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ABSTRACT This study proposes determining optimal locations for expanding a higher education system
by using populational and social criteria. With this aim, this work evaluates single objective location models
in determining the optimal distribution of higher education facilities in Amazonas State, Brazil. Three
optimization options are evaluated and made available to decision makers: 1) prioritize cities with a lower
United Nation Human Development Index; 2) prioritize cities with a higher population, 3) favor both criteria.
Also, the location must equalize student distribution between the regions of Amazonas State. With this aim,
three discrete location models were evaluated: p-center model, p-median model, and p-dispersion model.
The location models were designed using a Genetic Algorithm metaheuristic. A state-of-art implementation
of the Genetic Algorithm that optimizes the solution and converge time was used. The expansions proposed
here present lower mean values of United Nation Human Development Index compared with 0.619 from the
existing distribution of campuses. The best results were obtained with the p-median model.

INDEX TERMS p-median modeling, locating higher education schools, single objective location, genetic
algorithm.

I. INTRODUCTION
According to a report by [1], the percentage of the population
in Brazil with access to college education is only 16.3% in
the age group between 25-34 years old, and 11.2% in the
group between 55-64 years old, so there is much room for
growth of higher education in Brazil. In Brazil, earning an
undergraduate degree may ensure an income 80% greater
than that of an average non-graduate worker [2].

In the northern region of Brazil, in Amazonas state,
the largest area of the federation, 1,559,146.876 km2, this
problem is aggravated. As shown in Figure 1, the state of
Amazonas comprises 62 cities distributed in four mesore-
gions: Central, North, South and South-West, see Figure 2.
The distances between locations can reach 1,500 km. Access
to such cities is typically managed by inland waterway navi-
gation (blue-colored lines in Figure 1). The fluvial network
(blue-colored lines in Figure 1) of Amazonas State is the
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most important one. In the river sides are located the majority
of Amazonas State cities. The railroad network does not
exist and the highway network is very limited and poorly
maintained. Half of the students eligible (Secondary School
Students (SSS), over 105,000) to join a Higher Education
Institution (HEI) are in the capital of Amazonas state, Man-
aus, and the other half are distributed over the interior
(another 61 cities of the state of Amazonas) [3]. Transporta-
tion of students from one city to the nearest city with an HEI
is time-consuming and usually done by river, which is not
always the most modernized form of transportation.

Amazonas State has two public HEI systems and eighteen
private HEIs. One of the public systems is linked to the federal
government and the other linked to the state government.
As shown in Figure 2, the HEIs are located in only ten cities
of the four mesoregions. In the Central, North, South-West
and South mesoregions, there are 5, 1, 2 and 2 cities with an
HEI, respectively.

For each mesoregion, Table 1 shows the following fields:
the number of cities; the number of SSS; the SSS ratio,
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FIGURE 1. Amazonas state with 62 cities, rivers (blue) and roads (red). Shapefiles − files with geospatial data − obtained through [4], [5] and [6].

FIGURE 2. Amazonas state map showing mesoregions of the state and cities having at
least one higher education unit.

defined as the number of SSS in each mesoregion divided
by the total number of SSS in Amazonas state; the number
of Higher Education Students, HES; the HES ratio, defined
as the number of HES in each mesoregion divided by the
total number of HES of the Amazonas state; the number of
HEIs; the HEI ratio, defined as the number of HEIs in each

mesoregion divided by the total number of HEIs in Amazonas
state.

The private HEIs are located only in the Capital. In Table 2,
we show a comparison between the mean value of United
Nation Human Development Index - UN-HDI and mean
number of SSS of the 10 cities with HEIs and of all 62 cities.

24230 VOLUME 8, 2020



C. M. Xavier et al.: Combining Facility-Location Approaches for Public Schools Expansion

TABLE 1. Comparing populational and educational data of Amazonas State mesoregions, Brazil, [8].

TABLE 2. Mean number of SSS and mean UN-HDI of cities with HEIs and
all cities of Amazonas state, [9] and [10].

The UN-HDI Index takes into account life expectancy at
birth, mean years of schooling and expected years of school-
ing and gross national income per capita [7].

From Tables 1 and 2, the following conclusions can be
drawn:

1) In Amazonas State, Brazil, HES are concentrated in the
Central mesoregion, the most populous one and where
Manaus, the State capital, is located. However, the HES
ratio of that mesoregion compared to the same ratio of
other mesoregions is greater than the SSS ratio of that
mesoregion compared to same ratio of other mesore-
gions, suggesting that more SSS of this mesoregion
have access to higher education;

2) The mean UN-HDI of the cities with an HEI is higher
than the mean UN-HDI of all cities, suggesting that
the current HEI distribution favors cities with a higher
UN-HDI.

