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ABSTRACT This paper presents a self-contained factorization for the Vandermonde matrices associated
with true-time delay based wideband analog multi-beam beamforming using antenna arrays. The proposed
factorization contains sparse and orthogonal matrices. Novel self-recursive radix-2 algorithms for Vander-
monde matrices associated with true time delay based delay-sum filterbanks are presented to reduce the
circuit complexity of multi-beam analog beamforming systems. The proposed algorithms for Vandermonde
matrices by a vector attain O(N logN ) delay-amplifier circuit counts. Error bounds for the Vandermode
matrices associated with true-time delay are established and then analyzed for numerical stability. The
potential for real-world circuit implementation of the proposed algorithms will be shown through signal
flow graphs that are the starting point for high-frequency analog circuit realizations.

INDEX TERMS Sparse matrices, algorithm design and analysis, computational complexity, accuracy, error
analysis, fast fourier transforms, antenna arrays, integrated circuits, wireless communication.

I. INTRODUCTION
The realization of narrowband discrete Fourier trans-
form (DFT) multi-beams is itself a hard engineering prob-
lem due to circuit complexity of the aperture transceivers.
For example, the phasing network required for forming
N beams requires N 2 phasing elements. The DFT is a
linear operation that maps an N -point input signal x =[
x[0] x[1] · · · x[N − 1]

]> into anN -point output signalX =[
X [0] X [1] · · · X [N − 1]

]> according to the following rela-
tionship: X = FN · x, where FN is the DFT matrix, whose
elements are given by ωklN , k, l = 0, 1, . . . ,N − 1, where

ωN = exp
(
−j 2πN

)
is the N th root of unity and j =

√
−1.

Evaluated by means of direct matrix-vector multiplica-
tions, the direct computational complexity of the DFT is
in O(N 2), with N 2 complex multiplications and N (N − 1)
complex additions. The DFT matrix has been studied for the
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last 50 years, and there exist a multitude of fast algorithms
(collectively called fast Fourier transforms (FFTs)) that com-
pute the DFT using O(N logN ) operations, which is signifi-
cantly lower when comparedwith the direct implementations.
The use of a spatial FFT leads to N independent orthogonal
RF beams at O(N logN ) complexity. In fact, by taking a
given FFT algorithm and implementing its ‘‘Twiddle Fac-
tors’’ (which are intermediate constant complex multiplica-
tions found in FFT algorithms) using microwave or analog
IC-based phase-shifter implementations has led to the ‘‘But-
ler Matrix’’ type multi-beam array beamformers that are well
known in the literature. However, such FFT beams suffer
from frequency dependent beam directions. Known as ‘‘beam
squint’’ because the beam directions are strongly depen-
dent on the temporal frequency of operation, DFT based
multi-beam beamformers can only be used for narrowband
wireless systems.

The FFT is capable of computing the DFT or its inverse
inO(N logN ) complexity. Therefore, FFT-based multi-beam
beamformers are very useful for wireless systems having
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narrow bandwidth. However, for emerging 5G mmW sys-
tems that exploit increasingly wide bandwidths, the beam-
squint problem can be significant. For emerging 5G mmW
systems that fully exploit the available bandwidth for increas-
ing system capacity, one must utilize the true time-delay
based multi-beam beamformers described by its own delay
Vandermonde matrix (DVM). The DVM, however, is equal
to the DFT only at a single temporal frequency. There-
fore, FFT-based factorizations are not applicable for the
DVM matrix. In this paper, we describe the complexity of
an FFT-like factorization algorithm for the Vandermonde
matrices, in order to be able to implement truly wideband
multi-beam mmW beamformers based on true-time-delay
networks albeit at O(N logN ) complexity.

The paper is organized as follows. Section II contains
an introduction to complexity metrics of analog and digi-
tal parallel computation systems for matrix-vector products.
Section III introduces novel self-contained factorizations
for Vandermonde matrices and radix-2 algorithms, while in
section IV we will derive arithmetic complexity and elabo-
rate on numerical results based on the proposed algorithms
for Vandermonde matrices. Next, section V analyzes error
bounds and stability in computing radix-2 algorithms for
Vandermonde matrices having true time-delays. In section VI
we will present signal flow graphs of the proposed radix-2
algorithm for Vandermonde matrices. Finally, section VII
concludes the paper.

II. ANALOG IMPLEMENTATIONS FOR 5G AND BEYOND:
QUANTIFYING COMPLEXITY
Fast analog radio frequency (RF) integrated circuit (IC) real-
izations of the beamforming algorithms become necessary
when the bandwidths of interest are greater than a few GHz.
For emerging 5G, 6G and beyond, the bandwidths of interest
are too high for digital computing solutions to keep up. The
solution is to replace digital systems with fast analog imple-
mentations of wideband beamforming algorithms, which in
turn, requires a revisit to traditional algorithm complexity
theory because of differences in analog parallel architec-
tures compared to conventional digital approaches. In analog
implementations, the bandwidth effectively sets the rate at
which the analog computation can be updated. The DVM
building block employs true time delays that can be realized
using transmission line segments and/or all-pass networks
followed by amplification stages.

Let us define DVM fast algorithms as consisting of gain-
delay-block (GDB) and addition/subtraction blocks. Instead
of computing the number of multiplications for accessing
with arithmetic complexity (as one would do for digital
systems), we need to count the number of parallel circuit
implementations of GDBs in order to access the circuit com-
plexity of analog parallel algorithms. The larger the number
of GDBs, the higher the circuit complexity and hence higher
chip area and power consumption. In analog fast algorithms,
the objective is to factorize the original matrix into products

of sparse matrices, such that the total number of GDBs is
reduced from O(N 2) to O(N logN ).
We remark here that the gain is not equivalent to the

coefficient multiplication. Although a delay of t is simply
multiplication by e−jωt in the mathematical sense, it requires
a separate true time delay circuit in the analog domain. Hence,
the multiplication complexity is different from GBD counts.

