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ABSTRACT Feld’s friendship paradox is a widely accepted observation that states that the friends of any
particular individual tend to have more friends on average than the individual has. Due to its implications for
information transmission, the friendship paradox has become a generalized paradigm in many disciplines.
However, how many of an individual’s friends have more friends than the individual does is still unknown,
yet interesting. In this paper, we revisited the Feld’s friendship paradox and we found that only a limited
number of a person’s friends have more friends than the person herself has. This conclusion was reached
from empirical studies using real-world networks and is true regardless of the number of one’s neighbours,
which contradicts the intuitive deduction from the friendship paradox. For one thing, if a person is unpopular,
the number of her friends that have more friends than she does grows with the number of friends that she
makes. This observation crystallizes the tenable margin of the friendship paradox. In another case, if a person
is popular, as she acquires more friends, fewer of her friends have more friends than she does. This finding
suggests an observation bias in the friendship paradox, which makes individuals feel less popular than their
friends. Besides enriching our knowledge of the friendship paradox in psychological science, the findings
reported here are also beneficial for technical areas such as large-scale triangle discovery. Although the
friendship paradox was proposed from the perspective of the number of neighbours, the findings reported
here can shed light on theories and applications from different disciplines like information, happiness,
obesity, and extroversion, to name a few.

INDEX TERMS Computer science, Feld’s friendship paradox, social computing, social network.

I. INTRODUCTION
The ‘‘friendship paradox’’ is the observation that the friends
of individuals tend to have more friends on average than
the individuals themselves [1]. This notion was first artic-
ulated for social networks by the sociologist Scott L. Feld
in 1991 and has become a generalized paradigm for many
areas [2], [3], e.g., information [4]–[6], interaction [7], wealth
[8], happiness [9], [10], obesity [11], interesting personality
[12], and extroversion [13], to name a few.
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This paradox has many interesting applications. For
example, when an individual knows that her sex partner
has more partners than she does or that her friends are
much more popular, wealthy, and happy than her, this
creates distortions in psychological well-being. Addition-
ally, the friendship paradox has many applications [4]–[16]
due to its implications for information transmission. Nonethe-
less, the friendship paradox does not tell us how many
of one’s friends have more friends than oneself. This
is another interesting yet unanswered question. Exploring
this issue can enrich our understanding of the friendship
paradox.
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An intuitive answer to this question would be that a large
portion of one’s friends have more friends than oneself.
Zuckerman and Jost [32] also argued that, from the subjec-
tive aspect, most people though they had more friends than
their friends do. However, what is the real answer of this
question from the objective aspect? If the objective aspect
was consistent with the subjective aspect, the finding might
mitigate the distortions in psychological well-being and set
theoretical basis for many technical problems, e.g., triangle
discovery. This study investigates this question by analyzing
many online social networks.

Our empirical studies on online social networks revealed
the interesting phenomenon that only a limited number of
one’s friends, as a matter of fact, have more friends than
oneself, regardless of the number of one’s friends. It has
also been proven theoretically that the expected number of
friends with more friends than a given person in a real-world
network is O(1). Furthermore, removing the ultra-popular
people with tens of millions of friends from the study group
can mitigate the friendship paradox. In other words, most
people’s friendship groups are over populated with ultra-
popular people, making them feel upset about being less
popular than their friends.

These findings are quite contradictory to the intuitive
deduction from the friendship paradox and reveal its associ-
ated observation bias. Concretely, this study directly demon-
strates that only a few of one’s friends are more popular
than oneself. This indicates that the common perception
of the friendship paradox is just a trick of the way social
networks form. When one knows that only a few of one’s
friends are more popular, wealthy, and happy than oneself,
this provides a more intelligent viewpoint on the friendship
paradox. Besides its significance for psychological science,
this finding is useful in various technical areas. We illustrated
the power of our finding in a technical area by developing a
novel parallel triangle discovery algorithm that outperforms
state-of-the-art solutions. In summary, our findings reveal the
observation bias in the friendship paradox, and advance our
understanding of the friendship paradox.