To equalize the HES ratio and the SSS ratio of all mesore-
gions, there are two options: increase the number of stu-
dents in the HEIs located in the mesoregions with a lower
student ratio or increase the number of cities with HEIs
in these mesoregions. The first option is an administrative
decision. The second option can be achieved by expanding
the number of HEIs, seeking a better distribution of them.
This can be accomplished using discrete location models.
We intend to evaluate solutions obtained with the following
models:

1) PMM (P-MedianModel): One that minimizes the aver-
age distance between a demand node (city with noHEI)
and a nearest facility node (city with HEI);

2) PCM (P-Center Model): One that minimizes the max-
imal distance between demand nodes and a nearest
facility node;

3) PDM (P-Dispersion Model): One that maximizes the
minimum distance between pairs of facilities;

The PCM model [11] is a type of covering-based model.
This type of model that minimizes the maximal distance
between demand nodes and a facility, assumes that there
is some critical coverage distance or time within which
demands need to be met. Such models are typically used
in designing emergency services, such as fire services or

emergency health services. The PMM model [12] is a type
of median-based model that minimizes the average distance
between demand nodes and assigned facilities. Such models
are typically used in distribution planning contexts in which
minimizing the total transport cost is essential. The PDM
model [11] maximizes the minimum distance between pairs
of facilities.

These three models are the discrete location models most
used in the literature [13]. As stated in the last paragraph, each
one optimizes a given criterium. The choice of these models
aims to evaluate which one achieves better performance in
terms of the parameters evaluated in this work: HEI ratio and
SSS ratio.

In order to provide the decision maker with multiple
options, we intend also to model the expansion problem in
such a way as to provide the following strategies:

a) Strategy A: An expansion that favors cities with lower
UN-HDI;

b) Strategy B: An expansion that favors most populous
cities;

c) Strategy C: An expansion that equally favors both cri-
teria (UN-HDI and most populous cities).

Facility location problems (FLP) are usually employed for
solving public, commercial, industrial and military problems.
In these problems, service demand points must be attended
by a limited number of facilities. The computational com-
plexity theory classifies the PMM as a non-polynomial hard
problem - NP-hard problem [14]. Meta-heuristic methods
such as Greedy Interchange (GI), Neighborhood (N) and
Exchange [15], Semi-Lagrangean relaxation [16], Simulated
Annealing (SA) [17], Tabu Search (TS) [18], and Genetic
Algorithm (GA) ([19], [20]) are usually used for solving
NP-hard problems for which an optimal solution method is
not known or does not exist. In the comparisons made in [18]
and [21], the GA heuristic stands out as the best one in terms
of time and precision of solution.

The GA implementation, proposed by [22], when used for
solving PMM problems of the Operational Research (OR)
library [23], outperformed the implementations proposed
in [19] and [20], concerning time and precision. In this paper,
we adapt this GA implementation for solving the three types
of location problems previously mentioned.

II. LITERATURE REVIEW
Several authors used the PMM formulation in optimizing
single objective school location problems ([24]–[26]).

In [24], a variant of the PMM was employed in order to
determine p schools in Coimbra, Portugal. The optimization
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criterion maximizes the accessibility of students to schools,
with constraints on maximum and minimum capacity occu-
pation. The optimization problem considered 11 existing
secondary schools, 43 population centers, and the total
student-to-school distance of 21,097 km. An XPRESS-MP
optimizer was used and an optimized value of 10,861 km was
achieved for the sum of distances, for 14 schools.

A single objective optimization problem was solved
in [25]. The optimization criterion was the average distance
traveled by pupils from home to school. The application
was on a network of secondary suburban schools of Dakar,
Senegal, with 15 centers. The authors considered 8 candidate
sites for establishing schools, including 5 sites with existing
schools, so that the average student-school distance was lim-
ited to 2,000 km. The authors used an IBM-CPLEX solver
to perform the experiments. They achieved the best results
for p = 5. Four of five candidate sites already had schools
and only one candidate site did not. The average student-to-
school travel distance was 1,620 km.

In [26], the authors proposed location of new munici-
pal schools in the Guaratiba area - assessment region 5,
Rio de Janeiro, Brazil, relying on capacitated p-median
and maximum coverage models. In the first model, they
sought to minimize total student travel distance to the
nearest school. Each school had a 1,300-student maximum
capacity and the total number of new schools was 15. For
the second model, they sought to maximize population cov-
erage within a pre-set 1,500m maximum distance. Both
approaches were carried out using an Advanced Interactive
Multidimensional Modeling System tool based on a CPLEX
solver.