III. SELF-CONTAINED FACTORIZATION AND ALGORITHM
FOR VANDERMONDE MATRICES
Low complexity and stable algorithms for the delay Vander-
monde matrix, AN = [αkl]N ,N−1k=1,l=0, where α = e−jωtτ and
accounts for the phase rotation associated with the delay τ
at frequency f , and ωt = 2π f , have been derived through
our previous work [1], [16], [17]. It is important to realize
that the matrix elements are integer powers of α = e−jωtτ

which are functions of the temporal frequency variable ωt ;
this is an important distinction from the DFT matrix where
the elements are constants defined as the primitive N th roots
of unity. Because integer powers of α = e−jωtτ are dependent
on ωt the DVM frequency responses are functions of two
frequency variables: ωx , which is typically a spatial variable,
and ωt which is typically the temporal frequency variable.
The DVM matrix frequency responses are defined using the
spatial frequency variable ωx via 2-D filterbank responses
that contain ωt as a parameter, and given by the expression
for the kth filter for k = 0, 1, . . . ,N − 1 as Hk (jωx , jωt ) =∑

i α
kie−jωx i, i = 0, 1, . . . ,N − 1. Therefore, considering

both ωx and ωt the DVM defines N 2-D frequency responses.
Further, the DVM is the super-class of the DFT matrix

without having nice properties like unitary, periodicity,
symmetry, and circular shift. There is no self-contained
radix-2 DVM algorithm in the literature. The manuscript
[17] proposes a self-contained sparse factorization of DVM
with O(N 2) arithmetic complexity. The displacement struc-
ture of Vandermonde-related matrices is used to derive
O(N log2 N ) arithmetic complexity algorithms in [7], [8]
and an O(N ) arithmetic complexity algorithm in [14]. The
manuscripts [12], [13], [23] propose O(N 2) complexity
algorithms to compute Vandermonde matrices (having real
nodes) by a vector. The DVM algorithm in [17] extends
the results in [12], [13], [23] utilizing complex nodes
without using displacement equations as in [7], [8], [14].
Moreover, we have addressed the error bounds and stabil-
ity of the DVM algorithm in [17] by filling the gaps in
[12], [13], [23]. The DVM algorithm in [16] is faster than
[17] but does not produce arithmetic complexity of order
O(N logN ). On the other hand, there are no constraints
for nodes of DVM in [17] as opposed to what we propose
here.

In this section, we derive novel self-contained factorization
for the Vandermode-type matrices and propose a radix-2
algorithm for the Vandermonde matrices. We will account for
the phase rotation associated with delay and frequency in the
factorization of Vandermonde matrices.
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A. SELF-CONTAINED FACTORIZATION FOR
VANDERMONDE MATRICES
Algorithms operating on analog signals for computing Van-
dermonde matrix by a vector can be seen as the evaluation
of (N − 1)th degree polynomial at N points, albeit using
a paralleled analog computing circuit as opposed to a dig-
ital realization that must operate on samples and quantized
signals. Here we derive self-contained factorization of Van-
dermonde matrices to obtain efficient continuous-time algo-
rithms for implementation on analog circuits while reducing
GDB counts.

One can observe the computation of Vandermonde matrix
by a vector with arithmetic complexity O(N log2 N ) in [4],
[7], [8]. Here, arithmetic complexity refers to the number of
GDBs in an analog RF-IC circuit implementation, unlike the
traditional approach of the number of multipliers and adders
in a digital system. There are several mathematical techniques
available to derive radix-2 and split-radix FFT algorithms,
as described in [3], [10], [18], [20], [22]. It has been shown
in [15] that Vandermonde matrices are badly ill-conditioned
with a narrow class of exceptions whereas cyclic sequences
of nodes are equally spaced on the unit circle C(0, 1). In
here, we propose self-contained and sparse factorization for
the well-conditioned Vandermonde matrices and extend the
results for C(0, r), where r > 1 (i.e. circle of radius r
centered at the origin in the complex plane). The proposed
factorizations will then be used to derive fast algorithmswhile
reducing GDB counts.
Theorem 1: Let the Vandermonde matrix VN = [vlk ]

N−1
k,l=0

be defined by equally spaced nodes {v0, v1, . . . , vN−1} on
C(0, 1) (in counterclockwise direction) and N = 2t (t ≥ 1).
Then VN (v0, v1, . . . , vN−1) can be factored into

VN = PTN

[
VN

2
VN

2

][
IN
2

ḊN
2

] IN
2

IN
2

IN
2
−I N

2


[
IN
2

c · IN
2

]
(1)

where PN is the even-odd permutation matrix, I N
2
is the

identity matrix, ḊN
2
= diag[el(

2π j
N )]

N
2 −1
l=0 , c = e

jθN
2 , and

0 ≤ θ < 2π .
Proof: Let us permute rows of VN by multiplying with

PN and write the result as the block matrices:

PNVN =


[
vl2k
]N

2 −1

k,l=0

[
v

(
N
2 +l

)
2k

]N
2 −1

k,l=0[
vl2k+1

]N
2 −1

k,l=0

[
v

(
N
2 +l

)
2k+1

]N
2 −1

k,l=0

 . (2)

It is clear that the (1,1) block of the product PNVN is VN
2
.