II. RELETED WORKS OF FRIENDSHIP PARADOX
A. FRIENDSHIP PARADOX
The friendship paradox is the phenomenon that most people
have fewer friends than their friends do, on average [1].
Consider an undirected network G = (V , E) with n = |V |
nodes and m = |E| edges, where V and E represent the sets
of nodes and edges respectively. Intuitively, (u, v) represents
the edge between nodes u and v. Denote by N (v) = {u ∈ V ,
(u, v) ∈ E} the set of neighbours of u and by d(v) = |N (v)|
the degree of v. The average number of friends of the friends
of individual v is defined as:

f (v) =

∑
u∈N (v) d(u)

d(v)
.

The friendship paradox holds that d(v) < f (v) for
most individuals in a social network. Figure 1 presents an

FIGURE 1. Example of friendship paradox from a sub-network of
Marketville high school. The number beside each name is the number of
friends that the individual has, and the number in parentheses beside
each name is the mean number of friends that her friends have.
Obviously, the friendship paradox holds for 5 out of 8 individuals,
including Betty, Pam, Tina, Dale, and Jane.

FIGURE 2. How many friends have more friends than she has: example
from a sub-network of Marketville high school. The number beside each
name is the number of friends of the individual, while the name in
parentheses beside each name is the number of friends with more
friends than she has. Obviously, the friendship paradox holds for 5 out
of 8 individuals, including Betty, Pam, Tina, Dale and Jane.

example from a sub-network of the Marketville High School
dataset [1]. The sub-network has eight students. The number
beside each name is the number of friends that the individual
has, and the number in parentheses beside each name is the
mean number of friends that her friends have. Obviously,
the friendship paradox holds for five of the eight individ-
uals, including Betty, Pam, Tina, Dale, and Jane. Feld also
noted that this finding holds for the whole Marketville High
School network. This phenomenon has also been observed
over extensive areas.

Let ζ (v) denote by the higher degree of node v, the number
of nodes in N (v) with degree larger than d(v). One may argue
intuitively from the friendship paradox that ζ (v) occupies a
large portion of d(v). Figure 2 presents an example from the
sub-network of Marketville High School. Six out of eight
individuals, with Sue andAlice as the exceptions, thought that
a large portion of their friends possessed more friends than
they had. In other words, 75% of individuals held that ζ (v)
/ d(v) ≥ 50% in the sub-network. This intuitive deduction
appears valid in this scenario. However, is this deduction ten-
able in large-scale real-world networks, and will ζ (v) increase
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TABLE 1. Datasets used for evaluation.

as d(v) or as n? These questions are also interesting, yet
unanswered to the best of our knowledge.

B. BACKGROUND AND RELATED WORKS
The friendship paradox [1] reveals that most individuals have
fewer friends than do their friends. Interestingly, Zuckerman
and Jost [32] found that most people tended to believe that
they had more friends than their friends.

In the past decades, the friendship paradox has been
extended to other attributes. Hodas et al. [12] confirmed
the friendship paradox in Twitter and discovered two new
paradoxes, namely virality paradox and activity paradox. The
virality paradox states that your friends receive more viral
content than you on average, and the activity paradox con-
veys that your friends are more active than you on average.
Eom et al. [2] generalized the friendship paradox from a case
study from scientific collaboration, while Fotouhi et al. [33]
studied the generalized friendship paradox in an analytical
approach. Bollen et al. [9] found the friendship paradox in
happiness, termed happiness paradox. Munzel et al. [10]
broadened the friendship paradox from happiness to human
well-being. Kramer et al. [34] investigated multistep friend-
ship paradox, where the friends’ friends were considered.
Higham [35] developed the centrality-friendship paradoxes
to answer the question when our friends are more important
than us. Momeni and Rabbat [36] measured the generalized
friendship paradox in networks with quality-dependent con-
nectivity.