Other studies conducted by [27] and [28] solvemulti objec-
tive school location problems. A model for determining the
location of schools aiming at minimizing fixed and overhead
school costs such as per-hour rates was proposed in [26].
Such work took into consideration the cost for opening and
closing existing school facilities. The problem was optimized
using CPLEX 9.1. They managed to reduce over 30% of
total costs for a 5-year period and they saved more than
$6,000,000 per year.

In [28], the authors proposed a multi-objective model
for locating secondary schools in rural areas in Chile, con-
sidering 45 population centers and 34 existing schools.
The objective function minimizes operating and investment
costs in the education system, minimizes the average travel
time of student-to-school, maximizes the average number of
students enrolled per school and minimizes the number
of multilevel schools. These authors obtained a decrease
of 4.5% in cost. GAMS/MINOS (Modular In-core Non-
linear Optimization System) and Tabu Search were used
to solve the model. These authors set aside the p-median
approach and adopted the procedure of optimizing a weighted
function.

A model for the school location-allocation problem to
minimize the aggregated travel impedance (time or distance)
student-to-school was formulated by [29], for maximizing

the number of students sent to their closest school and for
minimizing the number of students sent to schools so far
away from their home. These authors applied their model
in the Charlotte-Mecklenburg School System, in North Car-
olina - United States), and its surrounding county, con-
sidering that 20 schools could have been open out of
a feasible set of 25 sites with 37,851 students between
14 to17 years old. The model was solved by CPLEX
and Interactive Graphical Location-Allocation System for
Schools (iGLASS), an approach proposed by these authors
that integrates Tabu Search, Greedy, and Genetic Algo-
rithms. For iGLASS and CPLEX, respectively, these authors
obtained a total impedance of 144.8 km and 138.3 km; the
percentage of students assigned to their closest school was
80.61% and 75.45%, and the percentage of students assigned
to a school that is twice as far as the closest school of 5.13%
and 2.68%).

The following works did comparative studies using two or
more methods to solve location problems. The authors in [30]
compared the classic PMM, maximal covering location prob-
lem and PCM models applied in an emergency service loca-
tion problem. These models were evaluated with respect to
multiple performance criteria, varying p = {10, 15, 20}, and
using n = 200. The authors solve the optimization models
in the General Algebraic Modeling System (GAMS
), using
CPLEX 12.2.0.2. The authors achieved the best results for the
PMM. This model outperformed other models in four out of
seven criteria.

The PMM, maximum coverage and PCM location mod-
els were applied by [31] for locating emergency facil-
ities in a mine. The mathematical model was solved
using GAMS
 and 7 locations were selected from among
46 candidates.

None of the papers found in the literature deal with loca-
tion of higher education schools, nor do they solve prob-
lems encompassing schools located in several cities, taking
into account social parameters of these cities, such as the
UN-HDI.

Therefore, concerning HEI locations, the present study
deals with a different problem compared with papers previ-
ously published in the literature.

III. DATA AND PARAMETER NORMALIZATION
A. DATA
The location models proposed in this study use the fol-
lowing variables: distance between cities, SSS popula-
tion and UN-HDIs. SSS Populations and UN-HDIs were
acquired from [32] and [3]. The distances considered between
cities were those corresponding to fluvial distances, which
refer to the main means of transportation used in Amazon
region. Some fluvial distances were established through data
from [33]. Other distances missing from this database were
acquired by means of one of the following methods: 1) sub-
traction between known routes along the same river; 2) using
Google Maps API to measure the route between two cities
located on different rivers or tributaries.
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B. PARAMETER NORMALIZATION
Aswill be shown in section 4, the locationmodels proposed in
this study combines in the same expression the variables cited
in section 3.1. As these variables have values with different
dynamic ranges, they must be normalized. In a previous study
about the same topic [34], we evaluated normalization in
three different ways: a) usingmaximum andminimumvalues,
Eq. (1) [35]; b) using median values, Eq. (2); and c) using
standard deviation values, Eq. (3).

It was shown that, with respect to normalization,
the median leads to lower values for fluvial distance between
cities with and without an HEI and to a higher number of
SSS for cities with an HEI. Both standard deviation and
maximum-minimum normalization lead to lower UN-HDI
values for cities with an HEI. In this paper, we will use the
median normalization.

xi =
x∗i − min(x

∗
i )

max(x∗i )− min(x
∗
i )

(1)

xi =
x∗i
Xi

(2)

xi =
x∗i
si

(3)

where
• x∗i stands for non-normalized parameters: distance,
population or UN-HDI for cities;

• xi is the normalized parameter value;
• Xi is the median [36] of a parameter x∗i ;
• si is the standard deviation [37] of a parameter x∗i .