Now, we consider (1,2), (2,1), and (2,2) blocks of PNVN (2)
and represent each of these byVN

2
and the product of diagonal

matrices.

By (1,2) block of (2) we get:[
v

(
N
2 +l

)
2k

]N
2 −1

k,l=0

= diag
[
v
N
2
2k

]N
2 −1

k=0
·

[
vl2k
]N

2 −1

k,l=0
. (3)

Since nodes are equally spaced on C(0, 1), we have v2k+1 =
v2k · e

2π j
N , for k = 0, 1, . . . , N2 − 1. Now by (2,1) block of (2)

we get:[
vl2k+1

]N
2 −1

k,l=0
=

[
vl2k
]N

2 −1

k,l=0
· diag[el(

2π j
N )]

N
2 −1
l=0 . (4)

By (2,2) block of (2) we get:[
v

(
N
2 +l

)
2k+1

] N
2 −1

k,l=0

= − diag
[
v
N
2
2k

]N
2 −1

k=0
·

[
vl2k
]N

2 −1

k,l=0
·

diag[el(
2π j
N )]

N
2 −1
l=0 . (5)

Thus by (3), (4), and (5), we can state (2) as:

PNVN =

 VN
2

DN
2
· VN

2

VN
2
· ḊN

2
−DN

2
· VN

2
· ḊN

2

 (6)

where DN
2
= diag

[
v
N
2
2k

]N
2 −1

k=0
. Let us consider the product

of mth row of VN and lth column of VH
N , where VH

N is the
conjugate transpose of VN . Thus, we have:

VN (m, :) · VH
N (:, l)

= 1+ vm−1v̄l−1 + v2m−1v̄
2
l−1 + · · · + v

(N−1)
m−1 v̄(N−1)l−1

=

{
N ,when m = l,
0,when m 6= l.

In the above, the first equality follows as vk , v̄k ∈ C(0, 1)
for k = 0, 1, . . . ,N − 1 and the second equality follows as
v2k+1 = v2k ·e

2π j
N . Hence,VN is unitary up to scaling by 1

√
N
.

By using this we can state (6) as:

PNVN =

[
VN

2
VN

2

]

×

 IN
2

2
N · V

H
N
2
· DN

2
· VN

2

ḊN
2
−

2
N · V

H
N
2
· DN

2
· VN

2
· ḊN

2

 . (7)

Now let us consider the productVH
N
2
·DN

2
·VN

2
i.e. the product

of mth row of VH
N
2
· DN

2
-say V̂N

2
and lth column of VN

2
.

Therefore, we have that

V̂N
2
(m, :) · VN

2
(:, l)

= v̄m−10 v
N
2
0 v

l−1
0 + v̄m−12 v

N
2
2 v

l−1
2 + v̄m−14 v

N
2
4 z

l−1
4

+ · · · + v̄m−1N−2v
N
2
N−2v

l−1
N−2
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=


N
2 −1∑
k=0

v
N
2
2k , when m = l,

0, when m 6= l.

In the above, the first equality follows as v2k , v̄2k ∈ C(0, 1)
and the second equality follows as v2k are nodes of VN

2
and

v2k+2 = v2k · e
4π j
N . Thus, by following the above one can see

the (m, l) entry of V̂N
2
· VN

2
· ḊN

2
as

(m, l) entry of V̂N
2
· VN

2
· ḊN

2

=


N

2 −1∑
k=0

v
N
2
2k

 el(
2π j
N ),when m = l,

0,when m 6= l.

Notice that even nodes on C(0, 1) can be expressed as v2k =

e
j
(
θ+ 4πk

N

)
for k = 0, 1, . . . , N2 −1. Thus, by raising each even

node to the power of N
2 and taking average we get c = e

jθN
2

where j2 = −1. Hence,

VN = PTN

[
VN

2
VN

2

] IN
2

c · IN
2

ḊN
2
−c · ḊN

2

 (8)

and the claim of the theorem follows. �
Remark 2: The last matrix in the factorization (8) has been

split into three sparse matrices in (1) to reduce the multiplica-
tion counts and hence for efficient hardware implementation.
Corollary 3: Let the Vandermonde matrix ṼN = [ṽlk ]

N−1
k,l=0

be defined by equally spaced nodes {ṽ0, ṽ1, . . . , ṽN−1} on
C(0, r), where r > 1 (in counterclockwise direction) and
N = 2t (t ≥ 1). Then ṼN (ṽ0, ṽ1, . . . , ṽN−1) can be factored
into

ṼN = VN D̃N (9)

where D̃N = diag[r l]N−1l=0 and VN is defined via (1).
Proof: This is trivial as ṽk = r · vk for k = 0, 1, . . . ,

N − 1. �
The following self-contained factorization for the Van-

dermonde matrices is proposed in connection to the phase
rotation associated with delay τ and frequency ωt = 2π f .
Theorem 4: Let the Vandermonde matrix VN = [vlk ]

N−1
k,l=0

be defined by equally spaced nodes {v0, v1, . . . , vN−1} on
C(0, 1) (in clockwise direction) and N = 2t (t ≥ 1). Then
VN (v0, v1, . . . , vN−1) can be factored into

VN = PTN

[
VN

2
VN

2

][
IN
2
¯̇DN

2

] IN2 IN
2

IN
2
−IN

2


[
IN
2

c̄ · IN
2

]
(10)

where IN
2
is the identity matrix, ¯̇DN

2
= diag[e−l(

2π j
N )]

N
2 −1
l=0 ,

c̄ = e−
jθN
2 , and θ = 2π f τ = ωtτ , s.t. 0 ≤ θ < 2π .