Besides being an interesting phenomenon, the applications
of friendship paradox also can be found in many areas.
Momeni et al. [3] explored the qualities and inequalities in
online social networks using the generalized friendship para-
dox. Christakis and Fowler [6] developed a social network
sensor system for early detection of contagious outbreaks
using the friendship paradox. Golder et al. [7] studied the
messaging within a massive online network utilizing the
friendship paradox. Christakis and Fowler [11] investigated
the spread of obesity in a large social network on top of
the friendship paradox. Han and Srinivasan [14] identified
influential mobile users through random-walk sampling, and
found that your friends have more friends than you do. Net-
tasinghe and Krishnamurthy [37] proposed three efficient
polling methods for networks using friendship paradox.

The friendship paradox has been studied extensively and
applied to some areas. However, the friendship paradox does
not tell us how many of one’s friends have more friends than
oneself. This study aims to answer this question through a
data analytics approach on many online social networks.

III. EMPIRICAL STUDY
A. A LIMITED NUMBER OF ONE’S FRIENDS HAVE MORE
FRIENDS THAN ONESELF
To study the number of friends with more friends than one-
self, we conducted experiments on nine real-world networks,
including email, the Web, Internet topologies, and social net-
works. These networks are released publicly at the Stanford
SNAP [17] and provide possibility to show applicability of
our findings to a wide variety of different online networks.
Four typical networks, namely Enron email, web-BerkStan,
as-Skitter, and LiveJournal networks, were selected and dis-
cussed in this subsection, and the experimental results of
the other five networks are available in Appendices. Usually,
a friendship usually refers to a mutual-following relationship
in online social networks [38]. Since not all networks in this
study are undirected, we considered directed edges as undi-
rected in directed networks. Their descriptions and concrete
meanings of an edge can also be found at the Stanford SNAP.
Table 1 presents the number of nodes, the number of edges,
and the maximum degree of the four networks. The numbers
of nodes in these networks vary from 3.7 × 104 to 4.8 × 106

and the maximum degree from 1383 to 84230. Like most
real-world networks, the degrees of these networks follow a
power-law distribution (see Appendix B).

We computed the higher degree, ζ (v),of each node in these
networks. Interestingly, themaximumvalues of higher degree
were no greater than 70, 130, 231 and 142 in Enron, web-
BerkStan, as-Skitter, and LiveJournal respectively. As the
number of nodes increases, the maximum value of higher
degree increases slightly. Although the LiveJournal network
has more nodes than the as-Skitter network, the maximum
value of higher degree in the LiveJournal network is smaller
than in the as-Skitter network. Although the number of nodes
is 4.8×106 in the LiveJournal network and the maximum
degree in the web-Berkstan network is 84230, the maximum
values of higher degree are 142 and 130 in LiveJournal and
web-BerkStan, respectively.

Figure 3 presents the distribution of higher degree.
Notably, the higher degrees also follow a power-law distri-
bution. More interestingly, we observed that most values of
ζ (v) are less than 20 in all four datasets, regardless of the
maximum degree of the network or the number of friends that
an individual has. In other words, only a limited number of
one’s friends havemore friends than oneself. This observation
is quite contrary to the intuitive deduction from the friendship
paradox.

We also explored the relationship between degree and
higher degree. Figure 4 shows scatter diagrams of degree and
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FIGURE 3. Distributions of number of neighbours with degrees larger than the node. The distributions of
the number of neighbours with degrees larger than the node approximately follow a power law. Most of
the nodes have less than 20 friends with more friends than they have in all four datasets.

FIGURE 4. Relationship between degree and higher degree. The higher degree increases with the degree when the nodes are
unpopular, but decreases sharply otherwise.

higher degree for each node in the four real-world networks.
The nodes with low degree can be considered as unpopular
nodes and the nodes with high degree as popular nodes.