IV. LOCATION MODELING
In the introduction, it was mentioned that we will offer nine
expansion options for decision makers. These options are the
following: a) PMM, PCM and PDM that favor cities with
lower UN-HDI, by setting β = 0 and γ = 1 in equations
(4), (5) and (6), respectively; b) PMM, PCM and PDM that
equally favor most populous cities, by setting β = 1 and
γ = 0 in equations (4), (5) and (6), respectively; c) PMM,
PCM and PDM that equally favor both criteria (UN-HDI and
most populous cities), by setting β = 0.5 and γ = 0.5 in
equations (4), (5) and (6), respectively. The equations (4),
(5), (6) are submitted to restrictions (7), (8), (9) and (10).
In equations (4), (5) and (6) the number of SSS of the cities
with a facility is maximized (minus signal) and the UN-HDI
is minimized (positive signal).

Minimize f1 = α

∑n
i=1

∑n
j=1 dijxij

n− p

−β

∑n
j=1 pjzj
p

+ γ

∑n
j=1HDI jzj

p
(4)

Minimize f2 = αmax(dwij )

−β

∑n
j=1 pjzj
p

+ γ

∑n
j=1HDI jzj

p
(5)

Minimize f3 = α
1

max(d fij)

−β

∑n
j=1 pjzj
p

+ γ

∑n
j=1HDI jzj

p
(6)

Subjectto :
n∑
i=1

xii = p (7)

n∑
j=1

xij = 1, ∀i ∈ {1, . . . , n} (8)

n∑
i=1

xij ≤ nxjj, ∀j ∈ {1, . . . , n} (9)

xii and xij ∈ {0, 1}, ∀i ∈ I , j ∈ J (10)

xij =



1, if ∃ a school in city j
and if city i is nearest
to j than any other city
with an allocated school;

0, otherwise

(11)

where

• dij is the normalized river navigation distance between
cities i and j;

• pj is the normalized SSS population for city j;
• zj is 1 for city j with an HEI and 0, otherwise;
• HDIj is the normalized UN-HDI for city j;
• α, β and γ are weights for distance, population and
UN-HDI, respectively;

• dwij is the normalized river navigation distance between
cities i without an HEI and j with an HEI;

• d fij is the normalized river navigation distance between
cities i and j with an HEI;

• I is the set of demand locations;
• J is the set of candidate locations;

In this work, we have three single objective problems that
are optimized separately by the genetic algorithm. The first
single objective problem optimizes a PMM model, Eq. (4).
The second single objective problem optimizes a PCMmodel,
Eq. (5). The third single objective optimizes a PDM model,
Eq. (6). These models are optimized separately by the genetic
algorithm. In each one of these equations we have three
parameters, one related to distance, other related to popula-
tion and the last one related to UN-HDI.

The p-median modeling just presented is a classical one.
The objective function of Eq. (4) minimizes average distance
between cities and their closest facility, including the num-
ber of SSS and UN-HDI criteria. The constraint of Eq. (7)
requires that only p facilities may be established. Constraint
of Eq. (8) requires that each city be assigned a single HEI.
Constraint of Eq. (9) requires cities with no allocated HEIs
be associated only with cities with allocated HEIs. Eq. (10)
indicates the binary nature of the decision variables.

In p-center modeling, the objective function of Eq. (5)
minimizes the maximum distance between a city with no
HEI and its closest city with an HEI. Constraints (7), (8), (9)
and (10) are the same as for p-median modeling.
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In p-dispersion modeling, the objective function of Eq. (6)
maximizes the distance between the two closest cities with
allocated HEIs. Constraints (7), (8), (9) and (10) are the same
as for p-median modeling.

V. METRICS
In this study, we evaluated the results of location solutions
using seven types of metrics, divided into three groups.

1) Group 1: to evaluate if the solutions obtained by com-
bining location models and strategies cited in section
1 are providing a better distribution of HEIs we will
use the following metrics:
a) Metric 1: mean fluvial distance between a city

without an HEI and a city with an HEI;
b) Metric 2: maximal fluvial distance between a city

without an HEI and a city with an HEI;
c) Metric 3: maximal fluvial distances between

cities with an HEI;
d) Metric 4: HEI ratio;

2) Group 2: to evaluate if the solutions obtained by
combining location models and strategies cited in
section 1 are providing better equalization of the
SSS of all mesoregions, we will use the following
metric:
a) Metric 5: SSS ratio;

3) Group 3: to evaluate if the solutions obtained by com-
bining location models and some strategies cited in
section 1 could favor cities with lower UN-HDI or with
a higher number of SSS, we will use the following
metrics
a) Metric 6: mean SSS, computed by the summation

of the SSS of cities with a HEI divided by the
number of these cities;

b) Metric 7: mean UN-HDI, computed by the sum-
mation of the UN-HDI of cities with HEI divided
by the number of these cities.