Proof: The proof follows similar lines as that of The-

orem 1, except ¯̇DN
2
= diag[e−l(

2π j
N )]

N
2 −1
l=0 instead of ḊN

2
=

diag[el(
2π j
N )]

N
2 −1
l=0 and c̄ instead of c. �

Remark 5: Theorem 4 has proposed a self-contained fac-
torization, as opposed to a scaled DFT matrix. If one chooses
to scale DFT matrices to factor VN , it results in the compu-
tation of small complex numbers and leads to zero matrices
[9]. The proposed factorization forVN in (10) overcomes this
barrier.
Corollary 6: Let the Vandermonde matrix ṼN = [ṽlk ]

N−1
k,l=0

be defined by equally spaced nodes {ṽ0, ṽ1, . . . , ṽN−1} on
C(0, r), where r > 1 (in clockwise direction) and N = 2t

(t ≥ 1). Then ṼN (ṽ0, ṽ1, . . . , ṽN−1) can be factored into

ṼN = VN D̃N (11)

where D̃N = diag[r l]N−1l=0 and VN is defined via (10).
Proof: This is trivial as ṽk = r · vk for k = 0, 1, . . . ,

N − 1. �
Remark 7: When θ = 0 and r = 1, the proposed factoriza-

tion for the Vandermodematrices given in Theorem 4, reduces
to the well known self-contained DFT matrix factorization
[3], [19], [22], [24]. Thus, we can use this property to
define a delay Vandermonde matrix to solve the beam squint
problem as well as allow high-speed analog realizations for
future high bandwidth applications where the slowing down
of Moore’s law prevents the adoption of digital parallel pro-
cessing architectures.

B. SELF-RECURSIVE ALGORITHMS FOR VANDERMONDE
MATRICES
In the following, we will state self-recursive radix-2 algo-
rithms for Vandermonde matrices with the help of the
Theorem 1, Theorem 4, Corollary 3 and Corollary 6. Let
us call the corresponding algorithms vanc(N), vancc(N),
vancr(N), and vanccr(N) respectively, e.g., the acronym
vancr(N) was selected to refer to the factorization for the
Vandemode matrices having clockwise nodes on the circle
of radius r . We use the following notation for the inputs of
the algorithms i.e. N for the size of the matrices, θ , where
0 ≤ θ < 2π , for the angle of rotation from the positive
real axis (positive or negative based on counterclockwise or
clockwise direction), r for the magnitude, and z for the input
vector.

Before stating algorithms, let us use the following notation
to denote sparse matrices which will be used hereafter for
N ≥ 4.

D̂N =

[
IN
2

ḊN
2

]
, ĎN =

[
IN
2
¯̇DN

2

]

ÎN =

 IN2 IN
2

IN
2
−IN

2

 ,
CN =

[
I N
2

c · IN
2

]
, and C̄N =

[
IN
2

c̄ · IN
2

]
. (12)
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Algorithm 8: vancc(z,N)
Input: N = 2t (t ≥ 1), N1 =

N
2 , θ , and z ∈ Rn or Cn.

1) If N = 2, then

y =
[
1 ejθ

1 −ejθ

]
z.

2) If N ≥ 4, then
u := CN z,
v := ÎNu,
w := D̂Nv,
s1 := vancc

(
[wi]

N1−1
i=0 ,N1

)
,

s2 := vancc
(
[wi]Ni=N1

,N1

)
,

y := PTN
(
s1T , s2T

)T
.

Output: y = VN z.
Algorithm 9: vanc(z,N)

Input: N = 2t (t ≥ 1), N1 =
N
2 , θ , and z ∈ Rn or Cn.

1) If N = 2, then

y =
[
1 e−jθ

1 −e−jθ

]
z.

2) If N ≥ 4, then
u := CN z,
v := ÎNu,
w := ĎNv,
s1 := vanc

(
[wi]

N1−1
i=0 ,N1

)
,

s2 := vanc
(
[wi]Ni=N1

,N1

)
,

y := PTN
(
s1T , s2T

)T
.

Output: y = VN z.
Algorithm 10: vanccr(z,N)

Input: N = 2t (t ≥ 1), N1 =
N
2 , r , θ , and z ∈ Rn or Cn.

1) If N = 2, then

y =
[
1 rejθ

1 −rejθ

]
z.

2) If N ≥ 4, then
u := D̃N z,
y := vancc

(
[ui]

N−1
i=0 ,N

)
.

Output: y = ṼN z.
Algorithm 11: vancr(z,N)

Input: N = 2t (t ≥ 1), N1 =
N
2 , r , θ , and z ∈ Rn or Cn.

1) If N = 2, then

y =
[
1 re−jθ

1 −re−jθ

]
z.

2) If N ≥ 4, then
u := D̃N z,
y := vanc

(
[ui]

N−1
i=0 ,N

)
.

Output: y = ṼN z.

IV. ANALOG GDB-COMPLEXITY
The number of additions andmultiplications required to carry
out a computation is called the arithmetic complexity in
a digital computing system. Here, because our intention is
to realize these algorithms as high-speed analog computing
circuits operating at RF, we use the modified arithmetic
complexity metric where we are counting the number of
GDBs instead of multipliers. In this section, the GDB counts

of the proposed self-contained factorization for the Van-
dermonde matrices via algorithms vanc(z,N), vancc(z,N),
vancr(z,N), and vanccr(z,N) will be addressed. The direct
analog computation of the Vandermonde matrix by a vector
z ∈ C in the usual way requires O(N 2) GDB circuits to be
realized in parallel in the RF-IC analog computing device.

