation and information systems from the School
of Electronic Information Engineering, Beihang
University, China, in 2008.

He is currently an Associate Professor with
the School of Electronic Information Engineering,
Beihang University. He has published more than
76 peer-reviewed articles and two books. He has
presided more than ten major projects in total,
such as the National Natural Science Foundation

of China, national 863 program, and a Civil Aircraft Research. His research
interests concern digital communication technology, communication net-
work theory and technology, avionics integration, software defined networks,
embedded systems, and real-time networks.

RONGWEI WANG received the B.S. degree
in electronic and information engineering from
Harbin Engineering University, Harbin, China,
in 2017. He is currently pursuing the M.S. degree
with the School of Electronic Information Engi-
neering, Beihang University, China. His main
research directions are avionics information inte-
gration and software defined networks.

VOLUME 8, 2020 23731

http://dx.doi.org/10.1145/2659787.2659812
http://dx.doi.org/10.1109/TMI.2006.880670
http://dx.doi.org/10.1109/TMI.2006.880670
http://dx.doi.org/10.4271/2011-01-2711
http://dx.doi.org/10.4108/simutools.2013.251722
http://dx.doi.org/10.1109/cit/iucc/dasc/picom.2015.246