VI. GENETIC ALGORITHM MODELING
A genetic Algorithm is a stochastic optimization algorithm,
inspired by the theory of evolution of Charles Darwin [38].
Since its initial proposition, it has been effectively applied
in the solution of complex problems, such as the Traveling
Salesman Problem (TSP) [39] and PMM ([19]–[21]).

The genetic algorithm starts with a population P(0) of N
chromosomes, randomly generated. The fitness value of each
chromosome is evaluated through an objective function of
the problem. The implementation of GA usually consists of
three steps: building the chromossome model, defining the
objective function and parameterization of genetic operators.
In this work, the fitness function is one of the equations (4),
(5) or (6), used in problems modeled with PMM, PCM and
PDM, respectively. The chromosome model uses the facility
indices: {1, 2,.., 62}.

In this study, we used an adapted version of the GA algo-
rithm proposed in [22]. It is presented below in the eight steps
of Algorithm 1.

Algorithm 1 Adapted Genetic Algorithm [21]
Steps
1 Randomly generate the initial population.
2 Compute fitness of population.
Repeat for x generations.
3 Roulette wheel selection of 2 parents
4 One-point crossover, at a 95% probability
5 One-gene random mutation, at a 5% probability
6 Compute fitness
7 Replace the parents with better fitness in the children.
Until population has converged, go to Step 3
8 Stop.

FIGURE 3. Example of an encoded chromosome with 13 facilities. The
blue indicates the fixed genes. The other genes (green) are those that can
be replaced.

FIGURE 4. Example of one-point crossover operation. Blue-colored boxes
indicate the fixed genes. The other genes (green) are those that can be
replaced.

FIGURE 5. Example of one-gene mutation operation. Blue-colored boxes
indicate the fixed genes. The other genes (green) are those that can be
replaced.

As stated before, the genetic codification uses the facil-
ity indices. Figure 3 shows an encoded chromosome used
in a PMM problem with 13 facilities. The first ten genes,
in blue color, represent the existing cities with a HEI. The
other genes, indicated with green color, are those that can be
replaced.

The selection operator used is the roulette wheel opera-
tor [40]. In this study, the selection operator assigns a prob-
ability value to each individual, proportional to its fitness
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FIGURE 6. Results obtained by using the PMM model for expanding from
10 to 11-16 cities with HEIs: (a) metric 1, (b) metric 2 (c) metric 3. All
distances are in kilometers.

value. This probability is given in Eq. (12).

p(ci) =
rank(ci)∑n
i=1 rank(ci)

(12)

where
• ci is i-th chromosome in the population;
• rank(ci) is the position of the ci ordered by decreasing
values of its fitness function;

• p(ci) is the selection probability of the chromosome ci;

FIGURE 7. Results obtained by using a PCM model for expanding from
10 to 11-16 cities with HEIs: (a) metric 1, (b) metric 2 (c) metric 3. All
distances are in kilometers.

As we have a minimization problem, the fitness function
values were ordered by decreasing values. The fitness func-
tion value was not used for the probability calculation, but
rather by rank, because high values of the fitness function
dominate the population, generating a premature convergence
of GA [41].

A one-point crossover operator is used in this study [40].
This operator randomly generates a reference point to
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FIGURE 8. Results obtained by using the PDM model for expanding from
10 to 11-16 cities with HEIs: (a) metric 1, (b) metric 2 (c) metric 3. All
distances are in kilometers.

permutate genes between parents. The crossover probability
used is 95%. For the chromosome shown in Figure 3, with
13 genes, the crossover point is chosen randomly in a point
between genes 11 and 12, or between genes 12 and 13.
These genes correspond to cities without an HEI. Figure 4
illustrates the genetic permutation performed by the
one-point crossover operator. To avoid repeated indices in the

TABLE 3. Values of metric 4 with parameter setting (β = 0, γ = 1), for
expanding from 10 to 16 cities with HEIs.

TABLE 4. Values of metric 4 with parameter setting (β = 1, γ = 0), for
expanding from 10 to 16 cities with HEIs.

offspring, we scanned the genes of each child, and replaced
the repeated index with another randomly selected value.

The mutation operator randomly selects one gene [20],
with probability of 0.05, and performs a mutation. Figure 5
illustrates the mutation operator. One gene with an index
value of 48 is selected and replaced with an index value of 32.
The replacing value is randomly selected.

The parameters used in this study for the GA are described
in the sequence. Population size = 10. Maximum number
of iterations = 600. The simulation for this heuristic was
performed atMATLABR2014a on a ASUS Intel(R) Xeon(R)
Processor@1.80-2.40 GHz computer with 8 GB of RAM and
Windows 10.