However, we will show in this section that the proposed
self-recursive radix-2 algorithms can be utilized to compute
Vandermonde matrices by a vector with O(N log N ) GDB
counts.

This is a dramatic circuit complexity reduction of Vander-
monde matrices by a vector in the literature. Although the
computation speed is still the same, the new factorization
reduces chip area and power consumption due to the smaller
amount of GDB circuits that have to be physically realized
on the analog computing device.

A. GDB COUNTS OF ANALOG FAST ALGORITHMS FOR
VANDERMONDE MATRICES
Here we analyze the analog GDB counts of the radix-2 algo-
rithms for Vandermonde matrices presented in Section III-A.
Let us denote the number of complex/real additions (say
#aC/#aR respectively) and complex/real multiplications (say
#mC/#mR respectively) required to compute y = VN z and
y = ṼN z having z ∈ CN or RN . We do not count multiplica-
tion by ±1 and permutation.
Let us first analyze the complex GDB counts of the

radix-2 algorithms for Vandermonde matrices by a complex
input vector. We recall that the GDBs implement a complex
multiplication defined in the frequency domain ωt which
requires a time-domain delay to implement on the DVM
signal flow graphs. We recall that the independent frequency
variable of the DVM is ωx and that ωt is the temporal fre-
quency parameter associated with thematrix elements α.This
is why the complex multiplication operations, which contain
e−jωtτ terms, must in practice be realized in the time domain
using time-delays.
Theorem 12: Let N = 2t (≥ 2) and θ be given. The

complex GDB counts of the proposed vancc(z,N) algorithm
with z ∈ CN is given by

#aC(VanCC,N ) = Nt,

#mC(VanCC,N ) = Nt − N + 1. (13)
Proof: Referring to the algorithm vancc(z,N), we get

#aC(VanCC,N ) = 2 · #aC
(
VanCC,

N
2

)
+ #aC

(
D̂N

)
+#aC

(
ÎN
)
+ #aC (CN ) . (14)

By following the structures of D̂N , ÎN and CN ,

#aC
(
D̂N

)
= 0, #mC

(
D̂N

)
=
N
2
− 1,

#aC
(
ÎN
)
= N , #mC

(
ÎN
)
= 0,

#aC (CN ) = 0, #mC (CN ) =
N
2
. (15)
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Thus by using the above, we could state (14) as the first order
difference equation with respect to t ≥ 2

#aC(VanCC, 2t )− 2 · #aC
(
VanCC, 2t−1

)
= 2t .

Solving the above difference equation using the initial condi-
tion #aC(VanCC, 2) = 2, we can obtain

#aC(VanCC, 2t ) = Nt.

Now by using the algorithm vancc(z,N) and (15), we could
obtain another first order difference equation with respect to
t ≥ 2

#mC(VanCC, 2t )− 2 · #mC
(
VanCC, 2t−1

)
= 2t − 1.

Solving the above difference equation using the initial condi-
tion #mC(VanCC, 2) = 1, we can obtain

#mC(VanCC, 2t ) = Nt − N + 1.

�
Corollary 13: Let N = 2t (≥ 2), r and θ be given. The

complex GDB counts of the proposed vanccr(z,N) algorithm
with z ∈ CN is given by

#aC(VanCCR,N ) = Nt,

#mC(VanCCR,N ) = Nt −
1
2
N . (16)

Proof: The multiplication of the diagonal matrix D̃N
with a complex input counts no addition and N

2 − 1 multi-
plications. Thus by using vanccr(z,N) algorithm and GDB
counts in (13), the complex GDB counts can be obtained as
in (13). �
Theorem 14: Let N = 2t (≥ 2) and θ be given. The

complex GDB counts of the proposed vanc(z,N) algorithm
with z ∈ CN is given by

#aC(VanC,N ) = Nt,

#mC(VanC,N ) = Nt − N + 1. (17)
Proof: The proof follows similar lines as that of

Theorem 12 except ĎN instead of D̂N and C̄N instead
of CN . �
Corollary 15: Let N = 2t (≥ 2), r and θ be given. The

complex GDB counts of the proposed vancr(z,N) algorithm
with z ∈ CN is given by

#aC(VanCR,N ) = Nt,

#mC(VanCR,N ) = Nt −
1
2
N . (18)

Proof: The multiplication of the diagonal matrix D̃N
with a complex input counts no addition and N

2 −1multiplica-
tions. Thus by using vancr(z,N) algorithm and GDB counts
in (17), the complex GDB counts can be obtained as in (18).

�
Let us analyze the real GDB counts of the radix-2 algo-

rithms for Vandermonde matrices by a real input vector. Here
we count the multiplication of two complex numbers with
2 real additions and 4 real multiplications.

Theorem 16: Let N = 2t (≥ 2) and θ be given. The
real GDB counts of the proposed vancc(z,N) algorithm with
z ∈ RN is given by

#aR(VanCC,N ) = Nt,

#mR(VanCC,N ) = 2Nt −
5
2
N + 2. (19)

Proof: Referring to the algorithm vancc(z,N), we get

#mR(VanCC,N ) = 2 · #mR
(
VanCC,

N
2

)
+ #mR

(
D̂N

)
+#mR

(
ÎN
)
+ #mR (CN ) . (20)

By following the structures of D̂N , ÎN and CN ,

#aR
(
D̂N

)
= 0, #mR

(
D̂N

)
= N − 2,

#aR
(
ÎN
)
= N , #mR

(
ÎN
)
= 0,

#aR (CN ) = 0, #mR (CN ) = N . (21)

�
Thus by using the above, we could state (20) as the first

order difference equation with respect to t ≥ 2

#mR(VanCC, 2t )− 2 · #mR
(
VanCC, 2t−1

)
= 2 · 2t − 2.