Obviously, the higher degree grows along with the degree
for most of the unpopular nodes, but the higher degree drops
sharply with degree for the popular nodes in all the real-world
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FIGURE 5. Controllability of the higher degree. Ultra-popular nodes have
the ability to control the higher degree. When more ultra-popular nodes
are removed, the higher degree decreases.

datasets. The higher degrees reach peak values of 70, 130,
231 and 142 when the degrees are 141, 160, 604 and 149 in
the Enron email, web-BerkStan, as-Skitter, and LiveJournal
networks respectively. This observation suggests that Feld’s
friendship paradox holds for scenarios where nodes have
a limited number of neighbours or where individuals are
unpopular. In scenarios where nodes are popular, things are
the other way around. In other words, the higher the degree of
a node, the smaller the number of her friends who have more
friends than the individual herself. Subsequently, no matter
how many friends an individual has, only a limited number
of her friends have more friends than she has. This finding
suggests an observation bias of individuals when they feel less
popular, wealthy, or happy than their friends.

We also studied the controllability of higher degrees. It is
commonly accepted that ultra-popular online users with thou-
sands of friends have a significant influence on the higher
degree. We confirmed this assertion by removing the top-
ranking popular nodes. Figure 5 presents the experimental
result on the as-Skitter dataset. The more top-ranking nodes
are removed, the lower the value of the maximum higher
degree. In other words, the top-ranking nodes can in fact con-
trol the higher degree. This phenomenon shows that individ-
uals often worry about the friendship paradox when many of
their friends are ultra-popular people. In this scenario, leaving
aside the ultra-popular friends can mitigate their depressed
feeling.

B. THEORETICAL ANALYSIS OF FINDINGS
Currently, a massive number of large-scale, real-world net-
works have been verified as scale-free [18], meaning that the
networks follow a power-law degree distribution. As revealed
in extensive real-world datasets, the exponent k of the power-
law degree distribution typically lies in the range 2 < k < 3
[19]. Here, we prove theoretically that ζ (v), v ∈ V is expected
to be a constant with a value no greater than n1/k in a network
following a power-law degree distribution.

FIGURE 6. Relationship between degree and higher degree in Dblp
network. The peak points is (113, 87).

FIGURE 7. Relationship between degree and higher degree in AstroPh
network. The peak points is (93, 65).

Lemma 1: For any node u in a network, E(ζ (u)) = m / n,
where E (·) represents the expected value. E(ζ (u)) = O(1) in
a network following a power-law distribution with exponent
k > 2 + ε, where ε > 0 is a small number.

Proof: Let S =
∑

v∈V ζ (v). For any edge (u, v) in a
network, either u > v or v > u. Hence, each edge contributes
one point to S, and S = m. Subsequently, the expected value
of ζ (u), E (ζ (u)), is m / n.
Because px ∼ x−k , it follows that px = cx−k , where c is

the normalization constant. Note that
∑
∞

x=1 px = 1. It can be
concluded that

∑
∞

x=1 px ≈ ∫
∞

1 cx
−kdx = c / (k − 1) = 1.

Hence, c = k − 1. Because
∑

v∈V d(v) =2 m,
∑

v∈V d(v) =∑
∞

x=1 xnpx ≈ ∫
∞

1 xncx−k dx = cn∫∞1 x1−kdx. When k > 2,
cn∫∞1 x1−kd x = cn/(k − 2) = n(k − 1)/(k − 2) = 2m.
Consequently, E(ζ (u)) = m / n = 0.5(k − 1)/(k − 2) with
k > 2. Let k = 2 + ε. It must be true that E(ζ (·)) = 0.5 +
0.5 / ε. Hence, even a small value of ε can result in a constant
value of E(ζ (u)). �
Intuitively, when ε = 0.0005, E(ζ (·)) = 1000.