VII. RESULTS
The results will be broken down to the metric groups shown
previously in section 5. We will also show results concerning
the Genetic Algorithm performance.

A. GROUP 1 METRIC RESULTS
Figures 6(a), 6(b) and 6(c) show results for metrics 1, 2 and 3,
respectively, for PMM model, for the three parameter set-
tings: (β = 0, γ = 1), (β = 1, γ = 0) and (β = 0.5,
γ = 0.5), and for an expansion from 10 to 16 cities with
HEIs.

Figures 7(a), 7(b) and 7(c) show results for metrics 1,
2 and 3, respectively, for the PCM model and for the three
parameter settings: (β = 0, γ = 1), (β = 1, γ = 0) and
(β = 0.5, γ = 0.5), and for expanding from 10 to 16 cities
with HEIs.

Figures 8(a), 8(b) and 8(c) show results for metrics 1, 2 and
3, respectively, for PDM model and for the three parameter
settings: (β = 0, γ = 1), (β = 1, γ = 0) and (β = 0.5,
γ = 0.5), and for expanding from 10 to 16 cities with HEIs.

Tables 3, 4, and 5 show the number of HEIs and values of
metric 4 for the Amazonas State mesoregions, for the expan-
sion from 10 to 16 cities with HEIs for the three parameter
settings, respectively: (β = 0, γ = 1), (β = 1, γ = 0) and
(β = 0.5, γ = 0.5).
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TABLE 5. Values of metric 4 with parameter setting (β = 0.5, γ = 0.5), for expanding from 10 to 16 cities with HEIs.

TABLE 6. Values of metric 5 with parameter setting (β = 0, γ = 1), for
expanding from 10 to 16 cities with HEIs.

TABLE 7. Values of metric 5 with parameter setting (β = 1, γ = 0), for
expanding from 10 to 16 cities with HEIs.

B. GROUP 2 METRIC RESULTS
Tables 6, 7, and 8 show the values of SSS and values of metric
5 for the Amazonas State mesoregions, for expanding from
10 to 16 cities with HEIs for the three parameter settings,
respectively: (β = 0, γ = 1), (β = 1, γ = 0) and (β = 0.5,
γ = 0.5).

C. GROUP 3 METRIC RESULTS
Figures 9 and 10 show values of metrics 6 and 7, respectively,
obtained for PMM, PCM and PDM models, for expanding
cities with HEI from 10 to 11-16 cities and for the three
parameter settings: (β = 0, γ = 1), (β = 1, γ = 0) and
(β = 0.5, γ = 0.5).

D. RESULTS CONCERNING GA
Concerning the GA employed in this work, the simulation
times using the three models, for expansions from 10 to
11, 12, 13, 14, 15, and 16 cities with HEIs, are shown
in Table 9. We emphasize that, in this work, we used an
adapted version of the GA state-of-art solution proposed
by [22]. In [34], the authors used GA for designing a multi-
objective PMM for locating new schools with a chromosome

FIGURE 9. Values for metric 6 obtained for PMM, PCM and PDM, for
expanding from 11 to 16 cities with HEIs.

FIGURE 10. Values for metric 7 obtained for PMM, PCM and PDM, for
expanding from 11 to 16 cities with HEIs.

composed of 62 binaries genes, population size equal to 300,
and it varied the number of iteractions. These authors
achieved the best execution time for 10 schools with 275 sec-
onds. The best execution time in this work was achieved for
PCM model with 11 schools, about 0.006 seconds, as shown
in Table 9.

Applying the t-test to evaluate the differences between
fluvial distance, of SSS and UN-HDI criteria achieved for
GA simulation with 10, 20, and 30 initial population size,

TABLE 8. Values of metric 5 with parameter setting (β = 0.5, γ = 0.5), for expanding from 10 to 16 cities with HEIs.

VOLUME 8, 2020 24237



C. M. Xavier et al.: Combining Facility-Location Approaches for Public Schools Expansion

TABLE 9. Simulation times obtained with parameter setting
(β = 0.5, γ = 0.5) for expanding from 10 to 11, 12, 13, 14, 15, and
16 cities with HEIs.

we conclude that they are not statistically significant at a
90% confidence level. As we can observe, the best simulation
times were obtained for the PMM model. The worst simula-
tion times were obtained for the PDM Model.

VIII. DISCUSSION AND CONCLUSION
This section is divided in four sub-sections, in accordance
with the sub-sections of section 7 of the work. In the end
we will summarize the main contributions and present the
limitations of this work.