Solving the above difference equation using the initial condi-
tion #mR(VanCC, 2) = 1, we can obtain

#mR(VanCC, 2t ) = 2Nt −
5
2
N + 2

Now by using the algorithm vancc(z,N) and (15), we could
obtain another first order difference equation with respect to
t ≥ 2

#aR(VanCC, 2t )− 2 · #aR
(
VanCC, 2t−1

)
= 2t .

Solving the above difference equation using the initial condi-
tion #aR(VanCC, 2) = 2, we can obtain

#aR(VanCC, 2t ) = Nt.

Corollary 17: Let N = 2t (≥ 2), r and θ be given. The
real GDB counts of the proposed vanccr(z,N) algorithmwith
z ∈ RN is given by

#aR(VanCCR,N ) = Nt,

#mR(VanCCR,N ) = 2Nt −
3
2
N + 1. (22)

Proof: D̃N is a diagonal matrix with real entries so the
number of additions will remain the same as in (19) while the
number of multiplications will be increased by N −1 in (19).

�
Theorem 18: Let N = 2t (≥ 2) and θ be given. The real

GDB counts of the proposed vanc(z,N) algorithm with z ∈
RN is given by

#aR(VanC,N ) = Nt,

#mR(VanC,N ) = 2Nt −
5
2
N + 2. (23)
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TABLE 1. Complex GDB counts of the proposed radix-2 algorithms (i.e. vanc(z, N), vancr(z, N), vancc(z, N),and vanccr(z, N)) vs direct computation.

Proof: The proof follows similar lines as that of
Theorem 16 except ĎN instead of D̂N and C̄N instead
of CN . �
Corollary 19: Let N = 2t (≥ 2), r and θ be given. The

real GDB counts of the proposed vancr(z,N) algorithm with
z ∈ RN is given by

#aR(VanCR,N ) = Nt,

#mR(VanCR,N ) = 2Nt −
3
2
N + 1. (24)

Proof: D̃N is a diagonal matrix with real entries so
the number of additions will remain the same as in (23)
while the number of multiplications will be increased by
N − 1 in (23). �

B. NUMERICAL RESULTS
Here we provide numerical results for the GDB counts of
the proposed radix-2 algorithms vanc(z,N), vancc(z,N),
vancr(z,N), and vanccr(z,N). We consider the direct com-
putation of Vandermonde matrices V and Ṽ by the vector
z ∈ CN withN (N−1) complex additions and multiplications
(note that V and Ṽ have 1’s along the first column so we
counted the multiplication count as N (N − 1) as opposed to
N 2). Also, the direct computation of Vandermonde matrices
V and Ṽ by the vector z ∈ RN is taken as N (2N − 1) real
additions and 2N (N − 1) real multiplications (since vk =

e
−j
(
θ+ 2πk

N

)
we have considered on computing the powers of

nodes using vlk = e
−jl

(
θ+ 2πk

N

)
for l = 2, 3, · · · ,N − 1).

Note that we have not counted the multiplication by 1 in the
Vandermonde matrices. The numerical results for the GDB
counts of the proposed algorithms vanc(z,N), vancr(z,N),
vancc(z,N),and vanccr(z,N) with corresponding matrices
VN and ṼN varying sizes from 4 × 4 to 4096 × 4096 are
shown in Tables 1, 2, and 3.

Following Tables 1, 2, and 3, the proposed radix-2 algo-
rithms for the Vandermonde matrices have shown significant
arithmetic complexity reduction as opposed to the DVM
algorithms presented in [1], [16], [17]. At the same time,
we should recall that the DVM algorithms proposed in [1],
[16], [17] have no restriction for nodes or delays as in this

TABLE 2. Real GDB counts of the proposed radix-2 algorithms (i.e.
vanc(z, N) and vancc(z, N)) vs direct computation.

TABLE 3. Real GDB counts of the proposed radix-2 algorithms (i.e.
vancr(z, N) and vanccr(z, N)) vs direct computation.

paper. Moreover, the proposed radix-2 algorithms for Van-
dermonde matrices have reduced GDB counts extensively
opposed to the direct computation of Vandermonde matrices
by a vector. More importantly, we have achieved the lowest
GDB counts of radix-2 algorithms on computing Vander-
monde matrices by a vector in the literature while cover-
ing radix-2 DFT algorithms as a subclass of the proposed
radix-2 algorithms.

V. ERROR BOUND AND NUMERICAL STABILITY OF
RADIX-2 VANDERMONDE ALGORITHMS
A. THEORETICAL ANALYSIS
Error bounds and numerical stability when computing the
radix-2 Vandermonde algorithms associated with true time
delays are the main concern in this section. To derive analytic
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results for error bound, we will use the perturbation of the
product of matrices (stated in [9]). Following the proposed
radix-2 algorithms vancc(z,N) and vanc(z,N), we have to
compute weights e±k(

2π j
N )
= ωk±(say), where ω± = e±

2π j
N

for k = 0, 1, . . . , N2 − 1. The way we compute weights
affects the accuracy of the algorithms. Thus, we will assume
that the computed weights ω̂k± are used and satisfy for all
k = 0, 1, . . . , N2 − 1

ω̂k± = ω
k
± + εk± , |εk+ | ≤ µ+, |εk− | ≤ µ−, (25)

where µ+ := c1u andµ− := c1u u is the unit roundoff, and
c1 and c2 are constants that depend on the method [22].