Lemma 1 conveys that E(ζ (u)) can be considered as a con-
stant with k > 2+ for any node u. This conclusion can
also be deduced effortlessly using the Barabási and Albert
(BA) model [18], the most celebrated model for scale-free
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FIGURE 8. Relationship between degree and higher degree in Amazon
network. The peak points is (9, 8).

FIGURE 9. Relationship between degree and higher degree in Epinions
network. The peak points is (194, 121).

networks in which k = 3. Actually, in the BA model, the
expected value of ζ (v), v ∈ V is the number of links
established when a node is added to the network.
Lemma 2: For any node u in a network, ζ (u) ≤ (2m)1/2, and

ζ (u) ≤ n1/k in a network following a power-law distribution
with exponent k.

Proof: Let ρ = (2m)1/2, and let |H (ρ)| be no more than
2m/ ρ = (2m)1/2 because

∑
v∈H (ρ) d(v) ≤ 2m. For any v ∈

H (ρ), ζ (v) ≤ |H (ρ)| ≤ (2m)1/2; for any v ∈ L(ρ), ζ (v) ≤
d(v) < (2m)1/2.

As discussed in Lemma 1, c = k – 1 in any network follow-
ing a power-law distribution with exponent k . Here, the proof
uses continuous distributions. Then, px ≈ ∫x+1x cx−kdx =
x−k+1 − (x+ 1)−k+1. Finally, |H (ρ)| = nρ−k+1. When ρ =
n1/k , |H (ρ)| = n1/k . Similarly, it can be concluded that ζ (u)
≤ n1/k for u ∈ V . �
Lemma 1 conveys that only a limited number of friends

have more friends than oneself, whereas Lemma 2 defines the
upper bound of the number of friends that have more friends
than oneself. Subsequently, it can be concluded that the higher
degree is not scale-free, although the higher degree follows a
power-law distribution.

C. APPLICATION OF TRIANGLE DISCOVERY
This exercise illustrates the power of the findings of this study
by developing an approach for triangle discovery tailored to

FIGURE 10. Relationship between degree and higher degree in road
network. The peak points is (4, 4).

FIGURE 11. Higher degree distribution in Dblp network.

oversize real-world networks using MapReduce [20], the de
facto standard framework for parallel computing.

A triangle in an undirected network is a set of three
nodes with edges between any two of them. Triangles are
elementary structures in networks and have been used to
define a variety of metrics related to information retrieval
in a network, including clustering coefficients [21], the tran-
sitivity ratio [22], and triangular connectivity [23]. In addi-
tion, the power of triangles has been examined in a host of
applications, e.g., network centrality measures [24]. Hence,
exploring the triangles in a network lays a foundation for
further studies on networks.

For decades, triangle discovery has been studied exten-
sively. Although many algorithms exist to discover all the
triangles in networks, these traditional solutions are mainly
based on internal memory [25] and cannot be applied to
large-scale real-world networks. Although some traditional
algorithms have been upgraded to be scalable using a paral-
lel framework such as MapReduce [26], [27], they need to
load all the neighbours of each node into internal memory.
This requirement causes the ‘‘curse of the last reducer’’ [27]
and hinders the use of these algorithms in scenarios where
some nodes have too many neighbours to be loaded into
internal memory. For instance, almost 0.2 billion users have
connections with the official account of SinaWeibo [28], and
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FIGURE 12. Higher degree distribution in AstroPh network.

FIGURE 13. Higher degree distribution in Amazonnetwork.

more than 0.1 billion comments have been observed for a
single tweet in Sina Weibo [29].Obviously, these numbers
are still increasing every minute. Clearly, innovative technical
approaches are needed to discover all the triangles in social
and other large-scale networks.

Because only a limited number of nodes have more neigh-
bours than any given node in a real-world network, the ‘‘curse
of the last reducer’’ can be resolved if only the neighbours
with more neighbours than the node in question have to be
loaded into internal memory in any reducer. With this motiva-
tion, we developed a novel triangle discovery algorithm based
on degree partition, called DePart.