A. DO THE SOLUTIONS OBTAINED BY COMBINING
LOCATION MODELS AND STRATEGIES CITED IN SECTION
1 PROVIDE A BETTER DISTRIBUTION OF HEIs?
As observed in Figure 6(a), the combination of PMM with
parameter setting (β = 0, γ = 1) results in smaller values
for metric 1. The worst performance is obtained with the
combination PMM with parameter setting (β = 1, γ = 0).
In these expansions, the mean fluvial distance decreases
with the increasing of the number of cities with an HEI.
In Figure 6(b), the PMM with parameter setting (β = 0,
γ = 1) and the PMM with parameter setting (β = 0.5,
γ = 0.5) results in lower and slightly lower values for
metric 2, for expansions to 11-15 HEIs and to 16 HEIs,
respectively. In Figure 6(c), PMM with parameter setting
(β = 0.5, γ = 0.5) results in minimum values for maximum
fluvial distance between cities with HEIs.

As observed in Figure 7(a), the PCM with parameter set-
ting (β = 0, γ = 1) results in smaller values for metric 1.
The worst performance is obtained with PCMwith parameter
setting (β = 0.5, γ = 0.5). In these expansions, the mean
fluvial distance decreases with the increasing of the number
of cities with a HEI. In Figure 7(b), the PCM with parameter
setting (β = 0, γ = 1) results in lower values for metric 2.
In Figure 7(c), PCM with parameter setting (β = 1, γ = 0)
results in minimum values for metric 3 and the worst
results are obtained with the PCM with parameter setting
(β = 0, γ = 1).

As observed in Figure 8(a), the PDM with parameter set-
ting (β = 0, γ = 1) results in smaller values of met-
ric 1. The worst performances were obtained with PCM with
parameter setting (β = 0.5, γ = 0.5), except for expanding
to 15 HEI. In these expansions, the mean fluvial distance
decreases with the increasing of the number of cities with a
HEI. In Figure 8(b), the PDM with parameter setting (β = 1,
γ = 0) results in lower values for metric 2. In Figure 8(c),

all parameter settings result in the same minimum value for
metric 3.

In Table 3, the best HEI ratio was obtained by PMM and
PCM models. The worst HEI ratio was achieved by PDM.
Both PMM and PCM prioritize cities in South-West and
South mesoregions. In Tables 4 and 5, the best HEI ratio
was obtained by PMM. The worst HEI ratio was achieved
by PDM. PMM prioritize cities in South-West and South
mesoregions. In these tables, the PMM results in the same
HEI ratio.

From Tables 3, 4 and 5 we draw an important conclusion
of this work: all location methods (PMM, PCM and PDM)
obtained, for expanding from 10 to 16 cities with HEIs,
a better HEI ratio for North, North-West and South mesore-
gions is obtained compared with the values shown in Table 1.
The only exception is the Central mesoregion. Indeed, from
Table 1, we have that the HEI ratio of Central mesoregion,
the most populous one, is 0.8, while in Tables 3, 4 and 5,
the HEI ratio of Central mesoregion are less than or equal
to 0.5. Therefore, the location models increase the number
of cities with HEIs in the mesoregions with a lower student
ratio.

B. DO THE SOLUTIONS OBTAINED BY COMBINING
LOCATION MODELS AND STRATEGIES CITED IN SECTION 1
PROVIDE BETTER EQUALIZATION OF THE SSS RATIO OF
ALL MESOREGIONS?
For metric 5, Tables 6, 7, and 8 show the values of the
SSS ratio for the three models with strategies A, B, and C,
respectively. As we can observe, for the Central mesoregion,
the existing HEIs in Manaus, Parintins, Itacoatiara, Coari,
and Tefé represent the total of the 128,501 SSS and the
new HEI in Beruri, 1,413 SSS, as shown in Figure 11. The
other mesoregions have 20,005 SSS. Thus, the number of
SSS and SSS ratio in the first is higher than the former.
This SSS ratio of the Central mesoregion decreases with
the increase of the HEIs in the other mesoregions. The best
SSS ratios were obtained by PMM with parameter setting
(β = 0.5, γ = 0.5) for the South-West and South mesore-
gions, 0.075 and 0.0403, respectively, compared with the
other models.

It is important to note that, to increase the HES ratio from
the South, South-West and North mesoregions in relation to
the Central mesoregion, it is not only necessary to increase the
number of HEIs in these mesoregions, but also, to increase
the number of students of the HEIs located in them. How-
ever, with small cities, to increase the number of HES, it is
strongly recommended to increase the number of cities with
HEIs. Increasing the number of HEIs implies decreasing the
distances between cities without an HEI and cities with a
HEI, because it facilitates student access. Indeed, in all the
locations with 11, 12, 13, 14, 15, and 16 cities, we have a
decrease of metric 1, as shown in Figures 6(a), 7(a) and 8(a),
and in the metric 2, as shown in Figures 6(b), 7(b) and 8(b),
between a city without an HEI and a city with an HEI.
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FIGURE 11. Results obtained by using the PMM model combined with
strategy C for expanding from 10 to 16 cities with HEIs.