Let’s recall the perturbation of the product of matrices
stated in [9, Lemma 3.7] i.e. if Ak +1Ak ∈ RN×N satisfies
|1Ak | ≤ δk |Ak | for all k , then∣∣∣∣ m∏
k=0

(Ak +1Ak)−

m∏
k=0

Ak

∣∣∣∣
≤

( m∏
k=0

(1+ δk )− 1
) m∏
k=0

∣∣∣∣Ak

∣∣∣∣
where |δk | < u. Moreover, recall

N∏
k=1

(1 + δk )±1 = 1 + θN

where |θN | ≤ Nu
1−Nu =: γN and γk+u ≤ γk+1, γk+γj+γkγj ≤

γk+j from [9, Lemma 3.1 and Lemma 3.3], and for x, y ∈ C,
fl(x± y) = (x+ y)(1+ δ) where |δ| ≤ u, fl(xy) = (xy)(1+ δ)
where |δ| ≤

√
2γ2 from [9, Lemma 3.5].

To carry out error analysis of the proposed algorithms in
complex arithmetic, we implement complex arithmetic using
real arithmetic operations computed according to number
of additions and multiplications of non-unit numbers. Thus,
we multiply ÎN (because it has only block identity matrices)
and D̂N , which were defined in (12), and name as BN s.t.

BN =

 IN
2

IN
2

ḊN
2
−ḊN

2

. Similarly, we multiply ÎN (because it

has only block identity matrices) and ĎN , which were defined

in (12), and name as B̌N s.t. B̌N =

 IN
2

IN
2

¯̇DN
2
−
¯̇DN

2

.
Theorem 20: Let ŷ = fl(VN z), where N = 2t (t ≥ 2),

be computed using the algorithm vancc(z,N), and assume
that (25) holds. Then

‖y− ŷ‖2
‖y‖2

≤
tν+

1−tν+
N

1
2 (26)

where ν+ = η+γ3 + η+ + γ3 and η+ = µ+ + γ4(1+ µ+).
Proof: Using the algorithm vancc(z,N) and the com-

puted matrices B̂(k) (in terms of computed weights ω̂k+) for
k = 0, 1, · · · , t − 2: we have

ŷ = fl
(
P(0)P(1) · · ·P(t − 2) V(t − 1) B̂(t − 2)C(t − 2) · · ·

B̂(1)C(1)B̂(0)C(0) z
)

= P(0)P(1) · · ·P(t − 2) (V(t − 1)+1V(t − 1))

(B̂(t − 2)+1B̂(t − 2))(C(t − 2)+1C(t − 2)) · · ·

(B̂(1)+1B̂(1))(C(1)+1C(1))

(B̂(0)+1B̂(0))(C(0)+1C(0)) z.

Each block diagonal matrix P(k) and B̂(k) is formed by 2k

number of PTN
2k
’s and B N

2k
’s respectively, in block diagonal

positions. Using the fact that eachB N
2k

has only two non-zeros

per row and recalling that we are using complex arithmetic,
we get:∣∣1B̂(k)

∣∣ ≤ γ4 ∣∣B̂(k)∣∣ for k = 0, 1, · · · , t − 2.

Using the fact that B̂(k) are computed using the computed
weights ω̂k+, we get:

B̂(k) = B(k)+1B(k), |1B(k)| ≤ µ+ |B(k)| .

Each block diagonal matrix C(k) is formed by 2k number of
C N

2k
’s in block diagonal positions. Using the fact that each

C N
2k

has only one non-zeros per row and recalling that we are

using complex arithmetic, we get:

|1C(k)| ≤ γ3 |C(k)| for k = 0, 1, · · · , t − 2.

V(t − 1) is a block diagonal matrix and formed by 2t−1

number of V2’s in diagonal positions. Hence

|1V(t − 1)| ≤ γ3 |V(t − 1)| .

Thus overall,

ŷ = P(0)P(1) · · ·P(t − 2)(V(t − 1)+1V(t − 1))

(B(t − 2)+ E(t − 2))(C(t − 2)+1C(t − 2)) · · ·

(B(1)+ E(1))(C(1)+1C(1))

(B(0)+ E(0))(C(0)+1C(0)) z

where |E(k)| ≤ (µ+ + γ4(1+ µ+))|B(k)| = η+|B(k)|.
Hence

|y− ŷ| ≤ [(1+ η+)t−1(1+ γ3)t − 1]P(0)P(1) · · ·P(t − 2)

|V(t − 1)||B(t − 2)||C(t − 2)| · · · |B(1)||C(1)|

|B(0)||C(0)||z|.

Since each C(k) is an unitary matrix, and each B(k) and
V(t−1) are unitary matrices up to scaling, we get ‖C(k)‖2 =
1 and ‖B(k)‖2 = ‖V(t − 1)‖2 =

√
2. Hence,

‖y− ŷ‖2 ≤
tν+

1−tν+
2t‖z‖2,

where ν+ = η+γ3+η++γ3. Now followingVNVH
N = N ·IN ,

we get ‖y‖2 =
√
n‖z‖2, and hence the result. �

Corollary 21: Let ŷ = fl(VN z), where N = 2t (t ≥ 2),
be computed using the algorithm vancc(z,N), and assume
that (25) holds. Then the proposed radix-2 algorithm for
Vandermonde matrices i.e. vancc(z,N) is numerically stable.

Proof: Theorem 20 immediately follows that the
proposed radix-2 algorithm for Vandermonde matrices
i.e. vancc(z,N) can be computed with tiny forward error
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provided that the weights i.e. ωk+ are computed stably. On the
other hand, ŷ = y + 1y = VN z + 1y. Thus, we get
ŷ = VN (z+1z) and ‖1z‖2

‖z‖2
=
‖1y‖2
‖y‖2

. If we compute y = VN z
using the brute force computation, we get

|y− ŷ| ≤ γN+2|VN ||z|.