The following discussion presents an empirical evaluation
of DePart, which we implemented in Hadoop on a cluster
server with 40 nodes. Each node has 2G memory size, 500 G
disk space, and a 2.8 GHz CPU. Because graph partition(GP)
[27], triangle type partition(TTP) [30], and coloured triangle
type partition (CTTP) [31] are the scalable triangle discovery
algorithms that useMapReduce, we took them as the baseline
for our algorithm.

To verify the effectiveness of DePart on real-world
datasets, we conducted experiments on the datasets listed
in Table 1. In GP and TTP, λ = 30, where λ is a control
parameter given in advance. In CTTP, the number of colours
is 200, and the number of iterations of MapReduce is 30.

FIGURE 14. Higher degree distribution in Epinions network.

FIGURE 15. Higher degree distribution in roadnetwork.

For experiments with GP, TTP, and CTTP, node iteration
was used as the algorithm in the last reducer. To reduce the
internal memory requirement of GP, TTP, and CTTP, a hash
table was used for storage, and the triangles were counted
in the Reduce step. DePart was called MR-EI (MapReduce
with Edge-Iteration) when ρ = dmax , where ρ is a control
parameter in DePart and dmax is the maximum value of the
degree.We tested the performance of DePart using the Enron,
web-BerkStan, as-Skitter, and LiveJournal datasets with
ρ = 300, 15000, 23000 and 10000 respectively.

Table 2 shows the results of GP, TTP, CTTP, MR-EI,
and DePart in terms of running time, internal memory, and
the number of key-value pairs generated. MR-EI, on which
DePart is based, outperformed GP, TTP, CTTP, and DePart
in running time and total disk space (except LiveJournal) in
the four datasets. However, MR-EI required more internal
memory than DePart. DePart outperformed GP, TTP, and
CTTP in running time and performed the best in internal
memory on all five datasets. Hence, DePart required much
less internal memory than the other algorithms and appeared
much more efficient in running time, which is consistent with
the theoretical analysis (see Appendix C). Although DePart
cost more in total disk space, increasing ρ can also reduce
the total disk space in DePart.

24068 VOLUME 8, 2020



X. Zhou et al.: Revisiting the Feld’s Friendship Paradox in Online Social Networks

TABLE 2. Empirical comparison among GP, TTP, CTTP, MR-EI, and depart algorithms.

To illustrate DePart’s performance further, Fig. 6 shows
the detailed running-time ratios, maximum number of nodes
loaded intomemory, and number of key-value pairs generated
in the triangle discovery process. As shown in Fig. 6(a),
the running times of GP, TTP, and CTTP were more than
3.5 times that of DePart in web-BerkStan. DePart showed
unremarkable improvement in running time in LiveJournal
compared to GP, TTP, and CTTP, but reduced the inter-
nal memory requirement in the Reduce step by 70 times,
47 times, and 15 times respectively. Furthermore, GP gen-
erated around 1.3 times as many key-value pairs in the Map
step as DePart. Figure 6(c) shows that althoughCTTP reduces
the disk space requirement for each iteration of MapReduce,
the total amount of data to be shuffled increases dramatically.
Although increasing λ in GP and TTP or running iterations
of MapReduce in CTTP can decrease the internal memory
requirement, both the running time and the total amount of
data to be shuffled increase simultaneously.

IV. CONCLUSIONS
The friendship paradox suggests that most people have fewer
friends than their friends have, on average. Due to the impli-
cations for information transmission, this observation has
been widely applied in studying social networks, happiness,
obesity, finance, and other fields. Nonetheless, how many of
one’s friends have more friends than oneself is a still unan-
swered, yet interesting question to the best of our knowledge.
An intuitive deduction from the friendship paradox would
be that a large portion of one’s friends have more friends
than oneself. In contradiction to this intuitive deduction,
this research found, by analysing Big Data from real-world
networks, that only a limited number of one’s friends have
more friends than oneself. For most unpopular individuals,
the number of their friends with more friends than they
have increases as the person makes more friends. However,
this phenomenon works the other way around for popular
individuals. In other words, empirical studies show that only
a limited number of one’s friends have more friends than
oneself. A theoretical analysis for these findings has been
presented here. Besides the contributions of this work to
psychological science, it is also relevant to various technical
areas. The power of these findings in a technical area has also
been illustrated by developing a triangle discovery algorithm.