C. DO THE SOLUTIONS OBTAINED BY COMBINING
LOCATION MODELS AND SOME STRATEGIES CITED IN
SECTION 1 FAVOR CITIES WITH LOWER UN-HDI OR CITIES
WITH A HIGHER NUMBER OF SSS?
Figure 9 shows values for metric 6 obtained for PMM, PCM
and PDM, for expanding the number of cities with HEI from
10 to 11-16 cities. As shown in this figure, if the decision
maker chooses one of the strategies A, B, or C and one of the
optimization methods, PMM, PDM, or PCM, the values for
metric 6 are almost the same.

Figure 10 shows values for metric 7 obtained for PMM,
PCM, and PDM, for expanding the number of cities with
HEI from 10 to 11-16 cities. As shown in this figure, in some
expansions, to obtain minimum values for metric 7, the deci-
sion makers must select a PMM model combined with strat-
egy A, while in other expansions, they must select the PDM
model combined with strategy C. Figure 11 shows the cities
with HEIs for expanding from 10 to 16 cities with HEIs
obtained for the PMM model combined with strategy C.
As we can observe in this figure, the new cities with HEIs
are represented by a cross marker. Four new cities with HEIs
are in the South-West mesoregion. One new city with an HEI
is in the Central mesoregion and the other is in the South
mesoregion.

From Figure 10, we draw another important conclusion
of this work: all allocation methods used in this work,
PMM, PCM and PDM, obtained, for expanding from 10 to
11-16 cities, lowered values for metric 7. Indeed, from
Table 2, we notice that the existing distribution presents a
mean UN-HDI value of 0.619. All the expansions shown
in Figure 10 present lower mean values of UN-HDI com-
pared with 0.619. The better performances in this work were
obtained with parameter setting (β = 0, γ = 1) or with
parameter setting (β = 0.5, γ = 0.5). Theworst performance
was again obtained with parameter setting (β = 1, γ = 0).

Finally, we observe that, for all expansions, from 10 to
11-16 cities, there is a decrease in the values for metric 6.
From Table 2, we notice that, for the existing distribution,
the mean number of SSS is 14,170.40. For expansions from

10 to 16, the mean number of SSS varied from 13,019.94 to
9,229.91, for the three models. Therefore, although the model
favors an expansion to cities with higher populations, there
was a decrease in the mean number of SSS, when the number
of cities with HEIs increase. Concerning this issue, the fol-
lowing considerations may be taken into account: the existing
HEI distribution already favors cities with a higher number
of SSS. Therefore, the inclusion of more cities with HEIs
tends to drop the mean number of SSS of cities with HEIs.

D. COMMENTS ON THE GENETIC ALGORITHM RESULTS
Table 9 shows the simulation times using the threemodels, for
expansions from 10 to 11, 12, 13, 14, 15 and 16 cities with
HEIs, for the parameter setting (β = 0.5, γ = 0.5). As can
be seen, the best simulation times were obtained for the PCM
model for expanding to 11 HEI in 0.006 seconds. The worst
simulation times were obtained for the PDM Model.

Some limitations of our work are the following: an opti-
mum set of weights is not proposed for each term in equa-
tions (4), (5) and (6); no border treatment is proposed for
cities that could be served by institutions of neighboring
states; cities with high populations could generate spatial
aggregation. However, we would like to emphasize that two
terms in equations (4), (5) and (6) are conflicting: population
and UN-HDI. The conflict arises because very small cities
have lower UN-HDIs. This conflict minimizes the problem of
spatial aggregation observed in other papers ([42] and [43]).
In other words, it minimizes the danger that the local medians
in the PMM solutions will be located wherever particular
centers exist with their populations having more inhabitants
than other centers.

The methodology developed in this work can be applied to
any problem of locating public resources. Although the prob-
lem of locating government resources, in general, involves
a political dimension, this does not invalidate a technical
analysis of the problem, as we did in this work. The analysis
presented herein aims primarily to contribute to the evaluation
of a solution for locating HEIs in Amazonas State, Brazil.

We would also like to point out that this work differs
from other works already published in the literature, because
the focus here is on expanding an existing system of HEIs.
We believe that this study is novel in the sense that it is
the only study that compares classic multiple criteria facility
location models.

Finally, we would like to point out that the main contribu-
tion of this study underscores the necessity of social devel-
opment of cities with lower UN-HDI values, and we propose
future expansion of the Amazonas Higher Education system
that favors mesoregions with small student concentrations,
preventing an oversized number of students in themesoregion
with a higher population.
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