Since VN is unitary w. r. t. scaling, this immediately reduces
to

‖y− ŷ‖2
‖y‖2

≤ γN+2N
1
2 . (27)

As µ+ = O(u), the error (26) of the proposed radix-2 algo-
rithm is much more smaller than that in (27). Thus, the pro-
posed algorithm is backward stable. Hence, the proposed
algorithm is numerically stable. �
Theorem 22: Let ŷ = fl(VN z), where N = 2t (t ≥ 2),

be computed using the algorithm vanc(z,N), and assume that
(25) holds. Then

‖y− ŷ‖2
‖y‖2

≤
tν−

1−tν−
N

1
2 (28)

where ν− = η−γ3 + η− + γ3 and η− = µ− + γ4(1+ µ−).
Proof: The proof follows similar lines as that of Theo-

rem 20 except ̂̌B(k), NC(k), ω̂k−, and µ− instead of B̂(k), C(k),
ω̂k+, and µ+, respectively. �
Corollary 23: Let ŷ = fl(VN z), where N = 2t (t ≥ 2),

be computed using the algorithm vanc(z,N), and assume
that (25) holds. Then the proposed radix-2 algorithm for
Vandermonde matrices i.e. vanc(z,N) is numerically stable.

Proof: The proof follows similar lines as in
Corollary 21. �

B. NUMERICAL RESULTS
Wewill now state numerical results in connection to the error
bounds of the proposed radix-2 algorithms for Vandermonde
matrices and compare the results with the error bound of
the radix-2 FFT algorithm analyzed in [9]. With the help of
the radix-2 factorization of the DFT matrices in [22], it was
proved in [9] that the error bound on computing radix-2 FFT
algorithm is given by;

‖y− ŷ‖2
‖y‖2

≤
tη

1−tη
N

1
2 (29)

where ŷ = fl(FNx), FN is the DFT matrix, N = 2t , η =
µ+ γ4(1+µ), and µ depends on the methods for computing
the weights as specified in [22]. We compare the error bounds
of the proposed radix-2 algorithms for Vandermonde matri-
ces shown in (26) and (28) with the radix-2 FFT algorithm
(29) using MATLAB(R2014a version). In these calculations,
we have chosen µ = µ+ = µ− = 10−15 and γN = Nu

1−Nu
where N = 2t and u is the machine precision. Since µ =
O(u), we have chosen u = 10−15. Table 4 shows the error
bounds of the proposed radix-2 algorithms for Vandermonde
matrices and radix-2 FFT algorithm in [9].

Based on the numerical results shown in Table 4, the pro-
posed radix-2 algorithms for Vandermode matrices and

TABLE 4. Error bounds of the proposed radix-2 algorithms (i.e.
vancc(z, N) and vanc(z, N)) vs radix-2 FFT algorithm [9].

FIGURE 1. Signal flow graph of the 2-, 4-, and 8-point vanc
decompositions, where d̈ =

√
2

2 (1− j ) and dashed arrows represent
multiplication by −1.

radix-2 FFT algorithm have the same error orders except for
N = 16, and 256. Even with these two N values, error
orders of the proposed algorithms and FFT vary only by
10−1 and relatively very low. To sum up, Table 4 shows that
the proposed radix-2 algorithms for Vandermonde matrices
provide tiny forward errors.

VI. SIGNAL FLOW GRAPHS FOR
RADIX-2 VANDERMONDE ALGORITHMS
In this section, we use signal flow graphs to illustrate
the connection between algebraic operations used in sparse
and orthogonal factorization of Vandermonde matrices with
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the fundamental signal flow graphs (SFG) building blocks
(i.e. adders and multipliers). We provide two signal flow
graphs to show the simplicity of the proposed radix-2 algo-
rithms for Vandermonde matrices. Being pivotal for efficient
physical implementation in hardware, SFGs should represent
a numerical algorithm in its fully factorized form in such a
way that more sparse matrices are resulted and, as a conse-
quence, less arithmetic operations demanded. Thus, Fig. 1
displays the SFG for the proposed vanc(z,N) algorithm for
the case N = 8. The recursive nature is evident as we
express the 8-point SFG in terms of the 4- and 2-point SFGs.
Notice that, the SFG of the vancc(z,N) algorithm is not
presented because the delays have been replaced with time
advances that are not realizable in real-time circuits. But
for the software implementation purposes, we have proposed
vancc(z,N) algorithm in Section III-B to effectively compute
Vandermonde matrices.

VII. CONCLUSION
We have proposed novel self-recursive radix-2 algorithms
for Vandermonde matrices. These algorithms have sparse
and orthogonal factors. We have shown that the well
known radix-2 DFT algorithm is a subclass of the pro-
posed algorithms for the Vandermonde matrices. The pro-
posed algorithms attain the lowest gain-delay-block counts
for Vandermonde matrices by a vector, in the literature.
Theoretical error bounds on computing the radix-2 algo-
rithms and stability of the proposed algorithms are estab-
lished. Numerical results of the forward error bounds of
the proposed radix-2 algorithms are compared with the
radix-2 FFT algorithm. The proposed radix-2 algorithms
have shown tiny forward and backward errors when weights
are computed stably. Signal flow graphs were presented to
show the simplicity of the proposed algorithm and to real-
ize high-frequency analog circuits. Using the radix-2 algo-
rithms for Vandermonde matrices associated with true time
delay based delay-sum filterbanks, we have reduced the cir-
cuit complexity of multi-beam analog beamforming systems
significantly.
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