These findings crystallize the tenable margin of the friend-
ship paradox, which is suitable for studies of unpopular

TABLE 3. Datasets.

individuals. Undoubtedly, innovative techniques and solu-
tions should be developed for popular individuals. Hence,
the findings presented here advance our understanding of
Feld’s friendship paradox and offer benefits tomore challeng-
ing tasks in social science, medical science, psychology, and
computer science.

APPENDIX A
See Table 3.

APPENDIX B
FIGURES OF RELATIONSHIPS
See Figures 6–15.

APPENDIX C
ANALYSIS OF DePart
This appendix verifies the feasibility of DePart.
Theorem 1: InDePart, the size of the input to any reduce

instance is no more than O(max(ρ, 2m/ρ)), and the total disk
space used is O(m × max(ρ, |H(ρ)|)+

∑
v∈H (ρ)|L(ρ)|d(v)).

The optimal internal memory requirement is O(m0.5), and the
total disk space used is O(m1.5

+
∑

v∈H (ρ)|L(ρ)|d(v)).
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Proof: For any node u ∈ L(ρ), Reduce 1 receives
d(u) < ρ nodes. Since the size of H (ρ) is no more than
2m/ρ, for any node u ∈ H (ρ), Reduce 1 receives no
more than |H (ρ)| nodes. Consequently, the internal mem-
ory requirement in Reduce 1 is no more than O(max(ρ,
m/ρ)). For any possible edge (u, v), if (u, v) does not
exist in the original edge list or v ∈ H (ρ), Reduce 2
receives M (v) = {w ∈ N (v), w > v}, which is no
more than |H (ρ)| nodes. Otherwise, Reduce 2 receives C(u,
v) = {w ∈ N (u), w > v} + {w ∈ N (v), w > v},
which is no more than 2 × max(ρ, |H (ρ)|) nodes. Therefore,
the size of the input to any Reduce instance is no more than
O(max(ρ, |H (ρ)|)) = O(max(ρ, m/ρ)).
For the edges existing in the original edge list (i.e. ‘‘real

edges,’’ others are called ‘‘fake edges’’), Reduce 1 emits m×
(2 × max(ρ, |H (ρ)|)) nodes. For any node u ∈ H (ρ), DePart
generates no more than min(n – d(u), |L(ρ)|) ≤ |L(ρ)| fake
edges and is no more than min(d(u), |H (ρ)|) ≤ d(u) nodes
for any fake edge. Thus, all the fake edges occupy no more
than

∑
v∈H (ρ) |L(ρ)|d(v) units of disk space. So the total disk

space used is O(m× max(ρ, 2m/ρ)+
∑

v∈H (ρ) |L(ρ)|d(v)).
When ρ = 2m/ρ, or ρ = (2m)0.5, the internal memory

requirement is optimal at O(m0.5). In this case, the total disk
space costs 2

√
2m1.5

+
∑

v∈H (ρ)|L(ρ)|d(v), that isO(m
1.5
+∑

v∈H (ρ) |L(ρ)|d(v)).
When ρ = dmax , DP turns into MR-EI; in this case,
|H (ρ)| = 0, |L(ρ)| = n and the internal memory complexity
and disk space complexity are O(dmax) = O(n) and O(m1.5),
respectively.
Lemma 1: In a scale-free network with exponentk, the size

of the input to any Reduce round is O(max(ρ, nρ−k+1)).
Proof: |H (ρ)| = nρ−k+1 in scale-free network with

exponent k . According to Theorem 1, the maximal input to
any Reduce round is O(max(ρ, nρ−k+1)).
We design DePart to mitigate problematic nodes with too

many neighbors to be loaded into internal memory; ρ is
larger than n1/k in practice. Accordingly, themaximal internal
memory requirement in DePart is O(ρ).
Lemma 2: In a scale-free network with exponentk,

the expected total disk space used in DePartisO(m +
n2ρ−k+1).

Proof: Note that only the nodes larger than both u and v
are received in Reduce 2 for any real edge (u, v). According to
Lemma 1, the excepted number of nodes loaded into internal
memory in Reduce 2 is O(1). Thus, the expected total disk
space occupied by the real edges is O(m). For any node
u ∈ H (ρ) with degree d DePart generates no more than
|L(ρ)| = n – nρ−k+1 fake edges and for any fake edge
no more than O(1) nodes. So the total disk space occupied
by fake edges is no more than O(L(ρ)H (ρ)) = O(n2(1 −
ρ−k+1)ρ−k+1) < O(n2ρ−k+1). Subsequently, the expected
total disk space is O(m+ n2ρ−k+1).
Theorem 2: In DePart, the total amount of the work

performed by all the parallel servers is O((m × max(ρ,
|H(ρ)|)+

∑
v∈H (ρ)|L(ρ)|d(v))).

Proof: Because there are m edges in the network, Map 1
takes O(m) time. According to Theorem 2, Reduce 1 gen-
erates O(m× max(ρ, |H (ρ)|) +

∑
v∈H (ρ) |L(ρ)|d(v)) nodes

in total, which means that the total amount of work per-
formed in all Reduce 1 rounds is O((m × max(ρ, 2m/ρ) +∑

v∈H (ρ) |L(ρ)|d(v))) in time complexity. In addition, all the
Reduce 2 rounds take the same amount of work, O((m ×
max(ρ, 2m/ρ) +

∑
v∈H (ρ) |L(ρ)|d(v))), to output the trian-

gles – thus, the total amount of work performed by all
the parallel servers in DePart is O((m× max(ρ, 2m/ρ) +∑

v∈H (ρ) |L(ρ)|d(v))).
We can easily deduce that MR-EI (ρ = dmax) costs O(m×

max(ρ, 2m/ρ)) time. When ρ = 2m/ρ and ρ = (2m)0.5,
the running time is optimal with O(m1.5).
Lemma 3: In a scale-free network with exponentk,

the expected total amount of the work performed by all par-
allel servers is O(m + n2ρ−k+1).

Proof: In the first round of MapReduce in DePart, m
edges are traversed, which costs O(m) in running time. For
each edge (u, v), Reduce 2 costs O(1) in time to output all the
triangles including nodes u and v. According to Lemma 2,
the total number of nodes generated in Reduce 1 is O(m +
n2ρ−k+1). Thus, the expected running time of the second
round of MapReduce in DePart is O(m+ n2ρ−k+1), andthe
expected total amount of work performed by all parallel
serversis O(m+ nm/ρ2).
Obviously, when internal memory complexity is opti-

mal, or ρ = n1/k , the total amount of the work performed
by all parallel servers is O(m+ n1+1/k ). Since k > 2, O(m+
n1+1/k ) < O(m+ n1.5) < O(m1.5).
Basically,Lemma3 clearly reveals that DePart discovers all

the triangles more efficiently than GP, TTP or CTTP espe-
cially in scale-free networks, at O(m1.5) in time complexity.
Based on the above, DePart uses O(m+ n2ρ−k+1) in total

disk space and O(ρ) in internal memory when ρ > n1/k .
In other words, compared to MR-EI, DePart reduces the
internal memory requirement by a factor of n / ρ by creating
an O(n2ρ−k+1) increase in total disk space. As illustrated
through real-world datasets, DePart has an adequate tradeoff
between internal memory and total disk space in practice,
which is quite favorable considering RAM is typically much
more expensive than disk space.
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